APPENDIX 8 Spatial Emission Estimator (SEE)

Documentation for the Spatial Emissions Estimator (SEE) model

Prepared for:

Houston-Galveston Area Council

Prepared by:

Eastern Research Group, Inc.

December 29, 2015

ERG Project No.: 3981.00.001.001

SEE Documentation

Prepared for:

Houston Galveston Area Council

Prepared by:

Allison DenBleyker and Doug Jackson Eastern Research Group, Inc. 3508 Far West Blvd., Suite 210 Austin, TX 78731

December 29, 2015

3508 Far West Blvd., Suite 210, Austin, TX 78731 • Phone: 512-407-1820 • Fax: 512-419-0089 Arlington, VA • Atlanta, GA • Austin, TX • Boston, MA • Chantilly, VA • Chicago, IL • Cincinnati, OH • Hershey, PA Prairie Village, KS • Lexington, MA • Nashua, NH • Research Triangle Park, NC • Sacramento, CA

Equal Opportunity Employer • Printed on 100% Post-Consumer Recycled Paper

Table of Contents

1.0	Overv	iew	. 1	
2.0	SEE Data Flow: Inputs, Calculations, and Outputs			
	2.1	Graphical User Interface	. 3	
		2.1.1 Home Screen – Inputs	. 3	
		2.1.2 Pollutant Screen	. 8	
		2.1.3 Home Screen – Launch Buttons	11	
	2.2	Script 1	13	
		2.2.1 Travel fractions	14	
		2.2.2 Link characteristics	15	
		2.2.3 Speed distributions	16	
		2.2.4 Running evaporative and ramp allocations	17	
		2.2.5 Road Type Distribution	18	
		2.2.6 HPMS Vehicle Type Year	18	
		2.2.7 Hour VMT Fraction	18	
	2.3	Script 2	19	
	2.4	Script 3	20	
	2.5	Script 4	20	
	2.6	Script 5	20	
	2.7	Script 6	21	
	2.8	Script 7	22	
	2.9	Script 8	22	
	2.10	Script 9	23	
	2.11	Script 10	23	
	2.12	Script 11	25	
3.0	Input l	Files	27	
	3.1	Input (Flexible) File Name Conventions	28	
	3.2	Input File Formats for MOVES	29	
	3.3	Input File Formats for SEE	41	
4.0	Outpu	t Files	47	

Tables

Table 2-1.	Installation Setup Paths and Settings	7
Table 2-2.	Script 1's Output Files and their Fates	
Table 2-3.	Script 1's Final MySQL Tables and their Fates	
Table 2-4.	Script 2's Final MySQL Tables and their Fates	
Table 2-5.	Script 6's Final MySQL Tables and their Fates	
Table 2-6.	Script 10's Output Files and their Fates	
Table 2-7.	Script 10's Final MySQL Tables and their Fates	
Table 2-8.	Script 11's Output Files and their Fate	
Table 3-1.	User vs. SEE Responsibilities for Project Scale MOVES Inputs	
Table 3-2.	User vs. SEE Responsibilities for County Scale MOVES Inputs	

Table 3-3. Flexible Filenames for MOVES 2	28
Table 3-4. Flexible Filenames for SEE	29
Table 3-5. Format of AVFT Input 3	30
Table 3-6. Format of Fuel Formulation Input 3	30
Table 3-7. Format of Fuel Supply Input	31
Table 3-8. Format of Fuel Usage Fraction Input 3	32
Table 3-9. Format of I/M Coverage Input	33
Table 3-10. Format of Age Distribution Input	34
Table 3-11. Format of Vehicle Population Input 3	34
Format of Meteorology Input 3	35
Table 3-13. Format of County Input 3	35
Table 3-14. Format of Hotelling Activity Distribution Input	36
Table 3-15. Format of Hotelling Hours Input 3	36
Table 3-16. Format of Starts Input	37
Fable 3-17. Format of Starts Hour Fraction Input 3	38
Table 3-18. Format of Starts Month Adjust Input 3	39
Format of Starts Op Mode Distribution Input 4	40
Table 3-20. Format of Starts Per Day Input	41
Fable 3-21. Format of Starts Source Type Fraction Input	41
Format of SEE's Input County Lookup	42
Format of SEE's Input Dummy Speed	42
Table 3-24. Format of SEE's Extended Idle Allocation	42
Format of SEE's Input Road Type Lookup	43
Table 3-26. Format of SEE's Input Time Period Lookup	43
Format of SEE's Input VMT Mix	14
Format of SEE's Input TxLED Adjustments	14
Format of SEE's Default Road Type	45
Table 3-30. Format of SEE's Input Source Type Age Lookup 4	45
Format of SEE's Input HPMSVtypeYear	46

Figures

Figure 2-1.	GUI Home Screen	3
Figure 2-2.	GUI Pollutant Screen	8

1.0 Overview

Previously in 2014, Eastern Research Group, Inc. (ERG) and Cambridge Systematics, Inc. developed a modeling framework called the Spatial Emissions Estimator (SEE) for estimating regional on-road emission inventories of criteria, toxic and GHG emissions for each hour of a day with highly detailed spatial resolution, including emission "hot-spots" not on the traditional travel network, such as truck stops and port terminals. This framework employed MOVES2010b at both the project and county scale to cover all needed emission processes in accord with EPA modeling guidance¹. Among the novel features of SEE are a) the application of MOVES project scale to develop a regional emissions inventory, which introduces the possibility of including road grade impacts at an area-wide level; b) allocation of off-network emissions to Transportation Analysis Zones (TAZs) based on travel demand model origin/destination matrices and spatial analysis of truck extended idle locations. For future implementation, the framework can be extended to include heavy-duty emission "hot spots" not already accounted for in the travel model network, such as port terminals and distribution centers. SEE also incorporated an updated version of a link processing script (TRANSVMT) developed by the Texas Transportation Institute (TTI). The updated TRANSVMT includes the option of a new speed post-processing model which provides a broader range of average network speeds, to allow a more accurate assessment of speed distribution and related emissions across the Houston-Galveston-Brazoria area.

