Appendix K to the Houston-Galveston Area Council Clean Rivers Program FY 2016/2017

Biological Monitoring at Selected Locations in the H-GAC Region

Prepared by the Houston-Galveston Area Council (H-GAC) in cooperation with the Texas Commission on Environmental Quality (TCEQ)

Effective: June 12, 2017

Questions concerning this QAPP should be directed to: Jean Wright (H-GAC Representative) Quality Assurance Officer P.O. Box 22777 Houston, Texas 77227-2777 (713) 499-6660 jean.wright@h-gac.com

SS-A1 Approval Page

Texas Commission on Environmental Quality Water Quality Planning Division

Electronically signed 6/9/2017	
Sarah Eagle, Work Leader Clean Rivers Program	Date
Electronically signed 6/9/2017	
Kelly Rodibaugh Project Manager & Project Quality Assurance Clean Rivers Program	Date Specialist
Electronically signed 6/9/2017	
Cathy Anderson Team Leader Data Management and Analysis Team	Date
Monitoring Division	
Electronically signed 6/12/2017	
Sharon Coleman Acting Lead CRP Quality Assurance Specialist	Date

Houston-Galveston Area Council (H-GAC)

Electronically signed 6/9/2017		
Todd Running	Date	
H-GAC Project Manager		
Electronically signed 6/10/2017		
Jean Wright H-GAC Quality Assurance Officer	Date	

The H-GAC will secure written documentation from each sub-tier project participant (e.g., subcontractors, other units of government) stating the organization's awareness of and commitment to requirements contained in this quality assurance project plan and any amendments or added appendices of this plan. Alternatively, additional signature blocks for primary sub-tier participants have been added to section A1. Signatures in section A1 will eliminate the need to adherence letters to be maintained. The H-GAC will maintain this documentation as part of the project's quality assurance records, and will ensure the documentation is available for review.

ENVIRONMENTAL INSTITUTE OF HOUSTON – UNIVERSITY OF HOUSTON CLEAR LAKE (EIH)

Electronically signed 6/9/2017	
Dr. George Guillen EIH CRP Project Manager	Date
Electronically signed 6/9/2017	
Jenny Oakley EIH Field Quality Assurance Officer	Date

Eastex Environmental Laboratory

Electronically signed 6/12/2017		
Pam Hickman Eastex Laboratory Director	Date	
Electronically signed 6/12/2017		
Daniel Bowen Eastex Laboratory Quality Assurance Officer	Date	

SS-A2 Table of Contents

SS-A1	Approval Page	2
SS-A2	Table of Contents	6
List	of Acronyms	6
SS-A3	Distribution List	8
SS-A4	Project/Task Organization	8
Fig	ure SS-A4.1-Organizational Chart	
SS-A5	Problem Definition/Background	9
SS-A6	Project/Task Description	. 11
SS-A7	Quality Objectives and Criteria	. 12
SS-A8	Special Training/Certification	. 14
SS-A9	Documents and Records	. 14
SS-B1	Sampling Process Design	. 16
Tab	le B1.1 Sample Design and Schedule	. 16
Figu	re SS-B1a & SS-B1b. Sampling Site Maps	. 17
SS-B2	Sampling Methods	. 19
Tab	le SS-B2. Sample Storage, Preservation, and Handling Requirements	. 20
SS-B3	Sample Handling and Custody	. 21
SS-B4	Analytical Methods	. 21
SS-B5	Quality Control	. 22
SS-B6	Instrument/Equipment Testing, Inspection, and Maintenance	. 22
SS-B7	Instrument Calibration and Frequency	. 22
SS-B8	Inspection/Acceptance of Supplies and Consumables	. 22
SS-B9	Acquired Data	. 2 3
SS-B10	Data Management	. 2 3
SS-C1	Assessments and Response Actions	. 24
SS-C2	Reports to Management	. 24
SS-D1	Data Review, Verification, and Validation	. 25
SS-D2	Verification and Validation Methods	. 25
SS-D3	Reconciliation with User Requirements	. 25

Appendix SS-A Tables A7.1 – Measurement Performance Specifications

Appendix SS-B Field Sheets for Aquatic Life Monitoring

List of Acronyms

As described in Section A2 of the basin-wide QAPP plus a few additions found only in this Appendix.

7Q2 Minimum 7-day, 2-year discharge ADV Acoustic Doppler Velocimeter

BLOBs Binary Large Objects

DOC Demonstration of Capability

DQO Data Quality Objective

NELAC National Environmental Lab Accreditation Conference

RBP Rapid Bioassessment Protocol RWA Receiving Water Assessment

SS Special Study

SWQMIS Surface Water Quality Monitoring Information System

USGS United State Geological Survey

SS-A3 Distribution List

Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Kelly Rodibaugh, Project Manager Clean Rivers Program MC-234 (512) 239-1739

Sharon Coleman Acting Lead CRP Quality Assurance Specialist MC-165 (512) 239-6340

Cathy Anderson
Team Leader, Data Management and Analysis Team
MC-234
(512) 239-1805

Houston-Galveston Area Council 3555 Timmons Lane, Suite 120 Houston, Texas 77027

Todd Running, Project Manager (713) 993-4549

Jean Wright, Quality Assurance Officer (713) 499-6660

The Houston-Galveston Area Council will provide copies of this project plan and any amendments or appendices of this plan to each person on this list and to each sub-tier project participant, e.g., subcontractors, other units of government. H-GAC will document distribution of the plan and any amendments and appendices, maintain this documentation as part of the project's quality assurance records, and will ensure the documentation is available for review.

Sub-Tier Participating Organizations to receive copies of the Appendix include: The Environmental Institute of Houston and Eastex Environmental Laboratory

SS-A4 PROJECT/TASK ORGANIZATION

Description of Responsibilities

TCEQ

Sarah Eagle CRP Work Leader

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Sharon R. Coleman Acting Lead CRP Quality Assurance Specialist

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Kelly Rodibaugh

CRP Project Manager & Project Quality Assurance Specialist

As described in the FY2016-2017 basin-wide QAPP, Amendment #1.

Peter Bohls

CRP Data Manager

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Houston-Galveston Area Council (H-GAC)

Todd Running

H-GAC Project Manager

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Jean Wright

H-GAC Quality Assurance Officer

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Bill Hoffman

H-GAC Data Manager

As described in the FY2016-2017 basin-wide QAPP, Section A4.

Environmental Institute of Houston (EIH) University of Houston Clear Lake (UHCL)

Dr. George Guillen EIH CRP Project Manager, Field Supervisor and CRP Quality Assurance OfficerAs described in the FY2016-2017 basin-wide QAPP, Section A4.

Jenny Oakley
CRP Data Manager & Field QAO
As described in the FY2016-2017 basin-wide QAPP, Section A4.

Eastex Environmental Laboratory

Pam Hickman
Laboratory Director - Eastex Environmental Laboratory (Contract Lab)
As described in the FY2016-2017 basin-wide QAPP, Section A4.

Daniel Bowen Eastex Lab QAOAs described in the FY2016-2017 basin-wide QAPP, Section A4.

SS-A5 Problem Definition/Background

The primary goal of the H-GAC Clean Rivers Program is to provide the appropriate quality assured data to allow continuing assessment and management of water quality in the San Jacinto River Basin as well as four other basins located in the region. Objectives of this monitoring program include local participation in the collection and submittal of quality-assured data to assist the TCEQ in attaining reliable information concerning water quality conditions within the basin. Impairments and/or concerns are frequently carried forward due to the lack of current data sufficient enough to reassess a waterbody. To this end, H-GAC, in partnership with the Environmental Institute of Houston, University of Houston – Clear Lake (EIH), will be conducting biological monitoring and habitat assessments on two stream segments that had concerns carried forward in the 2014 Texas Integrated Report approved by EPA in November 2015.

Assessment Unit (AU) 1008A_01, is a perennial stream from the normal pool elevation of Neidigk Lake upstream to the confluence of Hurricane Creek and Kickapoo Creek. This assessment unit has a high aquatic life use (ALU) designation and is currently impaired for dissolved oxygen. Mill Creek is at the edge of the greater Houston 'growth boundary' and is expected to become more urbanized over time. There is one monitoring site located on this section of Mill Creek – site 21957. Site 21957 is located at the intersection of Mill Creek with FM 149, north of Tomball, TX.

Assessment Unit AU 1013A_01, on Segment 1013, is an urban perennial stream with an intermediate ALU designation. There are two monitoring stations on this AU – sites 11148 and 16648. Although Little White Oak Bayou tracks along the I-45 corridor, going underground via culverts under the freeway in a few locations, there is a reach of 685 meters on which to conduct the stream habitat assessment above routine monitoring site 11148.

The purpose of this Special Study QAPP Appendix is to define the quality assurance processes with respect to this project. Data describing the physical, chemical, and biological characteristics of each waterbody will be collected.

This Special Study QAPP Appendix will be reviewed and approved by the TCEQ to ensure that data generated for the purposes described are scientifically valid and legally defensible. This review and approval process will also ensure that all project data submitted to SWQMIS have been collected, analyzed, and handled in ways that are consistent with existing protocol to ensure data quality compatibility.

SS-A6 Project/Task Description

EIH will conduct Aquatic Life Monitoring at 2 locations in the San Jacinto River Basin (Basin 10). The 2 selected sites are located on Mill Creek (Segment 1008A_01) and Little White Oak Bayou (Segment 1013A_01). These sites were selected because TCEQ's 2014 Integrated Report identified these sites as being on the 303D List for having depressed dissolved oxygen (DO) and other water quality issues. More data is needed to evaluate their current status. All sampling associated with this project will be completed between the execution date of this appendix to the QAPP and the end of August 2017.

All monitoring will be conducted in accordance with TCEQ's Surface Water Quality Monitoring Procedures Manual, Volume 1: Physical and chemical Monitoring Methods (RG-415, Revised August 2012) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014) plus the applicable updates to Volume 1 & Volume 2. Two sampling events will be conducted at each of the 2 selected locations. Both monitoring events will be collected during the index period with one event conducted in the non-critical period and one event conducted during the critical period as defined by TCEQ. All monitoring events will be completed at least 30 days apart and when stream conditions reflect normal flow conditions. Data to be collected during each event will include field multi-probe parameters, diel (24-hour) measurements, routine water chemistry samples, flow measurements and observations, a fish survey, a benthic macroinvertebrate survey, and a stream physical habitat survey. Additionally, the following items will be submitted to the TCEQ with all data submittals: copies of field notes and forms, latitude/longitude coordinates of each reach, color photographs, and the required biological data documentation as described in the DMRG. All data and files submitted will conform to the requirements set forth in the DMRG (most recent version). Biological data requirements are specifically addressed in chapter 12 of the DMRG which include the submission of BLOBs. The data will be analyzed using the regional approach as outlined in the Regionalization of the Index of Biotic Integrity for Texas Streams currently used by the

TCEQ. All new data will be submitted to TCEQ using this approved regional metrics format.

Amendments to the QAPP

Amendments to the Special Study Appendix may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the H-GAC Project Manager to the CRP Project Manager electronically. Amendments are effective immediately upon approval by the H-GAC Project Manager, the H-GAC QAO, the CRP Project Manager, the CRP Lead QA Specialist and/or the TCEQ QA Manager (or designee), the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved Special Study Appendix or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of the basin-wide QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP should be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation. Amendments will be incorporated into this Appendix by way of attachment and distributed to personnel on the distribution list by the H-GAC Project Manager.

SS-A7 Quality Objectives and Criteria

The overall goal of this project is for EIH to collect environmental data describing the physical, chemical, and biological characteristics of each waterbody. Other uses TCEQ may use this data are to compare against the assigned water quality standards for each stream segments and aquatic life use designations/dissolved oxygen (DO) criteria. The data will be provided to the TCEQ and may be used in future water quality assessments and/or to make water quality management decisions for the two waterways.

