Benefit/Cost Methodology

Section 1 of 3 Analysis Narrative (2 Pages)

Benefit/Cost Analysis Narrative

In order to calculate the safety and mobility benefits of the proposed improvements the HGAC methodology to calculate crash and delay benefits template spreadsheets were utilized. The spreadsheets contain all standardized assumptions to determine present value benefits. The following sections summarize how the input data in the HGAC template spreadsheets were calculated.

The Texas Department of Transportation Highway Safety Improvement Program (HSIP) Work Codes Table shows several categories that fits the type of improvements proposed by this project. The following list summarizes the category numbers definition and reduction factors that are applicable to the proposed project.

- 111 Interconnect Signals Provide a communication link between two or more adjacent signals in a corridor. Specify all signalized intersections to be included in the interconnection Reduction Factor 10%
- 131 Improve Pedestrian Signals Bring existing pedestrian signal units into conformance with current standards Reduction Factor 10%
- 403 Install Pedestrian Crosswalk Place pedestrian crosswalk markings where none existed previously Reduction Factor 10%
- 407 Install Sidewalks Install sidewalks where none existed previously Reduction Factor 20%
- 509 Channelization Install islands and/or pavement markings to control or prohibit vehicular movements Reduction Factor Varies
- 520 Lengthen Left Turn Lane Provide additional length to an existing exclusive left turn lane. Affected intersection approaches must be specified - Reduction Factor 40%
- 524 Increase Turning Radius Provide an increased turning radius at an existing intersection Reduction Factor 10%

Since there are several safety items being proposed that will ultimately improve safety to pedestrians and vehicular traffic, a conservative 25% reduction factor was assumed to calculate the safety benefit/cost analysis. We believe the cumulative effect of all the improvements will have such an impact.

Similarly, using the delay outputs for AM and PM peak periods; a link travel time was obtained from the SYNCHRO model. Then a two hour Vehicle Hour Traveled (VHT) was calculated for each link using the peak-hour volumes used in the analysis. Then a K-factor for the peak periods was utilized to determine the daily VHT for each link, and the total VHT for the 2018 build and no-build were completed. Then this total VHT was used in the benefit calculation template spreadsheets provided by HGAC. The output from the HGAC spreadsheet were used to calculate the benefit cost analysis. Table 7 shows the Benefit/Cost calculations with a construction cost estimate of \$19.5 million for the proposed project.

Table 7 Benefit/Cost Analysis						
	3%				7%	
	Ber	nefit (\$)	B/C	Benefit (\$) B/		B/C
Mobility	\$	11,380,000	0.58	\$	7,322,000	0.38
Safety	\$	13,349,000	0.68	\$	8,103,000	0.42

Benefit/Cost Methodology

Section 2 of 3 Safety Benefit Results (1 Page)

INPUTS

Project Identification	
Name:	FM 2920
Application ID Number:	300840
Sponsor ID Number (CSJ, etc.):	

mport 1	from	Crash	History	Data Tak	?

Improvement Information	
Year Open to Traffic? (Must be >=2018)	2020
Appropriate Crash Reduction Factor (%):	25%
Service Life (years):	20

Daily Travel Demand	With Project
2018 Volume	27,000
2018 Capacity	32,000
2025 Volume	31,000
2025 Capacity	32,000
2040 Volume	37,000
2040 Capacity	32,000

Preventable Crash History	Year 1	Year 2	Year 3	Average
Death_Cnt	0	0	0	0.00
Incap_Injry_Cnt	2	1	3	2.00
Nonincap_Injry_Cnt	2	6	17	8.33
Poss_Injry_Cnt	19	11	16	15.33
Non_Injry_Cnt	93	90	124	102.33
Unkn_Injry_Cnt	4	0	2	2.00

OUTPUTS

Benefit Results	
Discounted Safety Benefits @ 7% (2015 \$, '000s)	\$8,103
Discounted Safety Benefits @ 3% (2015 \$, '000s)	\$13,349

Benefit/Cost Methodology

Section 3 of 3 Delay Benefit Results (1 Page)

INPUTS

Project Information	
Name:	FM 2920
Application ID Number:	300840
Sponsor ID Number (CSJ, etc.):	
Year Open to Traffic? (Must be >=2018)	2018

Daily Travel Demand	With Project	Without Project
2018 VHT	2,875	2,988
2018 Volume	27,000	X
2018 Capacity	32,000	\mathbb{N}
2025 Volume	31,000	\mathbb{N}
2025 Capacity	32,000	\mathbb{N}
2040 Volume	37,000	X
2040 Capacity	32,000	N

OUTPUTS

Benefit Results	
Discounted Delay Benefits @ 7% (2015 \$, '000s)	\$7,322
Discounted Delay Benefits @ 3% (2015 \$, '000s)	\$11,380