Under follow-on contract with the Houston-Galveston Area Council (H-GAC), ERG has recently upgraded SEE to fully integrate with MOVES2014 and introduced a number of other improvements, including:

- New graphical user interface (GUI)
- Multi-pollutant capability
- QA checks for inputs
- Enhanced inputs and outputs
 - Flexible input filenames
 - Direct processing of ramp links
 - o New link-level output summary
- Improved runtime
- Detailed technical documentation of each SEE component

Near the end of this SEE update work, EPA released MOVES2014a. SEE works with either version of MOVES (2014 and 2014a), but it does not have all of the alternative input options for

¹ U.S. EPA, Using MOVES to Prepare Emission Inventories in State Implementation Plans and Transportation Conformity: Technical Guidance for MOVES2010, 2010a and 2010b, Report No. EPA-420-B-012-028, 2012.

VMT in the newest version. SEE is not backward compatible with previous versions of MOVES prior to the 2014 version.

This report serves as the detailed technical documentation of SEE's scripts and GUI. Section 2.0 begins with a tour of the new GUI's inputs and capabilities. Following the GUI discussion is detailed documentation of each SEE script's calculations and outputs. After the calculation and outputs discussion, Section 3.0 documents the new flexible filenames SEE allows, and includes a documentation of the format of each input file. The input file content formats were previously documented, but with the conversion to MOVES2014 there were some table structure changes and new input files related to hotelling and starts. Section 4.0 briefly describes SEE's summary output files.

The authors would like to acknowledge the assistance of several individuals in developing SEE and preparing this documentation:

- The Houston-Galveston Area Council project team: Graciela Lubertino, Chi-Ping Lam, Michael Onuogu, and Chris Van Slyke
- Cambridge Systematics, Inc.: David Kall and Tara Rima
- The Texas Transportation Institute: L.D. White and Dennis Perkinson
- ERG Mobile Sources Modeling Team: John Koupal, Scott Fincher, and Sandeep Kishan

2.0 SEE Data Flow: Inputs, Calculations, and Outputs

This section describes how data flows through each component of SEE, including inputs, calculations, and outputs.

2.1 Graphical User Interface

This section describes the full capabilities of SEE's graphical user interface (GUI). A home screen provides areas for user input and buttons that instruct SEE to perform various functions, and a pollutant screen allows the user to select which pollutants to include.

2.1.1 Home Screen – Inputs

Figure 2-1 shows several input areas: editable text boxes and drop-down menus. By default, the entry fields and execution buttons are gray, but they will temporarily change color while the mouse cursor hovers over them. In addition, a comment box containing a brief reminder will appear over many of the fields after a short delay. For example, hovering your mouse over the text box adjacent to **Calendar Year** will produce the reminder, "Four digit year. Only one year permitted at a time."

in ceture			Quite it entions
un setup			ouput options
Speed Bin Approach Flag		▼ 1 - Pr	eProc VMT
Calendar Year	012	2 - Pre	Proc Trips
Month	,	▼ 3 - OFF	-Net DB Imp
Day Type	i	▼ 4 - OFF-	Net Runspec
Counties to Model	8039,48071,48157,48167,48201,48291,48339,48473	5 - OFF-	Net Execute
Counties with I/M programs	8039,48157,48167,48201,48339	6 - Post	Proc OFF-Net
Ramp functional classes	7,20,23	7 - ON-	Net DB Imp
Scenario name	EE_HGAC_test_2012_05oct15	8 - ON-	Net Runspec
TRANSVMT data path	:/SEE/TRANSVMT/	9 - ON-	Net Execute
Path for TCEQ lookups	:/SEE/TCEQ_MOVES_INPUTS/	10 - Post	Proc ON-Net
Input Path for lookups	:/SEE/LOOKUPS/		
QA	Run OFF-Net Scripts (1-6) Run ON-Net Scripts (7-10) Run	ALL Scripts (1-10)	
Installation setup			
Local CSV output path	C:/SEE/LocalGen/	Path for MOVES input and runspec XML	C:\SEE\MOVESXML\
Path for Script-generated CSV for MC	VES C:\SEE\CSVInputs\	MOVES Install path	C:\EPA\MOVES\MOVESGHGSource\
Database username	root	MOVES Java heap size (MB)	2000
Database password			

Figure 2-1. GUI Home Screen

This **Home Screen** view of the GUI contains three panes: the run setup (top left and center), installation setup (bottom), and output options (top right). The run setup pane has 11 required input fields, and will need to be edited the most frequently. Each input field is discussed next, one at a time.

2.1.1.1 Speed Bin Approach Flag

This input determines the resolution at which SEE will "bin" the hourly link speeds in Script 1. You should select one of the following from the drop down menu:

- 1 for binned MOVES speeds (5 mph bin approach), or
- 0 for speeds rounded to the nearest integer (1 mph bin approach).