During each event, EIH will collect field parameters, flow, and water samples to analyze for water quality parameters and bacteria. A sonde will be deployed to collect twenty-four hour data for the basic field parameters – temperature, conductivity, dissolved oxygen, and pH. Multi-parameter sondes will be deployed in accordance with the requirements outlined in *TCEQ's Surface Water Quality Monitoring (SWQM) Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012)*. Additionally, EIH will collect habitat data, freshwater macrobenthic data per the rapid bio-assessment protocol (RBP), and freshwater nekton data according to procedures outlined in the most current *SWQM Procedures Manual, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014)*.

All sampling events are to occur during the non-critical and critical periods (one sampling event during each period, as defined in the SWQM Procedures, Volume 2). Conditions during the sampling events should include stable, unscoured flow conditions, ideally when the flow is at or just above, the 7Q2 for the particular stream. If flow conditions are not stable or do not reflect baseline conditions, the sampling will be rescheduled. If an extreme weather event occurs, such as significant drought or

heavy rains, or if the stream has been dry, the sampling event will be delayed for an appropriate amount of time as determined by the SWQM Procedures, Volume 2. Data will be assigned a "BS" monitoring type code, representing biased-season monitoring, when submitted to TCEQ.

EIH will perform biological monitoring complete with vouchering of individual, representative fish species collected during seining and shocking efforts. Fish data collected by seining will be reported separately from fish data collected by shocking. Collected aquatic invertebrates will be preserved and stored. Habitat assessment and diel data along with field parameters and observations, water chemistry and bacteriological samples and flow will be collected when biological monitoring is performed. All biological monitoring will be performed per TCEQ's Surface Water Quality Monitoring Procedures, Volume 1: Physical and chemical Monitoring Methods (RG-415, Revised August 2012) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014) plus the applicable updates to Volume 1 & Volume 2.

- Fish collection methods will include both seining and electrofishing. All fish data will be collected and submitted by collection type (seining or shocking). If unable to employ multiple gear types, effort will be increased accordingly using the available gear. To obtain information on the composition and integrity of the fish community, all collected fish will be identified and enumerated to promote an accurate representation of the fish community.
- Benthic macroinvertebrates will be collected using the rapid bioassessment protocols (RBPs) approved by TCEQ. The qualitative collection methods employed will include 5-minute kicknets and snag sampling. At least one representative of each benthic macroinvertebrate taxon collected will be preserved and retained as a voucher specimen. There are no plans to sample depositional habitats such as pools.
- Habitat assessments will be conducted by completing the 3 TCEQ assessment forms:
 - Stream Physical Characteristics Worksheet Part I;
 - Summary of Physical Characteristics of Water Body Part II; and
 - o Habitat Quality Index (HQI) Part III.

The measurement performance specifications (MPS) to support the project purpose for a minimum data set are specified in the SS-A7.1 tables found in SS-Appendix A. The MPS tables have been modified to reflect actual parameters, methods, etc. employed by EIH and the contract lab. In a few cases, alternative methods other than those listed in the shell table have been used. Procedures for laboratory analysis are in accordance with the most recently published edition of Standard Methods for the Examination of Water and Wastewater, 40 CFR 136.

Ambient Water Reporting Limits (AWRLs)

As described in Section A7 of the basin-wide QAPP

Precision

As described in Section A7 of the basin-wide QAPP

Bias

As described in Section A7 of the basin-wide QAPP.

Representativeness

Per the TCEQ Surface Water Quality Monitoring Procedures Manual, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014), biological organisms should be collected and identified in a manner that accurately reflects the biological community composition at the time of sampling. Bioassessment data should be collected during the index period with one event conducted during critical conditions; the prevailing theory being that if the standards attainment criteria are met during the most stressful conditions, it is expected that these criteria would be met during other seasons as well. These two monitoring sites were chosen for this special study because of concerns carried forward from past Integrated Reports. They were also chosen because they are routine water quality monitoring stations currently being monitored by either a CRP partner or by the TCEQ Region 12 office. The sites represent conditions commonly found along the entire length of the waterway. They are located in the middle of each segment and are accessible with some effort. Investigators should find a good variety of microhabitats to sample while avoiding major tributaries and contaminant sources.

Comparability

As described in Section A7 of the basin-wide QAPP.

Completeness

As described in Section A7 of the basin-wide QAPP.

SS-A8 Special Training/Certification

As described in section A7 of the basin-wide QAPP. Additionally, EIH personnel have attended TCEQ's Biological Monitoring Training Course. EIH's field QAO (or their designee) evaluates and documents each employee's demonstration of capabilities for their personnel files. These records are shared with H-GAC and made available during the routine monitoring systems audits.

SS-A9 Documents and Records

As described in Section A9 of the basin-wide QAPP. Plus, EIH shall complete documentation required by Chapter 12 of the DMRG, in BLOB format. All data, including biological, will be entered into SWQMIS. Data and biological attachments will be submitted in the formats required by the DMRG (most recent version).

Table SS-A9.1. Project Documents and Records: Environmental Institute of Houston (EIH)

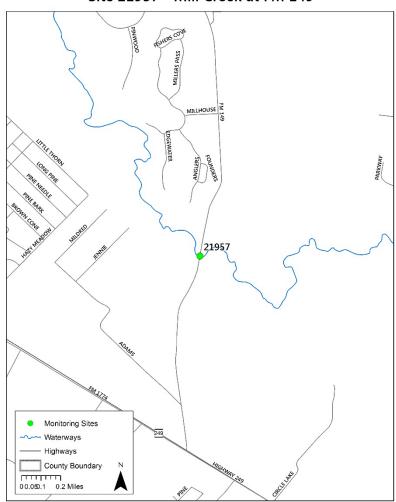
Document/Record for PL	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	TCEQ/H-GAC/EIH	7	Paper
Field SOPs	H-GAC/EIH	7	Paper
Laboratory QA Manuals	Eastex Lab	7	Current version – electronic & paper; prior versions paper only
Laboratory SOPs	Eastex Lab	7	Current version – electronic & paper; prior versions paper only
Laboratory Staff Training Records	Eastex Lab	7	Paper
QAPP distribution documentation	EIH	7	Paper
Field staff training records	H-GAC	7	Paper
Field equipment calibration/maintenance logs	EIH	7	Paper
Field instrument printouts	EIH	7	Paper
Field notebooks or data sheets	H-GAC/EIH	7	Paper
Data Summary Packets	H-GAC/EIH	7	Paper
Chain of custody records	H-GAC/EIH & Eastex Lab	7	Paper
Laboratory calibration records	Eastex Lab	7	Paper
Laboratory instrument printouts	Eastex Lab	7	Paper
Laboratory data reports/results	Eastex Lab	7	Paper
Laboratory equipment maintenance logs	Eastex Lab	7	Paper
Corrective Action Documentation	H-GAC/EIH &/or Eastex Lab	7	Paper

SS-B1 Sampling Process Design

The data collection design is summarized in Table B1.1 (Sample Design and Schedule) and Figure SS-B1 (Sample Site Maps). See Table A7.1 for a list of all parameters being collected under each category.

Sample Design Rationale and Site Selection Criteria

Biological sampling will be conducted twice during the Index/Critical Period of 2017 at two monitoring sites located on Assessment Units (AU) that are on the 303d List for concerns or impairments of one or more aquatic life use category. Each of these locations has been identified as needing additional or more current information to reassess the AU. Each of the locations selected will have field, flow, bacteria, and conventional lab parameters collected plus diel monitoring conducted along with habitat, microbenthic community and fish community assessments.


Table B1.1 Sample Design and Schedule, FY 2017

Site Description	Station ID	Waterbody ID	Region	SE	CE	MT	24 hr DO	АдНар	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Conventional Lab	Amb Tox Water	Amb Tox Sed	Bacteria	Flow	Fish Tissue	Field	Comments
MILL CREEK AT FM 149, NORTH OF																						This special project is for
TOMBALL	21957	1008A	12	HG	UI	BS	2	2	2	2					2			2	2		2	FY2017 only
LITTLE WHITE OAK BAYOU AT TRIMBLE																						This special
STREET/NORTH EDGE OF HOLLYWOOD	44440	10124	4.2			D.C.	_	_	_	_					_			_	_		_	project is for
CEMETERY IN HOUSTON	11148	1013A	12	HG	UI	BS	2	2	2	2					2			2	2		2	FY2017 only

Figures SS-B1. Sampling Site Maps

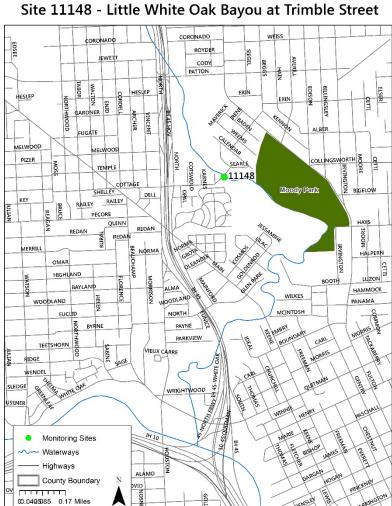

Maps of stations monitored by the H-GAC are provided below. The maps were generated using Goggle Earth. These maps are for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning these maps, contact the Jean Wright at 713-499-6660.

Figure SS-B1a. Sampling Station 21957 located on Mill Creek at FM 149 north of Tomball, TX.

Site 21957 - Mill Creek at FM 149

Figure SS-B1b. Sampling Station 11148 located on Little White Oak Bayou immediately upstream of Trimble Street, north of downtown Houston.

SS-B2 Sampling Methods

Field Sampling Procedures

Field sampling will be conducted using procedures documented in the TCEQ's Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014). Additional aspects outlined in Section B below reflect specific requirements for sampling under the Clean Rivers Program and/or provide additional clarification.

Field Monitoring and Conventional Water Quality Sampling Procedures

As described in Section B2 of the basin-wide QAPP, plus EIH investigators will deploy multi-probe data sondes for periods of 24-72 hours to capture the diel variation in temperature, DO, pH, and specific conductance, following the guidance for 24-hour DO measurements in the SWQM Procedures, Volume 1.

Hydrologic Monitoring Procedures

Hydrologic monitoring will be conducted using the standard method described in TCEQ's *Surface Water Quality Monitoring Procedures Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012).* These data will include instantaneous discharge measurements that are collected during each sampling event using either a Sontek Flowtracker handheld acoustic doppler velocimeter (ADV), a Sontek M-9 River Surveyor (ADV), or the USGS gage station associated with the monitoring site.

Habitat Characterizations and Biological Monitoring Procedures

Habitat characterizations and biological monitoring will be conducted using procedures specified in TCEQ's Surface Water Quality Monitoring Procedures Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014). Benthic macroinvertebrate samples will be collected for qualitative analysis using RBP procedures. Macroinvertebrates collected using the standard D-frame kicknet method will be supplemented (and combined) with individuals attached to snags located in riffles and/or runs. Nekton samples will be collected using both seining and electrofishing techniques from all habitats present. Each site's nekton samples will be processed and kept separate so that data from electrofishing and seining will not be combined into one sample. "Time fished over a fixed distance" will be recorded for each site. Habitat characterization will consist of observations and measurements from at least 5 transects at each site. In addition, general qualitative observations about the entire reach where the biotic assessments were conducted will be recorded. Voucher specimens and photographs will be taken at each location on each sampling event.

Sample volume, container types, minimum sampling volume, preservation requirements, and holding time requirements

As described in Section B2 of the basin-wide QAPP.

Table SS-B2. Sample Storage, Preservation, and Handling Requirements

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to 4°C	1 L	7 days
Sulfate	water	Plastic	Cool to 4°C	100 ml ³	28 days
Chloride	water	Plastic	Cool to 4°C	100 mL ³	28 days
<i>E. coli</i> IDEXX Colilert ¹	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours ¹
TKN	water	Plastic	Cool to 4°C H ₂ SO ₄ to pH <2	500 mL ²	28 days
Ammonia-N	water	Plastic	Cool to 4°C H ₂ SO ₄ to pH <2	125 mL ²	28 days
Nitrite + nitrate-N	water	Plastic	Cool to 4°C, H ₂ SO ₄ to pH <2	125 mL ²	28 days
Phosphorus-P, total	water	Plastic	Cool to 4°C H ₂ SO ₄ to pH <2	125 mL ²	28 days
Fish Vouchers	water	10% Formalin in field, store in Formalin for at least one week, soak in fresh water each day for three days, transfer to 50% isopropyl alcohol or 75% ethanol for indefinite storage		As needed to submerge samples without crowding	7 days in Formalin, indefinite for isopropyl alcohol or ethanol
Benthic Macroinverte brates	e water Plastic Plastic If processing in the field, 70% ethanol of 40% isopropyl alcohol. If processing in the lab immediately after collection, 95% ethanol. If processing in the lab at least a week after collection, 10% Formalin. Transfer to 70% ethanol or 40% isopropyl alcohol for indefinite storage		As needed to submerge samples without crowding (no more than half full)	7 days in Formalin, indefinite for isopropyl alcohol or ethanol	

¹ *E.coli* samples analyzed by SM 9223-B should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

Sample Containers

As described in Section B2 of the basin-wide QAPP

² Five tests are analyzed from one 1L plastic bottle.

³ One 500 mL plastic container is used to collect these three samples.

^{4.} Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

Processes to Prevent Contamination

As described in Section B2 of the basin-wide QAPP

Documentation of Field Sampling Activities

As described in Section B2 of the basin-wide QAPP. Additional forms for biological field work, identification/ enumeration bench sheets, and tracking logs can be found in Appendix SS-B.

Recording Data

As described in Section B2 of the basin-wide QAPP.

Sampling Method Requirements or Sampling Process Design Deficiencies, and Corrective Action

As described in Section B2 of the Basin-wide QAPP

SS-B3 Sample Handling and Custody

Sample Tracking

As described in Section B3 of the basin-wide QAPP.

Sample Labeling

As described in Section B3 of the basin-wide QAPP. Labeling of biological specimens will be completed as described in the TCEQ's Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014).

Sample Handling

As described in Section B3 of the basin-wide QAPP plus any special handling of biological samples will be conducted using procedures outlined in TCEQ's Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014).

Sample Tracking Procedure Deficiencies and Corrective Action

As described in Section B3 of the basin-wide QAPP.

SS-B4 Analytical Methods

The analytical methods, associated matrices, and performing laboratories are listed in Table SS-A7.1 of section SS-A7. The authority for analysis methodologies under CRP is derived from the 30 Tex. Admin. Code Ch. 307, in that data generally are generated for comparison to those standards and/or

criteria. The Standards state "Procedures for laboratory analysis must be in accordance with the most recently published edition of the book entitled Standard Methods for the Examination of Water and Wastewater, the TCEQ Surface Water Quality Monitoring Procedures as amended, 40 CFR 136, or other reliable procedures acceptable to the TCEQ, and in accordance with chapter 25 of this title." Laboratory SOPs are consistent with EPA requirements, as specified in the method. Copies of laboratory QMs and SOPs are retained by Eastex Laboratory and are available for review by H-GAC or TCEQ upon request.

Standards Traceability

As described in Section B4 of the basin-wide QAPP.

Analytical Method Deficiencies and Corrective Actions

As described in section B4 of the basin-wide QAPP.

SS-B5 Quality Control

Sampling Quality Control Requirements and Acceptability Criteria

As described in Section B5 of the basin-wide QAPP.

Laboratory Measurement Quality Control Requirements and Acceptability Criteria

As described in Section B5 of the basin-wide QAPP.

Quality Control or Acceptability Requirements Deficiencies and Corrective Actions

As described in Section B5 of the basin-wide QAPP.

SS-B6 Instrument/Equipment Testing, Inspection, and Maintenance

As described in Section B6 of the basin-wide QAPP.

SS-B7 Instrument Calibration and Frequency

As described in Section B7 of the basin-wide QAPP.

SS-B8 Inspection/Acceptance of Supplies and Consumables

As described in Section B8 of the basin-wide QAPP.

SS-B9 Acquired Data

As described in Section B9 of the basin-wide QAPP. Only data collected directly under this QAPP is submitted to the SWQMIS database.

SS-B10 Data Management

As described in Section B10 of the basin-wide QAPP.

Data Dictionary

Terminology and field descriptions are included in the most recent version of the DMRG. A table outlining the entities that will be used when submitting data under this QAPP is included below for the purpose of verifying which entity codes are included in this QAPP.

Name of Entity	Tag Prefix	Submitting Entity	Collecting Entity
Environmental Institute of	1	HG	UI
Houston – University of			
Houston Clear Lake			

SS-C1 Assessments and Response Actions

As described in Section C1 of the basin-wide QAPP.

Corrective Action

As described in Section C1 of the basin-wide QAPP.

SS-C2 Reports to Management

Reports to Planning Agency Project Management

As described in Section C2 of the basin-wide QAPP.

Reports to TCEQ Project Management

As described in Section C2 of the basin-wide QAPP.

Reports by TCEQ Project Management

As described in Section C2 of the basin-wide QAPP.

SS-D1 Data Review, Verification, and Validation

As described in Section D1 of the basin-wide QAPP.

SS-D2 Verification and Validation Methods

As described in Section D2 of the basin-wide QAPP.

SS-D3 Reconciliation with User Requirements

As described in Section D2 of the basin-wide QAPP.

SS-APPENDIX A – Measurement Performance Specifications

TABLE A7.1 Measurement Performance S	Specifications		onmental Institute o Field Parameters	f Houston	(EIH)					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	100	LOQ Check Sample %Rec	Precision (RPD of LCS/LCSD)	Bias %Rec. of LCS	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	NA*	NA	NA	NA	NA	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	NA*	NA	NA	NA	NA	Field
SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	NA*	NA	NA	NA	NA	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	NA*	NA	NA	NA	NA	Field
PH (STANDARD UNITS)	s.u	water	EPA 150.1 and TCEQ SOP V1	00400	NA*	NA	NA	NA	NA	Field
SALINITY - PARTS PER THOUSAND	PPT	water	SM 2520 and TCEQ SOP V1	00480	NA*	NA	NA	NA	NA	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	NA*	NA	NA	NA	NA	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	NA*	NA	NA	NA	NA	Field
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)***	meters	other	TCEQ SOP V2	89864	NA*	NA	NA	NA	NA	Field
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)***	meters	other	TCEQ SOP V2	89865	NA*	NA	NA	NA	NA	Field
POOL LENGTH, METERS***	meters	other	TCEQ SOP V2	89869	NA*	NA	NA	NA	NA	Field
% POOL COVERAGE IN 500 METER REACH***	%	other	TCEQ SOP V2	89870	NA*	NA	NA	NA	NA	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	NA	NA	NA	NA	NA	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	NA	NA	NA	NA	NA	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHIT ECAP)	NU	water	NA	89968	NA	NA	NA	NA	NA	Field
TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI	NU	water	NA	89972	NA	NA	NA	NA	NA	Field
WATER COLOR (1=BROWNISH, 2=REDDISH, 3=GREENISH, 4=BLACKISH, 5=CLEAR, 6=OTHER)	NU	water	water NA							Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGG, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER)		water	NA	89971						Field
PRIMARY CONTACT, OBSERVED ACTIVITY (# OF PEOPLE OBSERVED)	# of people observed	other	NA	89978	NA	NA	NA	NA	NA	Field
EVIDENCE OF PRIMARY CONTACT RECREATION (1 = OBSERVED, 0 = NOT OBSERVED)	NU	other	NA	89979	NA	NA	NA	NA	NA	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.
*** To be routinely reported when collecting data from perennial pools.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416)

[†] As published by the Texas Water Development Board on their website http://wiid.twdb.state.tx.us/ims/resinfo/BushButton/lakestatus.asp?selcat=3&slbasin=2

Flow Paramete	ers				
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY: 1=No Flow, 2=Low, 3=Normal, 4=Flood, 5=High, 6=Dry	NU	water	TCEQ SOP V1	01351	Field
STREAM FLOW ESTIMATE (CFS)	cfs	Water	TCEQ SOP V1	74069	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416)

TABLE A7.1 Measurement Performance Spe	ABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston (EIH) Conventional Parameters in Water											
		Conv	entional Param	eters in v	vater	T	1					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Precision (RPD of LCS/LCSD)	Bias %Rec. of LCS	Гаb		
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540 D	00530	5	1	NA	NA	NA	Eastex		
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500 NH3 - G	00610	0.1	0.1	70-130	20	80-120	Eastex		
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	SM 4500- NH3 C B; SM 4500-N _{org}	00625	0.2	0.2	70-130	20	80-120	Eastex		
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 - F	00630	0.05	0.04	70-130	20	80-120	Eastex		
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	SM 4500-P E	00665	0.06	0.02	70-130	20	80-120	Eastex		
CHLORIDE (MG/L AS CL)	mg/L	water	SM 4500 Cl- C	00940	5	5	70-130	20	80-120	Eastex		
SULFATE (MG/L AS SO4)	mg/L	water	ASTM D516	00945	5	5	70-130	20	80-120	Eastex		

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416)

TABLE A7.1g Measurement Performance Specifications for Environmental Institute of Houston (EIH)										
Bacteriological Parameters in Water										
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	רסס	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
E. COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	Colilert-18 **	31699	1	1	NA	0.50*	NA	Eastex
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020
American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the
Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416)

^{**} E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

24 HourParameters in Water							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG	DEG C	Water	TCEQ SOP V1	00209	field		
WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX	DEG C	Water	TCEQ SOP V1	00210	field		
TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN	DEG C	Water	TCEQ SOP V1	00211	field		
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG	uS/cm	Water	TCEQ SOP V1	00212	field		
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX	uS/cm	Water	TCEQ SOP V1	00213	field		
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN	uS/cm	Water	TCEQ SOP V1	00214	field		
PH, S.U., 24HR MAXIMUM VALUE	std. units	Water	TCEQ SOP V1	00215	field		
PH, S.U., 24HR, MINIMUM VALUE	std. units	Water	TCEQ SOP V1	00216	field		
WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00221	field		
SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00222	field		
pH, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00223	field		
DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89855	field		
DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89856	field		
DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89857	field		
DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	89858	field		

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.1	Measurement Performance Specifications for Environmental Institute of Houston - University of Houston
Clear Lake I	ZELU)