The selection of "1" instructs SEE to bin the hourly link speeds into the same 5-mph speed bins that are used by MOVES. This approach is consistent with U.S. EPA guidance for SIP and conformity analyses because it follows the same method as any MOVES run at the *County Scale* in *Inventory Calculation* mode. This option has the added benefit of shorter runtime by reducing the number of unique links that SEE and MOVES have to process. SEE defines a unique link based on (1) binned speed, (2) road type, and (3) whether the link is a highway ramp.

The selection of "0" instructs SEE to bin link speeds at a finer resolution than MOVES, at a 1mph increment. This option is included in case the user would like to conduct sensitivity scenarios or is required to follow the modeling conventions of another agency.

2.1.1.2 Calendar Year

This input is an editable text box, where you should enter one four-digit year corresponding to your modeling scenario year. Only one year may be entered here, and the acceptable values are those allowed by MOVES (i.e. 1990, 1999-2050). SEE uses this input to set the year for MOVES runs, and it also sets the year that later determines the pass/fail status for some of the quality assurance (QA) checks. QA checks are discussed in detail in Section 2.1.3.1.

2.1.1.3 Month

This input is a drop-down menu where you may select a single month, 1 through 12. This choice determines the month of the MOVES run, and the default setting (provided with the installation) is 7, for July.

2.1.1.4 Day Type

Another drop-down menu, you may select "5" for weekday or "2" for weekend. This selection determines the day type of the MOVES runs, which influences the magnitude of the off-network emission rates. The default setting is 5.

2.1.1.5 Counties to Model

In this text box you must enter at least one county code, as a 4- or 5-digit integer county FIPS code. If you enter multiple counties, they should be separated by commas and have no spaces between county codes and commas (e.g., *48039*, *48071*, *48157*).

2.1.1.6 Counties with I/M Programs

This text box has identical format requirements to the **Counties to Model** input box discussed above. However, this input is completely optional. The box may be left blank if you do not desire SEE to perform any QA checks on your *I/M Coverage* input files for MOVES (or if the counties in your modeling scenario do not have any I/M programs). If you do enter one or more counties, SEE's QA checks require viable records within the *I/M Coverage* files for the county(ies). Section 2.1.3.1 explains the I/M program file QA check.

2.1.1.7 Ramp Functional Classes

This text box should list the roadway classification code(s) that correspond to highway ramp links in the travel demand model (TDM). If you leave it blank, all links will still be included in the inventory, but SEE will model all highway VMT as 100% non-ramps, and therefore will not include any ramp driving patterns.

If you do supply ramp functional classes here, SEE and MOVES will process the links that correspond to these directly in MOVES using the model's ramp road types and appropriate drive patterns.

Important! All ramp functional classes listed here <u>must</u> also be mapped to a MOVES road type ID 2 or 4 in the input file *RoadtypeLookup.tab*, located by default under C:\SEE\LOOKUPS. Failure to do so may result in missing links in the final inventory, with no warning/error message.

2.1.1.8 Scenario Name

In this text box, you should provide SEE with a meaningful scenario name that will help distinguish your modeling scenarios from one another. SEE uses this input to name the working

databases and the Excel summary results file exported by Script 10. For example, an entry here of "hgb_2018" would result in the following MySQL databases (assuming all 8 counties were also included under **Counties to Model**). The first 8 items are SEE's on-network databases, followed by the SEE off-network database, and number 10 is the SEE summary database.

- 1. hgb_2018_48039
- 2. hgb_2018_48071
- 3. hgb_2018_48157
- 4. hgb_2018_48167
- 5. hgb_2018_48201
- 6. hgb_2018_48291
- 7. hgb_2018_48339
- 8. hgb_2018_48473
- 9. hgb_2018_offnet
- 10. hgb_2018_summary

In addition, SEE would name the summary results spreadsheet as *hgb_2018_results.xlsx*, located in C:\SEE\, after Script 10 completes.

2.1.1.9 TRANSVMT Data Path

This text box must contain the directory to the location of the 24 hourly VMT files processed through TRANSVMT and the trip origin destination matrices by period. The default setting for this path is C:\SEE\TRANSVMT\.

Note: A suggested naming convention of including a year in the pathname would allow multiple conformity datasets to reside on the same computer (e.g. C:\SEE\TRANSVMT_2018\ and C:\SEE\TRANSVMT_2040\).

2.1.1.10 Path for TCEQ Lookups

This text box must contain the directory to the location of your MOVES inputs such as age distribution, I/M programs, and fuels. The default location is C:\SEE\TCEQ_MOVES_INPUTS\.

2.1.1.11 Input Path for Lookups

This text box must contain the directory to the location of other SEE lookups such as the files *CountyLookup.tab*, *RoadtypeLookup.tab*, *TimePeriodLookup.tab*, and many others. The default setting is C:\SEE\LOOKUPS\.

The next section discusses the installation setup pane, located at the bottom of the GUI **Home Screen**.

2.1.1.12 Installation Setup

In this pane is a group of inputs that are mostly SEE intermediate file paths and system parameters that will not change with scenario. These will likely only have to be set once (if ever) because each time you launch SEE, the GUI will load the previously-saved settings from the file C:\SEE\Config.ini file. Table 2-1 shows the installation setup pane's input fields, their default settings, and additional details about their purpose and how/where SEE uses them.