Clear Lake (EIH)							
Biological - Habitat							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	Water	TCEQ SOP V2	00061	field		
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	field		
STREAM TYPE; 1=PERENNIAL 2=INTERMITTENT S/PERENNIAL POOLS			•				
3=INTERMITTENT 4=UNKNOWN	NU	Water	NA/Calculation	89821	field		
STREAMBED SLOPE (M/KM)	M/KM	Other	NA/Calculation	72051	field		
AVERAGE PERCENTAGE INSTREAM COVER	%	Other	TCEQ SOP V2	84159	field		
STREAM ORDER	NU	Water	TCEQ SOP V2	84161	field		
NUMBER OF LATERAL TRANSECTS MADE	NU	Other	TCEQ SOP V2	89832	field		
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	Other	TCEQ SOP V2	89835	field		
TOTAL NUMBER OF STREAM BENDS	NU	Other	TCEQ SOP V2	89839	field		
NUMBER OF WELL DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89840	field		
NUMBER OF MODERATELY DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89841	field		
NUMBER OF POORLY DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89842	field		
TOTAL NUMBER OF RIFFLES	NU	Other	TCEQ SOP V2	89843	field		
DOMINANT SUBSTRATE TYPE(1=CLAY,2=SILT,3=SAND,4=GRAVEL,5=COBBLE,6=BOULDER,7=B EDROCK,8=OTHER)	NU	Sedimen t	TCEQ SOP V2	89844	field		
AVERAGE PERCENT OF SUBSTRATE GRAVEL SIZE OR LARGER	%	Other	TCEQ SOP V2	89845	field		
AVERAGE STREAM BANK EROSION (%)	%	Other	TCEQ SOP V2	89846	field		
AVERAGE STREAM BANK SLOPE (DEGREES)	deg	Other	TCEQ SOP V2	89847	field		
HABITAT FLOW STATUS, 1=NO FLOW, 2=LOW,3=MOD,4=HIGH	NU	Other	TCEQ SOP V2	89848	field		
AVERAGE PERCENT TREES AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89849	field		
AVERAGE PERCENT SHRUBS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89850	field		
AVERAGE PERCENT GRASS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89851	field		
AVERAGE PERCENT CULTIVATED FIELDS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89852	field		
AVERAGE PERCENT OTHER AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89853	field		
AVERAGE PERCENTAGE OF TREE CANOPY COVERAGE	%	Other	TCEQ SOP V2	89854	field		
DRAINAGE AREA ABOVE MOST DOWNSTREAM TRANSECT*	km2	Other	TCEQ SOP V2	89859	field		
REACH LENGTH OF STREAM EVALUATED (M)	m	Other	NA/Calculation	89884	field		
AVERAGE STREAM WIDTH (METERS)	М	Other	TCEQ SOP V2	89861	field		
AVERAGE STREAM DEPTH (METERS)	М	Other	TCEQ SOP V2	89862	field		
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)	M	Other	TCEQ SOP V2	89864	field		
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)	М	Other	TCEQ SOP V2	89865	field		
AVERAGE WIDTH OF NATURAL RIPARIAN VEGETATION (M)	М	Other	TCEQ SOP V2	89866	field		
AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON LEFT BANK (M)	М	Other	NA/Calculation	89872	field		
AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON RIGHT BANK (M)	m	Other	NA/Calculation	89873	field		
AESTHETICS OF REACH(1=WILD 2=NAT. 3=COMM. 4=OFF.)	NU	Other	TCEQ SOP V2	89867	field		
NUMBER OF STREAM COVER TYPES	NU	Other	TCEQ SOP V2	89929	field		
LAND DEVELOP IMPACT (1=UNIMP,2=LOW,3=MOD,4=HIGH)	NU	Other	TCEQ SOP V2	89962	field		
RIPARIAN VEGETATION %; LEFT BANK - TREES	%	Other	NA/Calculation	89822	field		
RIPARIAN VEGETATION %; RIGHT BANK - TREES	%	Other	NA/Calculation	89823	field		
RIPARIAN VEGETATION %; LEFT BANK SHRUBS	%	Other	NA/Calculation	89824	field		
RIPARIAN VEGETATION %; RIGHT BANK - SHRUBS	%	Other	NA/Calculation	89825	field		
RIPARIAN VEGETATION %: LEFT BANK - GRASSES OR FORBS	%	Other	NA/Calculation	89826	field		

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Habitat							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
RIPARIAN VEGETATION %; RIGHT BANK - GRASSES OR FORBS	%	Other	NA/Calculation	89827	field		
RIPARIAN VEGETATION %: LEFT BANK - CULTIVATED FIELDS	%	Other	NA/Calculation	89828	field		
RIPARIAN VEGETATION %: RIGHT BANK - CULTIVATED FIELDS	%	Other	NA/Calculation	89829	field		
RIPARIAN VEGETATION %: LEFT BANK - OTHER	%	Other	NA/Calculation	89830	field		
RIPARIAN VEGETATION %: RIGHT BANK - OTHER	%	Other	NA/Calculation	89871	field		
AVAILABLE INSTREAM COVER HQI SCORE: 4=ABUNDANT 3=COMMON 2=RARE 1=ABSENT	NU	Other	NA/Calculation	89874	field		
BOTTOM SUBSTRATE STABILITY HQI SCORE: 4=STABLE 3=MODERATELY STABLE 2=MODERATELY UNSTABLE 1=UNSTABLE	NU	Other	NA/Calculation	89875	field		
NUMBER OF RIFFLES HQI SCORE: 4=ABUNDANT 3=COMMON 2=RARE 1=ABSENT	NS	Other	NA/Calculation	89876	field		
DIMENSIONS OF LARGEST POOL HQI SCORE: 4=LARGE 3=MODERATE 2=SMALL 1=ABSENT	NU	Other	NA/Calculation	89877	field		
CHANNEL FLOW STATUS HQI SCORE: 3=HIGH 2=MODERATE 1=LOW 0=NO FLOW	NU	Other	NA/Calculation	89878	field		
BANK STABILITY HQI SCORE: 3=STABLE 2=MODERATELY STABLE 1=MODERATELY UNSTABLE 0=UNSTABLE	NU	Other	NA/Calculation	89879	field		
CHANNEL SINUOSITY HQI SCORE: 3=HIGH 2=MODERATE 1=LOW 0=NONE	NU	Other	NA/Calculation	89880	field		
RIPARIAN BUFFER VEGETATION HQI SCORE: 3=EXTENSIVE 2=WIDE 1=MODERATE 0=NARROW	NU	Other	NA/Calculation	89881	field		
AESTHETICS OF REACH HQI SCORE: 3=WILDERNESS 2=NATURAL AREA 1=COMMON SETTING 0=OFFENSIVE	NU	Other	NA/Calculation	89882	field		
HQI TOTAL SCORE	NU	Other	NA/Calculation	89883	field		
LENGTH OF STREAM EVALUATED (KM)	KM	Other	NA/Calculation	89860	field		
STREAMBED SLOPE (FT/FT)	FT/FT	Other	NA/Calculation	72052	field		
NO FLOW ISOLATED POOL: LARGEST POOL MAX WIDTH (M	М	Other	NA/Calculation	89908	field		
NO FLOW ISOLATED POOL: LARGEST POOL MAX LENGTH (М	Other	NA/Calculation	89909	field		
NO FLOW ISOLATED POOL: LARGEST POOL MAX DEPTH (M	М	Other	NA/Calculation	89910	field		
NO FLOW ISOLATED POOL: SMALLEST POOL MAX DEPTH (М	Other	NA/Calculation	89911	field		
NO FLOW ISOLATED POOL: SMALLEST POOL MAX WIDTH (М	Other	NA/Calculation	89912	field		
NO FLOW ISOLATED POOL: SMALLEST POOL MAX LENGTH	М	Other	NA/Calculation	89913	field		
NO FLOW ISOLATED POOLS: NUMBER OF POOLS EVALUATED	NU	Other	NA/Calculation	89914	field		

^{*} From USGS map.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Benthics (Quantitative) Parameter Matrix Code Units ap **Parameter** STREAM ORDER Water TCEQ SOP V1 NU 84161 field BIOLOGICAL DATA NS Other NA/Calculation 89888 field QUANTITATIVE PROTOCOLS REGIONAL BENTHIC NS 90085 Other NA/Calculation field MACROINVERTEBRATE IBI SCORE BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUALS IN SUB-SAMPLE, 2=NUMBER OF NU Other TCEQ SOP V2 89899 field INDIVIDUALS/FT2, 3=NUMBER OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS IN SAMPLE) SURBER SAMPLER EFFORT, AREA SAMPLED (SQ. METER) 89901 Other TCEQ SOP V2 field m2 UNDERCUT BANK AT COLLECTION POINT (%) % Other TCEQ SOP V2 89921 field OVERHANGING BRUSH AT COLLECTION POINT (%) % Other TCEQ SOP V2 89922 field GRAVEL BOTTOM AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89923 field SAND BOTTOM AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89924 field SOFT BOTTOM AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89925 field MACROPHYTE BED AT COLLECTION POINT (%) % Other TCEQ SOP V2 89926 field SNAGS AND BRUSH AT COLLECTION POINT (%) % Other TCEQ SOP V2 89927 field BEDROCK STREAMBED AT COLLECTION POINT (%) Sediment 89928 field % TCEQ SOP V2 **HESTER-DENDY DURATION (DAYS)** days Other TCEQ SOP V2 89933 field PETERSEN SAMPLER EFFORT, AREA SAMPLED (SQ. MTR.) m2 Other TCEQ SOP V2 89934 field EKMAN SAMPLER EFFORT, AREA SAMPLED (SQ.METER) Other TCEQ SOP V2 89935 field m2 MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM) Other TCEQ SOP V2 89946 field cm BENTHIC SAMPLE COLLECTION METHOD (1=SURBER, 2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY, NU Other TCEQ SOP V2 89950 field 6=SNAG, 7=HESS) ECOREGION LEVEL III (TEXAS ECOREGION CODE) NU Other TCEQ SOP V1 field 89961 AREA OF SNAG SURFACE SAMPLED (SQ.MT) m2 Other TCEQ SOP V2 89975 field 90005 BENTHOS ORGANISMS -NONE PRESENT (0=NONE PRESENT) NS Other TCEQ SOP V2 field BENTHIC GRAZERS, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90020 field BENTHIC GATHERERS, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90025 field BENTHIC FILTERERS, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90030 field TOTAL TAXA RICHNESS, BENTHOS NU Other 90055 field TCEQ SOP V2 NUMBER OF DIPTERA TAXA NU Other TCEQ SOP V2 90056 field 90057 NUMBER OF EPHEMEROPTERA TAXA NU Other TCEQ SOP V2 field Other 90058 field TOTAL NUMBER OF INTOLERANT TAXA, BENTHOS NU TCEQ SOP V2 EPT, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90060 field CHIRONOMIDAE, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90062 field BENTHIC SHREDDERS (% OF COMMUNITY) % Other TCEQ SOP V2 90035 field TOTAL # OF FAMILIES IN BENTHIC SAMPLE Other NU TCEQ SOP V2 90012 field HESS SAMPLER EFFORT, AREA SAMPLED (SQ. METER) m2 Other TCEQ SOP V2 89956 field

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Benthics (Quantitative)							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
TOLERANT BENTHOS, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90066	field		
DOMINANT 3 TAXA, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90067	field		
TOTAL # OF BENTHIC GENERA IN SAMPLE	NU	Other	TCEQ SOP V2	90011	field		

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Benthics (Qualitative) Parameter Method Matrix Units ab **Parameter** STREAM ORDER NU Water TCEQ SOP, V1 84161 field **BIOLOGICAL DATA** NS Other NA/Calculation 89888 field RAPID BIOASSESSMENT PROTOCOLS BENTHIC NS 90081 Other NA/Calculation field MACROINVERTEBRATE IBI SCORE BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUALS IN SUB-SAMPLE, 2=NUMBER OF TCEQ SOP V2 NU Other 89899 field INDIVIDUALS/FT2, 3=NUMBER OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS IN SAMPLE) DIP NET EFFORT, AREA SWEPT (SQ. METER) Other TCEQ SOP V2 89902 field m2 KICKNET EFFORT, AREA KICKED (SQ. METER) m2 Other TCEQ SOP V2 89903 field KICKNET EFFORT, MINUTES KICKED (MIN.) min. Other TCEQ SOP V2 89904 field DEBRIS/SHORELINE SAMPLING EFFORT, MINUTES 89905 field min. Other TCEQ SOP V2 NUMBER OF INDIVIDUALS IN BENTHIC SAMPLE NU Other TCEQ SOP V2 89906 field UNDERCUT BANK AT COLLECTION POINT (%) field % Other TCEQ SOP V2 89921 OVERHANGING BRUSH AT COLLECTION POINT (%) % Other TCEQ SOP V2 89922 field % 89923 field GRAVEL BOTTOM AT COLLECTION POINT (%) Sediment TCEQ SOP V2 SAND BOTTOM AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89924 field SOFT BOTTOM AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89925 field MACROPHYTE BED AT COLLECTION POINT (%) % Other TCEQ SOP V2 89926 field SNAGS AND BRUSH AT COLLECTION POINT (%) % field Other TCEQ SOP V2 89927 BEDROCK STREAMBED AT COLLECTION POINT (%) % Sediment TCEQ SOP V2 89928 field 89934 field PETERSEN SAMPLER EFFORT, AREA SAMPLED (SQ. MTR.) m2 Other TCEQ SOP V2 EKMAN SAMPLER EFFORT, AREA SAMPLED (SQ.METER) m2 Other TCEQ SOP V2 89935 field MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM) Other TCEQ SOP V2 89946 field cm BENTHIC SAMPLE COLLECTION METHOD (1=SURBER, 2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY, NU Other TCEQ SOP V2 89950 field 6=SNAG, 7=HESS) ECOREGION LEVEL III (TEXAS ECOREGION CODE) NU Other TCEQ SOP V1 89961 field BENTHOS ORGANISMS -NONE PRESENT (0=NONE Other TCEQ SOP V2 90005 field NS PRESENT) HILSENHOFF BIOTIC INDEX (HBI) 90007 NU Other TCEQ SOP V2 field NUMBER OF EPT INDEX NU 90008 field Other TCEQ SOP V2 DOMINANT BENTHIC FUNCTIONAL FEEDING GRP, % OF % Other TCEQ SOP V2 90010 field **INDIVIDUALS** BENTHIC GATHERERS, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90025 field BENTHIC PREDATORS, PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90036 field DOMINANT TAXON, BENTHOS PERCENT OF INDIVIDUALS % Other TCEQ SOP V2 90042 field RATIO OF INTOLERANT TO TOLERANT TAXA, BENTHOS 90050 NU Other TCEQ SOP V2 field NUMBER OF NON-INSECT TAXA NU 90052 field Other TCEQ SOP V2

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Benthics (Qualitative)							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
ELMIDAE, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90054	field		
TOTAL TAXA RICHNESS, BENTHOS	NU	Other	TCEQ SOP V2	90055	field		
CHIRONOMIDAE, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90062	field		
PERCENT OF TOTAL TRICHOPTERA INDIVIDUALS AS HYDROPSYCHIDAE	%	Other	TCEQ SOP V2	90069	field		
TOTAL # OF BENTHIC GENERA IN SAMPLE	NU	Other	TCEQ SOP V3	90011	field		
BENTHIC SHREDDERS (% OF COMMUNITY)	%	Other	TCEQ SOP V2	90035	field		
TOTAL # OF FAMILIES IN BENTHIC SAMPLE	NU	Other	TCEQ SOP V2	90012	field		
HESS SAMPLER EFFORT, AREA SAMPLED (SQ. METER)	m2	Other	TCEQ SOP V2	89956	field		

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020
American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)
TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.1 Measurement Performance Specifications for Environmental Institute of Houston - University of Houston Clear Lake (EIH)

Biological - Nekton							
Parameter	Units	Matrix	Method	Parameter Code	Lab		
STREAM ORDER	NU	Water	TCEQ SOP V1	84161	field		
NEKTON TEXAS REGIONAL IBI SCORE	NS	Other	NA/Calculation	98123	field		
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	field		
SEINE, MINIMUM MESH SIZE, AVERAGE BAR, NEKTON,IN	IN	Other	TCEQ SOP V2	89930	field		
SEINE, MAXIMUM MESH SIZE, AVG BAR, NEKTON,INCH	IN	Other	TCEQ SOP V2	89931	field		
NET LENGTH (METERS)	М	Other	TCEQ SOP V2	89941	field		
ELECTROFISHING METHOD 1=BOAT 2=BACKPACK 3=TOTEBARGE	NU	Other	TCEQ SOP V2	89943	field		
ELECTROFISH EFFORT, DURATION OF SHOCKING (SEC)	SEC	Other	TCEQ SOP V2	89944	field		
SEINING EFFORT (# OF SEINE HAULS)	NU	Other	TCEQ SOP V2	89947	field		
COMBINED LENGTH OF SEINE HAULS (METERS)	М	Other	TCEQ SOP V2	89948	field		
SEINING EFFORT, DURATION (MINUTES)	MIN	Other	TCEQ SOP V2	89949	field		
ECOREGION LEVEL III (TEXAS ECOREGION CODE)	NU	Other	TCEQ SOP V1	89961	field		
AREA SEINED (SQ METERS)	M2	Other	TCEQ SOP V2	89976	field		
NUMBER OF SPECIES, FISH	NU	Other	TCEQ SOP V2	98003	field		
NEKTON ORGANISMS-NONE PRESENT (0=NONE PRESENT)	NS	Other	TCEQ SOP V2	98005	field		
TOTAL NUMBER OF SUNFISH SPECIES	NU	Other	TCEQ SOP V2	98008	field		
TOTAL NUMBER OF INTOLERANT SPECIES, FISH	NU	Other	TCEQ SOP V2	98010	field		
PERCENT OF INDIVIDUALS AS OMNIVORES, FISH	%	Other	TCEQ SOP V2	98017	field		
PERCENT OF INDIVIDUALS AS INVERTIVORES, FISH	%	Other	TCEQ SOP V2	98021	field		
PERCENT OF INDIVIDUALS AS PISCIVORES, FISH	%	Other	TCEQ SOP V2	98022	field		
PERCENT OF INDIVIDUALS WITH DISEASE OR ANOMALY	%	Other	TCEQ SOP V2	98030	field		
TOTAL NUMBER OF NATIVE CYPRINID SPECIES	NU	Other	TCEQ SOP V2	98032	field		
PERCENT INDIVIDUALS AS NON-NATIVE FISH SPECIES (% OF COMMUNITY)	%	Other	TCEQ SOP V2	98033	field		
TOTAL NUMBER OF INDIVIDUALS SEINING	NU	Other	TCEQ SOP V2	98039	field		
TOTAL NUMBER OF INDIVIDUALS ELECTROFISHING	NU	Other	TCEQ SOP V2	98040	field		
TOTAL NUMBER OF BENTHIC INVERTIVORE SPECIES	NU	Other	TCEQ SOP V2	98052	field		
TOTAL NUMBER OF BENTHIC FISH SPECIES	NU	Other	TCEQ SOP V2	98053	field		
NUMBER OF INDIVIDUALS PER SEINE HAUL	NU	Other	TCEQ SOP V2	98062	field		
NUMBER OF INDIVIDUALS PER MINUTE ELECTROFISHING	NU	Other	TCEQ SOP V2	98069	field		
PERCENT INDIVIDUALS AS TOLERANT FISH SPECIES (EXCLUDING WESTERN MOSQUITOFISH)	%	Other	TCEQ SOP V2	98070	field		
TOTAL NUMBER OF SUCKER SPECIES	NU	Other	TCEQ SOP V2	98009	field		
PERCENT OF INDIVIDUALS AS HYBRIDS	%	Other	TCEQ SOP V2	98024	field		
TOTAL NUMBER OF INDIVIDUALS IN SAMPLE, FISH					_		
	NU	Other	TCEQ SOP V2	98023	field		
PERCENT OF INDIVIDUALS AS TOLERANTS, FISH	_	Other Other	TCEQ SOP V2 TCEQ SOP V2	98023 98016	field field		

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

SS-APPENDIX B – Field and Bench Sheets for Aquatic Life Monitoring and Habitat Assessments	
33-AFF ENDIX B — Field and Bench Sheets for Aquatic Life Monitoring and Habitat Assessments	

Environmental Institute of Houston - University of Houston Clear Lake Clean Rivers Program Field Data/Sampling Sheet

Station ID:Date:				Sample Time:					
Location:	ocation:				Lat:Long:				
Collected By:									
FIELD N	MEASUREMENT	'S (If < 1.5m deep	- record @ 0.3m fro	om surface; If≥ 1	.5m deep - perform	profile @ 0.3	m from botton	n, @ middle, and	@ 0.3m from surface)
	1		2		3			4	5
Temp (C)									
Conductivity (uS)									
Salinity (psu)									
DO (%sat)									
DO mg/L									
•									
pH									
Depth (m)				FIELD OBSI	ERVATIONS				
	 T			TILLD OBOI	LIVATIONO	 7			
	TOTAL DEPTH (m))				PRESENT	WEATHER	1-clear 2-partly 4-rain 5-other	cloudy 3-cloudy
		1-sewage 2-oily/che 4-musky 5-fishy 6-r				FLOW SEV	ERITY	1-no flow 2-low 4-flood 5-high 6	
	WATER SURFACE	1-calm 2-ripples	3-waves 4-whitecap			FLOW (cfs)			
	WIND INTENSITY	1-calm 2-slight 3-moderate 4-stro	ng			FLOW MET	HOD	1-gage 2-electr 4-weir/flume 5-	ic 3-mechanical doppler
	WATER COLOR	1-brownish 2-redd	-			SECCHI DIS	SK (m)		
	TIDE STAGE	4-blackish 5-clear 1-low 2-falling 3-sl	ack 4-rising 5-high			RECREATION	NAL USE	observed, 4=1°	d, 2=2° observed, 3=non-contact evidence, 5=2° evidence, 6=non- tevidence, 7=no evidence
	DAYS SINCE LAST	SIG. RAINFALL				Primary Cor	ntact Rec. Obs	erved (enter nu	mber of people)
						Evidence of F Rec. Observe	Primary Contact ed	0= no evidence o	bserved, 1= evidence observed
				WATER S	SAMPLES				
	FRESH (Non-Tidal) E. coli		MARINE (Tidal) Enterococcus			Field Split C	collected (yes/i	no)	
Conta	ainer	Prese	rvative	Analysis	Requested			Commen	ts
2 x 1L -	- Plastic	Ice		TSS	·				
	- Plastic nl - Plastic	Ice, 2 mL H ₂ SO ₄ Ice, 1 mL H ₂ SO ₄		NH ₃ , TPO ₄ , NO TKN	9 ₂ +NO ₃				
	nl - Plastic	Ice		CI, SO ₄ (fresh v					
2 x 4L - Plas 1 x 100m	stic (amber) nl - Plastic	Ice Ice, Na ₂ S ₂ O ₃ tab	let	Chlorophyll-a (: Bacteria (Enter	select sites) o and/or <i>E. coli</i>)				
ADDITIONAL IN			NAL INFORM	MATION & REM	MARKS				
* If site is dry, determin Maximum pool width_	ne if there is any pool (m), Maximur		If pool(s) exists (> (m), Pool length		and 0.4m deep) reco		Long	of la	argest pool in reach

Elements of the Biological-Data Summary Packet

This document provides guidance for submitting biological data that are collected for routine ALMs, ALUs, UAAs, and RWAs. For guidance in the **collection** of the biological data, consult the text of this manual in conjunction with the current approved version of the 2012 Guidance for Assessing and Reporting Surface Water Quality in Texas, available online at <www.tceq.texas.gov/assets/public/waterquality/swqm/assess/12twqi/2012_guidance.pdf>.

Items 1 to 4 below are the minimum data which that should be submitted to the TCEQ, in a packet, as part of any biological assessment. If submitting the data as part of a UAA, please also use the UAA Report Outline to ensure the summary of the collection efforts is complete. The TCEQ regional staff should submit the packets to the SWQM Team. CRP Planning Agencies and other cooperating authorities should submit packets to the appropriate TCEQ CRP or appropriate project manager. Item 5 is optional.