Input Field	Default Setting	Details
Local CSV output	C:\SEE\LocalGen\	This is a SEE intermediate file repository
path		that houses the SEE and MOVES log files
		and User's pollutant selections. Script 10
		also writes intermediate summaries here
		that end up in the Excel results file.
Path for Script-	C:\SEE\CSVInputs\	This is another intermediate file repository
generated CSV		where primarily the GUI and Script 1
Path for MOVES		create intermediate files that are used later
		in Scripts 3,4,7, and 8.
Database	root	Your MySQL user name
username		
Database password	moves	Your MySQL password (if any)
Path for MOVES	C:\SEE\MOVESXML\	SEE writes all of the MOVES Runspec
input and Runspec		files, Data Importer XML files, and Batch
XML		executables to this location.
MOVES Install	C:\Users\Public\EPA\MOVES\	SEE needs to know where MOVES is
Path	MOVES2014a	installed because it launches MOVES
		from the command line.
MOVES Java heap	1200	Determines the amount of virtual memory
size (MB)		to be allocated to the MOVES Master
		during runs. Scripts 3, 4, 7, and 8 all use
		this input to write the following
		executable files in C:\SEE\MOVESXML:
		CountyScale_XMLImporter.bat
		CountyScale_ExecuteMOVES.bat
		XMLImporter.bat
		ExecuteMOVES.bat

2.1.1.13 Output Options

The top, right portion of the GUI **Home Screen** provides an extra (and optional) output of linklevel emissions for a subset of links that reside in a set of one or more TAZs. As a reminder, several output summaries are automatically generated in Script 10, which will appear in the file named C:\SEE\GUI-Scenario-Name_results.xlsx. If you wish to export link-level results, enter the list of zones separated by commas if there are more than one. Then click the **Export link-level results** button, and the Excel results file from Script 10 will be replaced with a new one that has an additional worksheet containing the link-level emissions.

Note: This optional button launches Script 11 (fully described in Section 2.12), and the results are not instant, though the wait is typically only a few minutes after the main run (Scripts 1-10) has completed. The precise wait time will depend on the number of zones you request, but likely the additional results will take less than five minutes. SEE will notify you with a pop-up window when the new Excel results file is available.

2.1.2 Pollutant Screen

To access the **Pollutant Screen**, click the **Pollutants** tab (adjacent to the **Home** tab) at the top of the GUI. Figure 2-2 below shows the available list of pollutants, which is the same as those in MOVES2014. Located to the left of each pollutant name is a clickable checkbox.

teria air pollutants	Primary exhaust PM2.5 species	Air toxics	Polycyclic aromatic hydrocarbons (PAH)
Total Gaseous Hydrocarbons	Aluminum	Acetaldehyde	Acenaphthene gas	Chrysene gas
Non-Methane Hydrocarbons	Ammonium (NH4)	Acrolein	Acenaphthene particle	Chrysene particle
Non-Methane Organic Gases	Calcium	Benzene	Acenaphthylene gas	Dibenzo(a,h)anthracene gas
Total Organic Gases	Chloride	1,3-Butadiene	Acenaphthylene particle	Dibenzo(a,h)anthracene particle
Volatile Organic Compounds	CMAQ5.0 Unspeciated (PMOTHR)	Formaldehyde	Anthracene gas	Fluoranthene gas
Carbon monoxide (CO)	Composite - NonECPM	MTBE	Anthracene particle	Fluoranthene particle
Oxides of nitrogen (NOx)	Elemental Carbon	2,2,4-Trimethylpentane	Benz(a)anthracene gas	Fluorene gas
Nitrogen Oxide (NO)	H2O (aerosol)	Ethyl Benzene	Benz(a)anthracene particle	Fluorene particle
Nitrogen Dioxide (NO2)	Iron Iron	Hexane	Benzo(a)pyrene gas	Indeno(1,2,3,c,d)pyrene gas
Nitrous Acid (HONO)	Magnesium	Propionaldehyde	Benzo(a)pyrene particle	Indeno(1,2,3,c,d)pyrene particle
Ammonia (NH3)	Manganese Compounds	Styrene	Benzo(b)fluoranthene gas	Naphthalene gas
Sulfur Dioxide (SO2)	Nitrate (NO3)	Toluene	Benzo(b)fluoranthene particle	Naphthalene particle
Primary Exhaust PM2.5 - Total	Non-carbon Organic Matter (NCOM)	Xylene	Benzo(g,h,i)perylene gas	Phenanthrene gas
Primary Exhaust PM10 - Total	Crganic Carbon		Benzo(g,h,i)perylene particle	Phenanthrene particle
Primary PM2.5 - Brakewear Particulate	Potassium	Other	Benzo(k)fluoranthene gas	Pyrene gas
Primary PM2.5 - Tirewear Particulate	Silicon	CB05 Mechanism	Benzo(k)fluoranthene particle	Pyrene particle
Primary PM10 - Brakewear Particulate	Sodium	CB6 Mechanism		
Primary PM10 - Tirewear Particulate	Sulfate Particulate	Ethanol	Metals	Energy consumption
	Titanium		Arsenic Compounds	Total Energy Consumption
Dioxins and furans			Chromium 6+	Petroleum Energy Consumption
1 2 2 4 6 7 8 Hastachlaradihanza a Diavia	1 2 2 7 9 Deptachlaradihanza a Diavia		Mercury Divalent Gaseous	Fossil Fuel Energy Consumption
	1,2,3,7,8+entachiorodibenzofycor		Mercury Elemental Gaseous	
	2 3 4 6 7 8 Heyachlorodibenzofuran		Mercury Particulate	Greenhouse gases (GHG)
	2,3,4,7,8,Pentachlorodibenzofirss		Nickel Compounds	Atmospheric CO2
				Methane (CH4)
	2,3,7,6-1 et ad iloi ouberizo protoxin			Nitrous oxide (N2O)
1 2 3 6 7 8-Heyachlorodibenzofuran	Octachlorodibenzo-n-dioxin			CO2 Equivalent
1 2 3 7 8 9-Hevachlorodibenzofuran	Catal Information			