- 1. Checklist for aquatic-life monitoring and habitat assessment.
- 2. Biological assessment
 - TCEQ Nekton Biological-Data Reporting Form or equivalent for seining.
 - TCEQ Nekton Biological-Data Reporting Form or equivalent for electrofishing.
 - TCEQ Benthic Macroinvertebrate Biological-Data Reporting Form or equivalent.
- 3. Habitat assessment
 - TCEQ Habitat Reporting Form or equivalent.
 - Part I—Stream physical characteristics worksheet.
 - Part II—Summary of physical characteristics of water body.
- 4. Field-Data Reporting Form or equivalent and Stream Flow (Discharge) Measurement Form or equivalent.
- Metric sets for biological and habitat assessments
 Ecoregion scoring criteria for determining ALU—nekton
 Scoring criteria for benthic macroinvertebrate rapid bioassessment
 - Scoring criteria for benthic macroinvertebrate quantitative samples (Surber)
 - Part III—Habitat-Quality Index

Checklist: Aquatic-Life Monitoring and Habitat Assessment

Background Information

Name of water body	y:			
Segment number: _	Station ID):		
On segment? Yes	No			
Permit number, if ap	pplicable:Circ	le monitoring objective	e: ALM ALU	UAA RWA
Historic stream char	racterization:			
Intermittent	Intermittent with per sufficient to support life use	-	Perennial	Unknown
Basis for historic str	ream characterization	(describe):		
Current aquatic-life	-use designation (if cl	assified segment or si	te specific stand	lard determined):
•		Limited	1	
Exceptional Hig	m miermediate	Limited		
Current assessment	status on the (year)	water quality	inventory, 305((b) report:
Supported P	Partially supported	Not supported	Concern	Not assessed
Field data entry (FD	DE) information:			
Date entered into FI	DE:	RTAG no	.: <u></u>	
(TCEQ regional bio	•			
Field data (CRP par	tners only):	Tag no.:		
Objective for A	quatic-Life-Use A	ssessment		
Is this water body so	upporting its designat	ed uses? Yes No	Reason:	
Known or potential	causes of aquatic life	use concern or impair	ment:	
Identify sources of I	pollution:			
Point source?	Yes No	Identify:		
Nonpoint source?	Yes No	Identify:		
Ambient toxicity tes	sts in water body? Y	es No		

R	esu	lte	•
1		11.5	

	Sediment Chronic	Sediment Acute	Water Chronic	Water Acute
Significant effect				
No significant effect				

Monitoring Information

Biological monitoring conducted during index period (March 15–June 30 and Oct. 1–Oct. 15) and critical period (July 1-Sept. 30).

Stream characterization event 1, date:

Dry	Pools covering%	Flowing at cfs
	of the meters assessed	(measured)

Note: If the sampling event is for an RWA, characterize the receiving stream upstream of the existing discharge point or downstream of the proposed discharge point.

Stream characterization event 2, date:

Dry	Pools covering%	Flowing at cfs
	of the meters assessed	(measured)

Describe conditions that may have adversely affected the stream during each sampling event (for example, recent rains, drought, and construction):

Nekton sampling event 1

Minimum 15-minute (900 seconds) electrofishing?	Yes	No
Minimum 6 seine hauls (or equivalent effort to sample 60 meters)?	Yes	No
Fish sampling conducted in all available habitat types?	Yes	No

If no, please describe why:

Benthic-macroinvertebrate sampling event 1

Method(s) used:

Rapid bioassessment (5-minute kicknet or snags):

Quantitative (Surber, snags, or dredge):

Habitat-assessment event 1

TCEQ habitat protocols?	Yes	No
Streamflow-measurement event 1		

Instantaneous measurement? Yes No USGS gauge reading? Yes No

Nekton sampling	g event 2					
Minimum 15-mir	iute (900 secon	ds) electrofishing?		Yes	No	
Minimum 6 seine	hauls (or equi	valent effort to sample	60 meters)?	Yes	No	
Fish sampling con	Fish sampling conducted in all available habitat types?					
If not, please des						
Benthic-macroin	ivertebrate sai	mpling event 2				
Method(s) used:						
Rapid bioassessm	ent (5-minute	kicknet or snags):				
Quantitative (Sur	ber, snags or di	redge):				
Habitat-assessm	ent event 2:					
TCEQ habitat pro	otocols?			Yes	No	
	e to first event,	etted-channel width, ph and description of can	0 1	*		
Streamflow-mea	surement ever	nt 2				
Instantaneous me	asurement:			Yes	No	
USGS gauge read	ling:			Yes	No	
Assessment Resu	ılts (Optional)					
Fish-community	index event 1	:				
Exceptional	High	Intermediate	Limited			
Fish community	index event 2	:				
Exceptional	High	Intermediate	Limited			
Benthic-macroin	vertebrate-co	mmunity index event	1:			
Exceptional	High	Intermediate	Limited			
Benthic-macroin	vertebrate co	mmunity index event	2:			
Exceptional	High	Intermediate	Limited			
Habitat index ev	ent 1:					

Forms for Biological-Monitoring Packets

Habitat index event 2:

High

Exceptional

Limited

Limited

Intermediate

Intermediate

					Ne	ekt	on	D	ata	a-F	ke j	po	rti	in	g	F(or	m					
											ĺ												
		RT	GAG#	#					RE	EGIO	N			_	E-MAIL ID OF COLLECTOR								
	STA	TIC	ON I	D	_	SE	EGMI	ENT		S	EQUI	ENC.	E	_			D.	ATA	SOU	JRCE	E		-
Stat	ion [Des	scrip	otion																			_
Composite—coded as Space, Time, or Both																							
			,	•					COM	POS	ITE S	SAM	PLE										
					IPOS EGO			T = '	Time		S = S	Space	e		В	= B	oth						
																		•					
M	M		D S	D ΓART	Y DAT	Y E	Y	Y	H H M M $START DEPTH M=m F=fee$					S									
																		•					
M	M		D I	D END 1	Y Date	Y	Y	Y		Н	H END	M TIM	M E					DEP PES			$\mathbf{M} = \mathbf{F} = \mathbf{f}$	meter eet	S
PARA	ME'	ΓRI	IC D	ATA																			
Enter t blank.																							
C	ode			< 01	:>		Valu	e							Des	crip	tion						

TCEQ-20158 (Rev 3-05-2014) Page 1 of 2

Choose the most characteristic location and report data from this location as representative of the entire reach.

Nekton Parameter Codes

Note: Report all measurements in metric units.

Codes			
98005	Nekton, None Captured	98003	Total No. Fish Species (Richness)
89944	Electrofishing Effort, Duration of Shocking (sec.)	98008	Total No. of Sunfish Species (except bass)
89947	Seining Effort (No. of Seine Hauls)	98010	Total No. of Intolerant Fish Species
89948	Combined Length of Seine Hauls (meters)	98070	% of Individuals as Tolerant Species (Excluding Western Mosquitofish)
89949	Seining Effort, Duration (min.)	98017	Omnivore Individuals (% of community)
89930	Minimum Seine Mesh Size, net average bar (inches)	98021	Invertivore Individuals (% of community)
89931	Maximum Seine Mesh Size, net average bar (inches)	98022	Piscivore Individuals (% of community)
89941	Net Length (meters)	98039	Total No. of Individuals, Seining
89943	Electrofishing Method (1 = boat, 2 = backpack, 3 = tote barge)	98040	Total No. of Individuals, Electrofishing
89976	Area Seined (m ²)	98062	No. of individuals per seine haul
89961	Ecoregion (Texas Ecoregion Code)	98069	No. of individuals per minute electrofishing
98032	Total No. of Native Cyprinid Species	98052	Total No. of Benthic Invertivore Species
98033	Individuals as Nonnative Species (% of community)	98053	Total No. of Benthic Species (catfish, suckers, and darters)
98030	Individuals with Disease or Anomalies (% of community)		
Additiona	al Parameters		
89942	Net or Hook-and-Line Effort, Duration in Water (hrs.)	89951	Cooling-Water Intake Screen (1 = revolving, 2 = static)
89945	Castnetting Effort (No. of casts)	89940	Intake-Screen Collection, Duration (min.)
89907	Trawl, Otter, Duration (min.)	89953	Trawl, Otter, Width (meters)

TCEQ-20158 (Rev 3-05-2014)

Page 2 of 2

Benthi	c Macro	oinvert	ebr	ate L	ata	a-J	$\mathbf{Re}_{]}$	po ₁	rtin	g]	Fo	rm	
				[
RTA	G#	l	REGIO	N			E-MA	AIL ID	OF C	OLLE	СТОБ		
								ĺ					
STATION	ID S	EGMENT	S	EQUENCE	E.			DAT	`A SOU	JRCE			
Station Descri	ription												
Composite—co	ded as Space, Ti	me, or Both											
COMPOSITE	SAMPLE												
	COMPOSI CATEGOR		Time	S=S _F	pace		В	B=Botl	ı				
				[1		.		I		Ī
M M	D D Y	Y Y Y	Y	н н	M	M	L	STA	RT DE	PTH	_	M =	
	START	DATE		START	TIME	,		(SHA	LLOW	EST)		mete F = 1	
M M	D D Y	Y Y Y	Y	н н		M			D DEP			M =	
	END	DATE		END '	TIME			(D	EEPES	T)		mete	rs
PARAMETR													
	s and values approcessary, on additi-												ınk.
Code	< or >	Value					Desc	riptio	n				
TCEO-20151 (Rev.	3-05-2014)			Dage	e 1 of 2								

Choose the most characteristic location and report data from this location as representative of the entire reach.

Benthic-Macroinvertebrate Parameter Codes

Note: Report all measurements in metric units.

*Indicates parameter measured at sample point (for example, riffle from which benthic sample is collected)

	Quantitative Benthic	-Sample 1	Descriptors
89899	Biological-data reporting units (Values: $1 = \text{no. of}$ individuals from subsample; $2 = \text{no. of}$ individuals/ft ² ; $3 = \text{no. of individuals/m}^2$; $4 = \text{total no. in kicknet}$)	89946	Mesh size, any net or sieve (diagonal measurements) for benthic collection (cm)
89901	Surber-sampler effort, area sampled (m ²)	89961	Ecoregion (Texas Ecoregion Code)
89935	Ekman-sampler effort, area sampled (m ²)	84161	Stream order
89934	Petersen-sampler effort, area sampled (m ²⁾	90005	Benthos sampled—no organisms present
89933	Hester-Dendy duration (days)	90055	Total taxa (taxa richness), benthos no. taxa
89950	Benthic sampler (1 = Surber, 2 = Ekman, 3 = kicknet, 4 = Petersen, 5 = Hester-Dendy)	90056	Total no. of Diptera taxa
89975	Area of snag surface sampled (m ²)	90057	Total no. of Ephemeroptera taxa
*89921	Undercut bank at sample point (%)	90058	Total no. of intolerant taxa
*89922	Overhanging brush at sample point (%)	90060	EPT taxa (% of community)
*89923	Gravel substrate at sample point (%)	90062	Chironomidae (% of community)
*89924	Sand substrate at sample point (%)	90066	Tolerant taxa (% of community), benthos
*89925	Soft bottom at sample point (%)	90020	Benthic grazers (% of community)
*89926	Macrophyte bed at sample point (%)	90025	Benthic gatherers (% of community)
*89927	Snags and brush at sample point (%)	90030	Benthic filterers (% of community)
*89928	Bedrock at sample point (%)	90067	Dominance (3 taxa) (% of community)
	RBAP Benthic San	mple Des	criptors
89899	Biological-data reporting units (Values: $1 = \text{no. of}$ individuals from subsample; $2 = \text{no. of}$ individuals/ft ² ; $3 = \text{no. of individuals/m}^2$; $4 = \text{total no. in kicknet}$)	89946	Mesh size, sieve (diagonal measurements) (cm)
89950	Benthic Sampler (1 = Surber, 2 = Ekman, 3 = kicknet, 4 = Petersen, 5 = Hester-Dendy)	89961	Texas Ecoregion Code
89902	Dip-net effort, area swept (m ²)	84161	Stream order
89903	Kicknet effort, area kicked (m ²)	90005	Benthos el
89904	Kicknet effort, minutes kicked (min.)	90055	Total taxa (taxa Richness), Benthos, no. taxa
89905	Snags-and-shoreline sampling effort, minutes picked	90008	EPT taxa abundance (no. taxa)
89906	Number of individuals in benthic RBA subsample (± 100)	90007	Biotic index (HBI)
89950	Benthic sampler (1= Surber, 2 = Ekman, 3 = kicknet, 4 = Petersen, 5 = Hester-Dendy)	90062	Chironomidae (% of community)
*89921	Undercut bank at sample point (%)	90042	Dominant taxon, benthos (% of community)
*89922	Overhanging brush at sample point (%)	90010	Dominant functional feeding group (% of community)
*89923	Gravel substrate at sample point (%)	90036	Benthic predators (% of community)
*89924	Sand substrate at sample point (%)	90050	Ratio of intolerant : tolerant taxa
*89925	Soft bottom at sample point (%)	90069	Total Trichoptera as Hydropsychidae (%)
*89926	Macrophyte bed at sample point (%)	90052	Total no. non-insect taxa
*89927	Snags and brush at sample point (%)	90025	Benthic collector-gatherers (% of community)
*89928	Bedrock at sample point (%)	90054	Total no. as Elmidae (% of community)

TCEQ-20151 (Rev. 03-05-2014)

	Habitat	Data-	-Reporti	ng Fo	rm				
RTAG#		REGI	ON	E-MA	IL ID OF C	OLLECTO)R		
STATION ID	SEGME	NT	SEQUENCE		DATA SO	URCE			
Station Description									
Composite—code as Space, Time, or Both.									
		COMI	POSITE SAMPLE	E					
COMPOSITE T=Time S=Space B=Both CATEGORY:									
					.	J			
M M D D Y Y Y Y H H M M START DEPTH M = meters START DATE START TIME (SHALLOWEST) F = feet									
	START DATE	1 1 1	START TIME	(SHAI	LLOWEST)) *	I lect		
M M D	D Y Y Y	Y	H H M M		O DEPTH		I = meters = feet		
	END DATE		END TIME	(DI	EEPEST)				
PARAMETRIC DAT	'A								
Enter the codes and val Continue, if necessary,	ues appropriate fo on additional wor	r this sample. ksheets. Code	Enter "<" or ">" if s to describe the ha	f necessary; o bitat-sampli	otherwise, le ng effort are	eave this co e on the bac	lumn blank. k.		
Code	< or >	Value		De	escription				

Choose the most characteristic location and report data from this location as representative of the entire reach.

Page 1 of 2

TCEQ-20157 (Rev. 4-15-2004)

Habitat Parameter Codes

	HABITA	T DESCRIPT	ORS
NOTE: All m	easurements reported in metric units (except	for flow)	
72051	Streambed slope over evaluated reach (from USGS map; elevation change in meters / reach length in kilometers)	89844	Dominant substrate type (1 = clay, 2 = silt, 3 = sand, 4 = gravel, 5 = cobble, 6 = boulder, 7 = bedrock, 8 = other)
89859	Approximate drainage area above the most downstream transect from USGS map (km²)	89845	Average substrate gravel > 2 mm or larger (%)
89860	Length of stream evaluated (km)	84159	Average instream cover (%)
89832	Number of lateral transects made	89929	Number of stream cover types
89861	Average stream width (m)	89846	Average stream-bank erosion (%)
89862	Average stream depth (m)	89847	Average stream-bank angle (degrees)
00061	Instantaneous stream flow (ft ³ /sec)	89866	Average width of natural riparian vegetation (m)
89835	Flow measurement method (1=flow-gage	89849	Average trees as riparian vegetation (%)
	station, 2= electronic, 3=mechanical, 4=weir or flume)	89850	Average shrubs as riparian vegetation (%)
89848	Channel flow (1 = none, 2 = low, 3 = moderate, 4 = high)	89851	Average grasses and forbs as riparian vegetation (%)
89864	Maximum pool width at time of study (m)	89852	Average cultivated fields as riparian vegetation (%)
89865	Maximum pool depth in study area (m)	89853	Average other as riparian vegetation (%)
89839	Total number of stream bends	89854	Average tree-canopy coverage (%)
89840	Number of well-defined stream bends	89867	Aesthetics (1 = wilderness, 2 = natural, 3 = common, 4 = offensive)
89841	Number of moderately defined stream bends	84161	Stream order
89842	Number of poorly defined stream bends	89961	Texas Ecoregion Code
89843	Total number of riffles	89962	Land-development impact (1 = none, 2 = low, 3 = moderate, 4 = high)

Specific to No Flow with Isolated Pools

Largest pool (m)	89910	Max. depth
	89908	Max. width
	89909	Max. length
0 11 (1()	00011	N. 1 . 1
Smallest pool (m)	89911	Max. depth
	89912	Max. width
	89913	Max. length
No. perennial pools evaluated	89914	

TCEQ-20157 (Rev. 3-05-14)

Quantitative Biological Scoring for Evaluating Aquatic-Life-Use Subcategories Regional-Criteria Worksheets for Fish

Ecoregions 33 and	1 35								
Stream name:		Location:		Date:					
Collector:		County: Electrofishing effort (min.):							
No. seine hauls:									
Metric Category	Intermediate Totals for Metrics	.	Metric Name	Raw Value	IBI Score				
	Drainage basin size (km²)								
	Number of fish species		Number of fish species						
	Number of native cyprinid species		Number of native cyprinid species						
Species richness	Number of benthic invertivore species		Number of benthic invertivore species						
and composition	Number of sunfish species		Number of sunfish species						
	Number of intolerant species		Number of intolerant species						
	Number of individuals as tolerant species ^a		% of individuals as tolerant species ^a						
	Number of individuals as omnivores		% of individuals as omnivores						
Trophic	Number of individuals as invertivores		% of individuals as invertivores						
composition	Number of individuals as piscivores		% of individuals as piscivores						
	Number of individuals (seine)		Number of individuals in sample						
Fish abundance	Number of individuals (electrofishing)		Number of individuals / seine haul						
and condition	Number of individuals in sample		Number of individuals / min. electrofishing						
	Number of individuals as nonnative species		% of individuals as nonnative species						
	Number of individuals with disease or anomaly		% of individuals with disease or anomaly						
		L	Index of Biotic Integrity numeric score:	1					
			Aquatic-life use:						

TCEQ-20155-F (Rev. 3-05-2014)

Note: These data should be incorporated with water quality, habitat, and other available biological data to assign an overall stream score.

^a Excluding western mosquitofish.

Quantitative Biological Scoring for Evaluating Aquatic Life Use Subcategories Regional Criteria Worksheets for Fish

Ecoregion 34						
Stream name:		Location:		Date:		
Collector:		County:				
No. seine hauls:		Electrofishing	effort (min.):			
Metric Category	Intermediate Totals for Metrics		Metric Name	Raw Value	IBI Score	
	Drainage basin size (km²)					
	Number of fish species		Number of fish species			
	Number of native cyprinid species		Number of native cyprinid species			
Species richness	Number of benthic invertivore species		Number of benthic invertivore species			
and composition	Number of sunfish species		Number of sunfish species			
	Number of intolerant species		Number of intolerant species			
	Number of individuals as tolerantsa		% of individuals as tolerant species a			
Trophic composition	Number of individuals as omnivores		% of individuals as omnivores			
	Number of individuals as invertivores		% of individuals as invertivores			
	Number of individuals (seine)		Number of individuals in sample			
Fish abundance	Number of individuals (electrofishing)		Number of individuals / seine haul			
and condition	Number of individuals in sample		Number of individuals / min. electrofishing			
	Number of individuals as nonnative species		% of individuals as nonnative species			
	Number of individuals with disease or anomaly		% of individuals with disease or anomaly			
		1	Index of Biotic Integrity numeric score:		_1	
			Aquatic-life use:			

TCEQ-20155-G (Rev. 3-05-2014)

Note: These data should be incorporated with water quality, habitat, and other available biological data to assign an overall stream score.

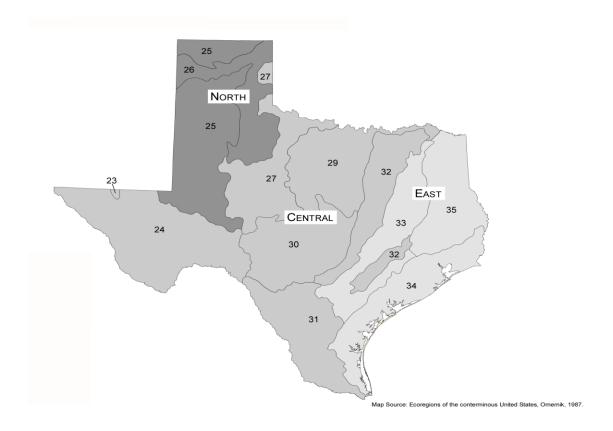
^a Excluding western mosquitofish.

BIBI Metrics and Scoring for Kick Samples, Rapid Bioassessment Protocol—Benthic Macroinvertebrates

Stream name:									
Date:	Collectors:								
Location:									
County:		Ecoregion No.:							
Type of assessment: UAA	ALA AL	LM RWA							
Metric		Va	lue	Score					
1. Taxa richness									
2. EPT taxa abundance									
3. Biotic index (HBI)									
4. % Chironomidae									
5. % Dominant taxon									
6. % Dominant FFG									
7. % Predators									
8. Ratio of intolerant: tolerant	taxa								
9. % total Trichoptera as Hyd	ropsychidae								
10. No. of non-insect taxa									
11. % Collector-gatherers									
12. % of total number as Elm	idae								
Aquatic-life-use point-score r	anges:	Except High: Intermed Limited	ediate:	> 36 29–36 22–28 < 22					
Total score:									
Aquatic-life use:									

TCEQ-20152 (Rev. 3/05/2014)

Metrics and Scoring for Surber Samples for Benthic Macroinvertebrates by Bioregion: Central, East, or North


Stream Name:							
Date:			Collect	ors:			
Location:							
County:		Ecoreg	ion #:				
Type of assessment:				UAA	ALA	ALM	RWA
Metric			Value		S	core	
1. Total taxa							
2. Diptera taxa							
3. Ephemeroptera taxa							
4. Intolerant taxa							
5. % EPT taxa							
6. % Chironomidae							
7. % Tolerant taxa							
8. % Grazers							
9. % Gatherers							
10. % Filterers							
11. % Dominance (3 taxa))						
Aquatic life use point scor	re ranges:		Except High: Interm Limite	ediate:	> 40 31–40 21–30 < 21		
Total Score:							
Aquatic-Life Use:							

TCEQ-20153 (Rev. 05/13/2004)

Page 1 of 1

Note: This form should be used as part of the biological monitoring packet. If you chose to use another format, all information must be included.

Figure F.1. Macrobenthic bioregions (North, Central, East) and Level III ecoregions of Texas for use with Surber BIBI.