Figure 2-2. GUI Pollutant Screen

When you click a pollutant, a check should appear in the checkbox. SEE automatically saves your pollutant selections plus any MOVES-imposed prerequisite pollutants, to be included downstream in the run instructions for MOVES. The next page shows representative examples of the XML "blurbs" that SEE saves for later MOVES runs, using an example user selection of the pollutants VOC and NO_x. These blurbs are updated whenever the user switches between the **Pollutants** and **Home** tabs. SEE includes all emission processes for the pollutant specific to the type of MOVES run (*County Scale* for off-network or *Project Scale* for on-network). There are two emission processes that SEE intentionally excludes: refueling spillage and vapor losses that occur at fuel dispensing stations.

Additional information on MOVES pollutant prerequisites

In MOVES, a user selection of VOC requires also selecting Non-Methane Hydrocarbons, which in turn requires selecting Total Gaseous Hydrocarbons. The MOVES GUI handles this by including a button to add the prerequisites; SEE mimics the approach of MOVES but adds the prerequisites automatically rather than requiring another button click. The prerequisites are automatically added to the XML blurbs but are not automatically shown in the SEE GUI as being selected.

VOC blurb for the County Scale MOVES runs (C:\SEE\LocalGen\countyPollutants.xml):

```
<pollutantprocessassociation pollutantkev="87" pollutantname="Volatile Organic Compounds" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="2" processname="Start Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="11" processname="Evap Permeation"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="12" processname="Evap Fuel Vapor Venting"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="13" processname="Evap Fuel Leaks"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="15" processname="Crankcase Running Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="16" processname="Crankcase Start Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="17" processname="Crankcase Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="90" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="91" processname="Auxiliary Power Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="2" processname="Start Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="11" processname="Evap Permeation"/>
clutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="12" processname="Evap Fuel Vapor Venting"/>clutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="13" processname="Evap Fuel Leaks"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="15" processname="Crankcase Running Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="16" processname="Crankcase Start Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="17" processname="Crankcase Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="90" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="91" processname="Auxiliary Power Exhaust"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="2" processname="Start Exhaust"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="11" processname="Evap Permeation"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="12" processname="Evap Fuel Vapor Venting"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="13" processname="Evap Fuel Leaks"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="90" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" processkey="91" processname="Auxiliary Power Exhaust"/>
```

VOC blurb for Project Scale MOVES runs (C:\SEE\LocalGen\projectPollutants.xml):

<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" processkey="15" processname="Crankcase Running Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="15" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="15" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" processkey="15" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="19" pollutantname="Non-Methane Hydrocarbons" processkey="15" processname="Running Exhaust"/>
</pollutantprocessassociation pollutantkey="39" pollutantname="Non-Methane">
</pollutantprocessassociation pollutant

NO_X blurb for the County Scale MOVES runs:

```
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="2" processname="Start Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Running Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="16" processname="Crankcase Start Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Start Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="17" processname="Crankcase Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="19" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="19" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="19" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="9" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="9" processname="Extended Idle Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="91" processname="Auxiliary Power Exhaust"/></pollutantprocessname="Auxiliary Power Exhaust"/></pollutantprocessname="Auxiliary Power Exhaust"/></pollutantprocessname="Auxiliary Power Exhaust"/></pollutantprocessname="Auxiliary Power Exhaust"/></pol
```

NO_X blurb for Project Scale MOVES runs:

<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="1" processname="Running Exhaust"/>
<pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" processkey="15" processname="Crankcase Running Exhaust"/>

2.1.3 Home Screen – Launch Buttons

The **Home Screen** inputs were in Section 2.1.1. This section explains each launch button that initiates a script.

2.1.3.1 QA Inputs

The QA button checks a variety of user-supplied MOVES input files and SEE inputs. These QA checks will not prevent all errors, but were designed to prevent the most common types of omissions that might occur if using the TTI Utilities to prepare MOVES inputs or simple typos made in the naming of a directory. The **QA** button GUI feature checks for the presence of files, and, in some cases, their data contents.

Upon clicking the **QA** button, SEE will:

- Create a "renamed" subfolder in the MOVES input data folder (e.g., TCEQ_MOVES_INPUTS_*) and in the lookups folder (e.g., LOOKUPS_*).
- Look for files matching the following naming conventions, and move them to the TCEQ_MOVES_INPUTS_*/renamed folder, where "*YR*," "*CTY*," etc. are placeholders for the scenario year, county, etc., and * is a wildcard. When the files are moved, the file names are simplified by removing any characters matched by the wildcard. The QA fails if there is more than one match for any file.
 - *YR_CTY_*sutage*.csv
 - *YR_CTY_*sourceTypeYear*.csv
 - *YR_CTY_*imcoverage*.csv
 - *YR_CTY_*fuelsupply*.csv
 - fuelFormulation_ YR^* .csv
 - AVFT_<u>YR_CTY*</u>.csv
 - fuelUsageFraction*.csv
 - hotellingActivityDistribution*.csv
 - \circ hotellingHours_<u>YR_DT*.csv</u>
 - *CTY*_hpmsVtypeYear*.csv
 - \circ starts_<u>YR_CTY</u>*.csv
 - startsMonthAdj_*YR_CTY**.csv
 - \circ startsPerDay_<u>YR_CTY*.csv</u>
 - startsHourFrac_<u>YR_CTY*.csv</u>
 - startsSTfrac_<u>YR_CTY*</u>.csv
 - o startsOpModeDistr_YR_CTY*.csv
 - zoneMonthHour*.csv
 - o county_CTY*.csv
 - o dummy/monthVMTFraction_month_MNTH*.csv
 - o dummy/dayVMTFraction_daytype_DAYNUM*.csv

- Look for files matching the following naming conventions and move them to the LOOKUPS_*/renamed folder, as described above for the TCEQ_MOVES_INPUTS_* files.
 - ExtendedIdle_Capacity*.tab
 - RoadTypeLookup*.tab
 - SourceTypeAgeLookup*.tab
 - TimePeriodLookup*.tab
 - *CTY_YR_VMT_Mix_STFTRT*.tab*
 - TxLEDadjustments*.tab
 - CountyLookup*.tab
 - DummySpeed*.tab
 - defaultRoadType
- Check that the years in the *YR_CTY_*sutage*.csv file match the year of the scenario being modeled.
- For all of the I/M counties, check that there is at least one entry in the *YR_CTY_*imcoverage*.csv file with useIMyn equal to "Y," and verify that all entries (rows) with useIMyn equal to "Y" have the same year as the scenario's year.
- Check that there are TRANSVMT files in the TRANSVMT data path (e.g., TRANSVMT_*) that match the *T*HR* naming convention (e.g., HGA_2018_transvmt.T01, ..., HGA_2018_transvmt.T24) and report the number of files found.
- Check that there are trip matrix files in the TRANSVMT data path that match the *Matrix.asc naming convention and report the number of files found.
- Verify that the trip matrix file names contain a valid time period (e.g., AM) in the correct position. This check relies on the TimePeriodLookup*.tab file listed above to identify valid time periods.
- Verify the MOVES installation path by checking for the setenv.bat file in the specified path.

Any failure of a check listed above (e.g., *YR_CTY_sutage*.csv* contains the wrong year) will result in a descriptive message of the error in a pop-up window. Otherwise, the pop-up message will read "Passed QA."

2.1.3.2 Running SEE

The simplest way to execute a SEE run is to click the button **Run ALL Scripts (1-10)** to run everything with a single click. However, if desired, it is also possible to run only the off-network portion of SEE by clicking the **Run OFF-net Scripts (1-6)**. If Scripts 1 through 6 have already completed, you may then optionally run the on-network portion of SEE by clicking the **Run ON-**

Net Scripts (7-10) button. Alternatively, SEE may be run one script at a time, sequentially by clicking **1- PreProc VMT** (Script 1), followed by the button **2 – PreProc Trips** for Script 2, and so on, through **10 – PostProc OnNet** for Script 10. If run in this manner, the scripts must be run in order from 1 to 10. The input and outputs from each script, as well as calculations, are described next in Section 2.2 (Script 1) through Section 2.11 (Script 10). Section 2.12 describes Script 11 – the optional output of detailed link-level results for a group of links.

2.2 Script 1

Script 1 performs a number of different pre-processing calculations to prepare inputs for both the County Scale and Project Scale MOVES runs. Table 2-2 lists the text files produced by Script 1 that are subsequently used by either Script 3 (County Scale) or Script 7 (Project Scale) which instruct the MOVES data importer to import these files into MOVES input databases.

Output filename, where <i>CTY</i> = county	Next	
ID and <i>HR</i> = hour from 01 -24	Used By	How File is Used
		Imported into the MOVES Project Scale
Input_TravelFrax_CTY.csv	Script 7	sourceTypeAgeDistribution table
THR_Input_1_Links_Distinct_CTY.csv	Script 7	Imported into the MOVES Project Scale link tables
		Imported into the MOVES Project Scale
Input_LinkSourceTypeHour_CTY.csv	Script 7	linkSourceTypeHour table
		Imported into the MOVES County Scale
Input_County_HPMSVtypeYear_ <i>CTY</i> .csv	Script 3	HPMSVtypeYear table
		Imported into the MOVES County Scale
Input_County_HourVMTFraction_CTY.csv	Script 3	hourVMTfraction table
Input_Zone_ <i>CTY</i> .csv	Script 7	Imported into the MOVES Project Scale zone table
		Imported into the MOVES Project Scale
Input_ZoneRoadType_CTY.csv	Script 7	zoneRoadType table
		Imported into the MOVES County Scale
Input_County_SpeedDist_CTY.csv	Script 3	avgSpeedDistribution table
		Imported into the MOVES roadTypeDistribution
Input_County_RoadTypeDist_CTY.csv	Script 3	table
Input_County_RoadType_CTY.csv	Script 3	Imported into the MOVES roadType table

Table 2-2.	Script 1's	Output Files	and their Fates
------------	------------	---------------------	-----------------

In addition to the intermediate text files listed above, Script 1 also creates intermediate and final tables in the SEE on-network databases.

Table 2-3 lists the final tables prepared by Script 1, which are later used by Script 6, 10, and 11.