Level III Ecoregions of Texas

23 Arizona-New Mexico Mountains	30 Central Texas Plateau
24 Southern Deserts	31 Southern Texas Plains
25 Western High Plains	32 Texas Blackland Prairies
26 Southwestern Tablelands	33 East Central Texas Plains
27 Central Great Plains	34 Western Gulf Coastal Plain
29 Central Oklahoma–Texas Plains	35 South Central Plains

Streamflow (Discharge) Measurement Form

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
	Streamfl	ow (Discharge)	Measurement F	orm								
Stream:												
Station					•							
Description:					=							
Time Regan:	Time F	Inded:	Mater Type:		-							
Time Began: Observers:	Tatal Ctuan	W.:	Castian Width (W)									
Observers:	10tai Strea	ım wıdın:	_Section width (w):									
Observations:												
			Velocit	v (V)	Flow (Q)							
	Section Depth				(ft^3/s)							
Section Midpoint	(ft)	Sensor Depth	At Point	Average	Q =							
(ft)	(D)	(ft)	(ft/s)	(ft/s)	(W)(D)(V)							
(11)	(D)	(11)			(11)(D)(1)							
				-								
				1								
				1								
]								
3/ 25 2 03/			m . I m									
$m^3/s \times 35.3 = ft^3/s$			Total Flow (Disch	narge)								

TCEQ-20117 (Rev. 3-05-2014)

Page 1 of		rt I—Stream	m l	Physical-C	harac	teristics				
Observers:	•			Date:			Ti	me:		
Weather conditions:										
Stream:				Stream seg	ment n	10.				
Location of site:	Location of site:									
Observed stream uses	:									
Stream type (circle or	ne): per	ennial or int	tern	nittent with	peren	nial pool	S			
	No. well efined			No. moderated	ely		No. defii	poorly ned		
Aesthetics (circle one): (1) w	ilderness	(2)) natural	(3) co	mmon	(4)	offensiv	ve	
Channel obstructions	or modif	ications:				No. of	riffle	es		
Channel flow status (circle one	e): high		modera	te	low		no flow		
Riparian vegetation (9	%): I	Left Bank	Ri	ght Bank		Maximur	n po	ol depth	:	
Trees						Maximur	n po	ol width	:	
Shrubs						Note	es:			
Grasses or forbs										
Cultivated fields										
Other										
Site map:										

TCEQ 20156-A (Rev. 3-05-2014)

Page 2 of ___ Part I—Stream Physical-Characteristics Worksheet (continued)

Date: Stream Name:

Location of transect		width	Left- bank slope (°)	Left-bank erosion potential (%)	basion bential The live a Death.									Right- bank erosion potential (%)	Tree canopy (%)			
																		Total
			circle one) Run Pool	Dominant substr	ate type			Dominar Left bank Right ba	K:	riparian v	/egetatio	on	•		•	1	% Gravel or larger	CL CR
Macrophytes	` ,	Algae (circle	-	Width of natural	buffer ve	getation	(m) Ins	tream co	ver type	S							% Instream cover	LB
Abundant Rare	Common Absent	Abundant Rare	Common Absent	LB:	RB:												cover	RB
Location of Transect		width	Left- bank slope (°)	Left-bank erosion potential (%)	Stream Thalweg		m) at po	ints acros	ss transe	ect						Right- bank slope (°)	Right- bank erosion potential (%)	Tree canopy (%)
																		Total
		_	circle one) Run Pool	Dominant substr	ninant substrate type Dominant types riparian vegetation Left bank: Right bank:						% Gravel or larger	CL CR						
Macrophytes	(circle one)	Algae (circle	one)	Width of natural	huffer ve	getation				<u> </u>							% Instream	LB
	Common Absent	Abundant Rare	Common Absent		RB:	gotation	(11)	arcam oo	voi typo	3							cover	RB
Location of transect		width	Left- bank slope (°)	Left-bank erosion potential (%)	Stream Thalweg	. ,	m) at po	ints acros	ss transe	ect						Right- bank slope (°)	Right- bank erosion potential (%)	Tree canopy (%)
																		Total
			circle one) Run Pool	Dominant substr	ninant substrate type			Dominant types riparian vegetation Left bank: Right bank:								% Gravel or larger	CL CR	
Macrophytes Abundant	(circle one)	Algae (circle d	one) Common	Width of natural	buffer ve	getation	(m) Ins	tream co	ver type	S							% Instream cover	LB
Rare	Absent	Rare	Absent	LB:	RB:												COVEI	RB

Page 3 of ___ Part I—Stream Physical-Characteristics Worksheet (continued)

Date: Stream Name:

Location of transect			bank slope	Left-bank erosion potential (%)	Stream Thalwe	• •	m) at po	ints acro	ss transe	ect					bank	Right- bank erosion potential (%)	Tree canopy (%)
																	Total
		Habitat type (Riffle Glide	(circle one) Run Pool	Dominant substi	rate type			Dominar Left ban Right ba	k:	riparian	vegetatio	n				% Gravel or larger	CL CR
Macrophytes		Algae (circle	one)	Width of natural	buffer ve	egetation	(m) Ins			es						% Instream	LB
Abundant Rare	Common Absent	Abundant Rare	Common Absent	LB:	RB:							cover	RB				
Location of Transect		Stream width (m)	bank	Left-bank erosion potential (%)	bank blope p							Right- bank erosion potential (%)	Tree canopy (%)				
																	Total
		Habitat type (Riffle Glide	(circle one) Run Pool	Dominant substi	rate type	Dominant types riparian vegetation Left bank: Right bank:						% Gravel or larger	CL CR				
Macrophytes Abundant Rare	(circle one) Common Absent	Algae (circle Abundant Rare	Common	Width of natural	buffer ve	egetation	(m) Ins	stream co	over type	es						% Instream cover	LB RB
Location of transect		Stream width (m)	bank	Left-bank erosion potential (%)	Stream Thalwe	• •	m) at po	ints acro	ss transe	ect					Right- bank slope (°)	Right- bank erosion potential (%)	Tree canopy (%)
																	Total
		Habitat type (Riffle Glide	(circle one) Run Pool	Dominant substi	l l			Dominant types riparian vegetation Left bank: Right bank:							% Gravel or larger	CL CR	
Macrophytes	,	Algae (circle	,	Width of natural	buffer ve	egetation	(m) Ins	stream co	ver type	es						% Instream	LB
Abundant Rare	Common Absent	Abundant Rare	Common Absent	LB:	RB:											cover	RB

TCEQ 20156-A (Rev. 3-05-2014)

Part II—Summary of Physical Characteristics of Water Body

Using information from all of the transects and measurements in Part I and other sources, report the following general characteristics or averages for the entire reach:

Stream Name:	Date:
Physical Characteristics	Value
Stream bed slope over evaluated reach (from USGS map; elevation change in meters / reach length in kilometers)	
Approximate drainage area above the transect furthest downstream (from USGS or county highway map in km²)	
Stream order	
Length of stream evaluated (meters or kilometers)	
Number of lateral transects made	
Average stream width (meters)	
Average stream depth (meters)	
Stream discharge (ft ³ /sec)	
Flow measurement method	
Channel flow status (high, moderate, low, or no flow)	
Maximum pool width (meters)	
Maximum pool depth (meters)	
Total number of stream bends	
Number of well-defined bends	
Number of moderately defined bends	
Number of poorly defined bends	
Total number of riffles	
Dominant substrate type	
Average percent of substrate gravel-sized or larger	
Average percent instream cover	
Number of stream cover types	
Average percent stream-bank erosion potential	
Average stream-bank slope (degrees)	
Average width of natural buffer vegetation (meters)	
Average percent composition of riparian vegetation by: (total to equal 100%)	
Trees	
Shrubs	
Grasses and forbs	
Cultivated fields	
Other	
Average percent of tree-canopy coverage	
Overall aesthetic appraisal of the stream	
TCEQ 20156-B (Rev. 3-05-2014)	

TCEQ 20156-B (Rev. 3-05-2014)

Part III—Habitat-Quality Index

Habitat Paramet	er	Scoring Category	7	
Available Instream Cover	Abundant > 50% of substrate favorable for colonization and fish cover; good mix of several stable (not new fall or transient) cover types such as snags, cobble, undercut banks, macrophytes	Common 30–50% of substrate supports stable habitat; adequate habitat for maintenance of populations; may be limited in the number of different habitat types	Rare 10–29.9% of substrate supports stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed	Absent < 10% of substrate supports stable habitat; lack of habitat is obvious; substrate unstable or lacking
Score	4	3	2	1
Bottom Substrate Stability	Stable > 50% gravel or larger substrate; gravel, cobble, boulders; dominant substrate type is gravel or larger	Moderately Stable 30–50% gravel or larger substrate; dominant substrate type is mix of gravel with some finer sediments	Moderately Unstable 10–29.9% gravel or larger substrate; dominant substrate type is finer than gravel, but may still be a mix of sizes	Unstable < 10% gravel or larger substrate; substrate is uniform sand, silt, clay, or bedrock
Score	4	3	2	1
Number of Riffles To be counted, riffles must extend >50% the width of the channel and be at least as long as the channel width	Abundant ≥ 5 riffles	Common 2–4 riffles	Rare 1 riffle	Absent No riffles
Score	4	3	2	1
Dimensions of Largest Pool	Large Pool covers more than 50% of the channel width; maximum depth is > 1 meter	Moderate Pool covers approximately 50% or slightly less of the channel width; maximum depth is 0.5–1 meter	Small Pool covers approximately 25% of the channel width; maximum depth is < 0.5 meter	Absent No existing pools, only shallow auxiliary pockets
Score	4	3	2	1
Water Level	High Water reaches the base of both lower banks; < 5% of channel substrate is exposed	Moderate Water fills >75% of the channel; or < 25% of channel substrate is exposed	Low Water fills 25–75% of the available channel or riffle substrates are mostly exposed	No Flow Very little water in the channel and mostly present in standing pools, or stream is dry
Score	3	2	1	0

TCEQ 20156-C (Rev. 3-05-2014)

Part III—Habitat-Quality Index (continued)

Habitat Parameter	Scoring Category			
Bank Stability	Stable Little evidence (< 10%) of erosion or bank failure; bank angles average < 30°	Moderately Stable Some evidence (10–29.9%) of erosion or bank failure; small areas of erosion mostly healed over; bank angles average 30–39.9°	Moderately Unstable Evidence of erosion or bank failure is common (30–50%); high potential of erosion during flooding; bank angles average 40– 60°	Unstable Large and frequent evidence (> 50%) of erosion or bank failure; raw areas frequent along steep banks; bank angles average > 60°
Score	3	2	1	0
Channel Sinuosity	High ≥ 2 well-defined bends with deep outside areas (cut banks) and shallow inside areas (point bars) present	Moderate 1 well-defined bend or ≥ 3 moderately- defined bends present	Low < 3 moderately- defined bends or only poorly-defined bends present	None Straight channel; may be channelized
Score	3	2	1	0
Riparian Buffer Vegetation	Extensive Width of natural buffer is > 20 meters	Wide Width of natural buffer is 10.1–20 meters	Moderate Width of natural buffer is 5–10 meters	Narrow Width of natural buffer is < 5 meters
Score	3	2	1	0
Aesthetics of Reach	Wilderness Outstanding natural beauty; usually wooded or unpastured area; no obvious indications of human activity	Natural Area Trees or native vegetation is common; some development evident (from fields, pastures, rural dwellings) little evidence of human activity	Common Setting Not offensive; area is developed, but uncluttered such as in an urban park	Offensive Stream does not enhance the aesthetics of the area; cluttered; highly developed; may be a dumping area
Score	3	2	1	0

TCEQ 20156-C (Rev. 3-05-2014)

Page 2 of 2

Habitat-Quality Index

26–31	Exceptional
20–25	High
14– 19	Intermediate
< 13	Limited

Example Laboratory Bench Sheet: Fish

Laboratory Bench Sheet:	Fish					Pa	ge of
Stream Name:			Location:				
Station No.:	Log No.:		River Basin:			County:	
Date Collected:	Time:		Collector:			•	
Date Identified:			Identifier:				
Sample Type:			<u>I</u>		Rep	No of	(if applicable)
Tag ID:					Sam	ple-Set ID:	
Collection Method: Ele	ectrofishing	Seini	ng Othe	er			
Taxon		Ir	No. of adividuals	Paramet Code	er	Trophic Group	Tolerance

Example Laboratory Bench Sheet: Benthic Macroinvertebrates

Laboratory Bench S	heet: B	enthic	Macro	oinverte	brates				Page	of
Stream Name:					Location:					
Station No.:		Log l	No.:		River Basi	in:		County:	:	
Date Collected:		Time	:		Collector:					
Date Identified:		<u> </u>			Identifier:					
Sample Type:					<u>I</u>		Rep No	of _	(if	applicable)
Tag ID:						Sample-Se	et ID:			
Collection Method:	Kickn	et	Snag S	ample	Surber	Multiplate	Other			
Тах	Taxon				lo. of ividuals	Parameter Code	Tolerance	e Value	Function	onal Group
_										
_										