Database Table Name, where <i>ONDB CTY</i> = the SEE on-network	Next	
database for a specific county and $HR =$	Used	
hour from 01 to 24	By	How Table is Used
		Script 10: join linkIDs to linkTotals table;
	Script	Script 11: extract linkIDs for specific TAZs
ONDB_CTY.link_definitions	10	for link-level emissions export
	Script	Script 10: map emissions from representative
ONDB_CTY.HR_Links_All	10	distinct links onto all links
	Script	Script 10: look up link characteristics (link,
ONDB_CTY.HR_Input_1_Links_Distinct	10	volume, speed, etc.)
	Script	Allocates running evaporative emissions to
ONDB_CTY.allEmissAlloc	6	links
	Script	
ONDB_CTY.rampEmissAlloc	6	Allocates ramp emissions to links

Table 2-3. Script 1's Final MySQL Tables and their Fates

As shown in the two tables above, the primary tasks performed by Script 1 include calculating travel fractions; calculating link characteristics, such as the average speed bin a link belongs to; identifying a representative subset of distinct links; calculating speed distributions; calculating per-link allocation factors for running evaporative and ramp emissions; calculating the road type distribution; calculating the base year VMT for the HPMSVTypeYear table; and generating the hourVMTfraction table. Overviews of the fundamental calculations performed for each of these tasks are shown below.

2.2.1 Travel fractions

The relative travel by vehicles of a particular source type and age is based on their relative mileage accumulation rate (*relMAR*) and their *ageFraction*, which is the fraction of vehicles of the given source type that are the given age, as follows:

$$travelFraction_{st,a} = \frac{(ageFraction \times relMAR)_{st,a}}{\sum_{a} (ageFraction \times relMAR)_{st}}$$

where *travelFraction*_{st,a} is the relative VMT traveled by a particular source type *st* in age *a*, *st* is the MOVES source use type (e.g., passenger car),

a is the age ID from 0 to 30 years old, and

relMAR is the relative annual mileage accumulation rate in MOVES.

This particular calculation warrants additional background discussion. MOVES prepares travel fractions internally any time it calculates on-road emissions over an area such as the nation, a state, county, or custom domain. MOVES uses the travel fractions to allocate vehicle type total VMT to individual model years. Travel fractions are different from age distributions because they reflect the general tendency of newer vehicles to travel more miles annually compared to older ones. While MOVES calculates and uses travel fractions at the National and County Scale, it does not do this for the Project Scale due to the intended narrower scope of fleet operation and related emissions. Because SEE uses the MOVES Project Scale to estimate regional on-road emissions over an area, it needs to mimic the MOVES Project Level runs, and inputs the travel fractions as the age distribution file. From the perspective of MOVES, it just receives a source type age distribution file, imports it, and then uses it directly to allocate VMT to model years as it would normally for a Project Scale run.

2.2.2 Link characteristics

After the raw link data are loaded from the TRANSVMT input files, a number of calculations are performed to identify a representative subset of distinct links and calculate summary statistics such as the total VMT and the fraction of VMT that occurs on ramps. Unique links are defined by MOVES road type ID and speed bin for non-ramp links. SEE models ramp emissions in the County Scale MOVES runs using the 'road type' table.

SEE calculates the fraction of VMT occurring on ramps for each of the two MOVES restricted access road types (2 for rural, and 4 for urban). SEE identifies ramp links according to their ramp functional classes specified in the GUI. SEE then calculates the ramp fraction on MOVES road type 2 and 4 as the sum of VMT over all links that are ramps divided by the sum of VMT over all links in the MOVES road type. In equation form:

$$rampFraction_{r} = \frac{\sum_{h,l} VMT_{ramps,r}}{\sum_{h,l} VMT_{r}}$$

where *rampFraction* is a fraction between 0 and 1,

r is the MOVES restricted access road type, either 2 (Rural) or 4 (Urban), *ramps* (subscript) are links that are ramps, as defined by functional classes in the GUI, *l* is the subset of links that are MOVES restricted access road types, *VMT* is vehicle-miles traveled, and *h* is hour of the day.

The first of the unique links calculations requires assigning a speed bin to every combination of link and hour. This allows all links with the same road type ID and similar average speed to be represented by a single link in MOVES, thereby substantially reducing the number of unique links that must be modeled and decreasing the run time. When a Speed Bin Approach Flag of 1 is selected in the GUI, there are 16 bins in total. All links with an average speed less than 2.5 mph are assigned to the 2.5 mph speed bin; links with average speeds between 2.5 mph and 7.5 mph are assigned to the 5 mph speed bin; and so on, in 5 mph bin increments, up to the 70 mph bin. Links with an average speed greater than 72.5 mph are assigned to the 75 mph speed bin.

2.2.3 Speed distributions

The speed distribution is the fraction of vehicle hours that are spent traveling in one of the speed bins described above. A unique speed distribution is calculated for each road type, day type, and hour combination. SEE performs these calculations to prepare an Average Speed Distribution table for the MOVES County Scale runs that is consistent with the hourly TRANSVMT files.

The first step in the speed distribution calculation is to calculate the vehicle hours traveled (*VHT*) for each link:

$$VHT_{l,r,h} = volume_l \times \frac{length_{l,r,h}}{binned average speed_{l,r,h}}$$

where $volume_{l,r,h}$ is the number of vehicles on link *l* with road type *r*, in hour *h*. The VHT for all of the links in the same average speed bin, *b*, is then summed to form VHT_b as shown below:

$$VHT_{b,r,h} = \sum_{l} VHT_{r,h}$$

where VHT is vehicle hours traveled,

b is the binned average speed (MOVES speed bins 1 through 16 for the 5mph approach), *l* is the link,

r is the MOVES road type associated with link l, and

h is the hour of day.

For each unique road type, day type, and hour combination, the fraction of VHT allocated to a speed bin b is then calculated as:

$$avgSpeedFraction_{b,r,h} = \frac{VHT_{b,r,h}}{\sum_{b} VHT_{r,h}}$$

where avgSpeedFraction is the fraction between 0 and 1, b is the MOVES speed bin from 1 (low speed) to 16 (highest speed), r is the MOVES road type, and h is the hour of day.

2.2.4 Running evaporative and ramp allocations

In order to allocate running evaporative and ramp emissions from the MOVES County Scale output back to the link level, allocation factors are calculated based on the fractions of total VMT and ramp VMT that occur on each link. The factor used to allocate running evaporative emissions to link *l*, *emissAlloc*_l, is calculated as

$$emissAlloc_{l,c,h,r} = \frac{VMT_{l,c,h,r}}{\sum_{l} VMT_{c,h,r}}$$

where *emissAlloc*_{*l*,*c*,*h*,*r*} is a fraction between 0 and 1,

l is a particular (non-ramp) link in a set of links with the same road type and county, *c* is the county,

h is the hour of day, and

r is the MOVES road type.

SEE uses these factors in Script 6 to allocate a fraction *emissAlloc*_l of the total County Scale emissions for a particular hour and road type back to link l. The distributions sum to one (1) over all links with a given MOVES road type within the same county and hour of the day.

Similarly, the allocation factor for ramp emissions is:

$$rampEmissAlloc_{rl} = \frac{VMT_{,rl,c,h}}{\sum_{rl} VMT_{,c,h}}$$

where VMT is the vehicle miles traveled on ramp links, rl is a particular ramp link in a set of ramp links with the same road type and county, c is the county, and h is the hour of day.

2.2.5 Road Type Distribution

The road type distribution is the fraction of the VMT in a county that is allocated to a particular road type. The road type distributions are derived directly from data that come from a travel demand model (TDM), and are composed of fractions that are simply the total VMT that occurs on a given road type divided by the total VMT in the county.

2.2.6 HPMS Vehicle Type Year

The HPMSVTypeYear table, which gives HPMSbaseYearVMT by year, is based on the total VMT from the TRANSVMT link data and the VMT mix specified by the HPMSVTypeYear input file (*CTY*_hpmsvtypeyear.csv). The total daily VMT from the TRANSVMT files is first scaled up to a monthly VMT. This monthly VMT is then multiplied by the fraction that would occur on days of the type being modeled (weekend or weekday) to obtain the total VMT for the one-month MOVES run. This VMT is then allocated to model years based on the specified VMT mix.

Combined into a single equation, the formula is:

$$HPMS baseYearVMT_{y} = HPMS baseYearVMT_{y,input} \times \sum_{links} VMT \times nDays \times \frac{dayType}{7}$$

where $HPMSbaseYearVMT_{y,input}$ is the VMT mix for model year y specified by the HPMSVTypeYear input file, VMT is summed over all links, *nDays* is the number of days in the month, and *dayType* is 2 for weekends and 5 for weekdays.

2.2.7 Hour VMT Fraction

The hourVMT fraction is the fraction of VMT by a certain source type, road type, and day type combination that occurs in a given hour. The fractions sum to one (1) over the 24 hours of day, and there are separate distributions for each combination of source, road, and day type. The fraction of travel occurring in a particular hour, h, is calculated as:

$$hourVMT fraction_{h,s,r,d} = \frac{VMT_{h,s,r,d}}{\sum_{h} VMT_{s,r,d}}$$

where *hourVMTfraction* is the fraction of VMT in hour *h*,

VMT is the modeled vehicle-miles traveled, according to TRANSVMT, *s* is the MOVES source use type (vehicle class),

h is the hour of day,*r* is the MOVES road type, and*d* is the MOVES day type, indicating weekday or weekend day.

2.3 Script 2

Script 2 imports trip data and allocates starts, parking, and extended idling to TAZs. The calculations involved in this script are simple sums and fractions of totals.

The first step in Script 2 is the allocation of extended idling to TAZ as a fraction of the total extended idling that occurs in a given county. The fraction of extended idling in a TAZ is inferred based on the number of truck stops. The number of truck stops per TAZ is loaded from the *ExtendedIdle_Capacity.tab* input file. The fraction of extended idling occurring in a particular TAZ is simply the number of truck stops in the TAZ divided by the total number of truck stops in the county. This fraction is the allocation factor used to allocate County Scale extended idling emissions back to the TAZ level.

The second operation in Script 2 is the calculation of the number of trips originating in a TAZ and the number of trips ending in a TAZ. These are calculated from the trip files (the *Matrix.asc input files), which provide the number of trips that begin in a specific TAZ and end in another TAZ in a specific time period. From these data, the total number of trips originating in a TAZ can be calculated as a simple sum, as can the number of trips that end in a specific TAZ. To allocate County Scale emissions from starts and parking (trip ends), the fractions of these activities that occur in a given TAZ are then calculated to derive allocation factors. The start allocation factors are simply the fractions of starts that occur in a given TAZ at a time period divided by the total number of starts in the county during that time period. The trip end allocation factors are calculated in a similar manner. Table 2-4 lists the final database tables prepared by Script 2 which are all later used by Script 6 to post-process the County Scale MOVES run results.

Database Table Name, where <i>OFFDB</i> = SEE off-network	Next Used	
database	By	How Table is Used
OFFDB.timePeriodLookup	Script 6	Allocate emissions to TAZ based on time period
OFFDB.alloc_tripstarts	Script 6	Allocate trip starts to TAZ
OFFDB.alloc_tripends	Script 6	Allocate trip ends to TAZ
OFFDB.alloc_idlespots	Script 6	Allocate idling to TAZ

 Table 2-4.
 Script 2's Final MySQL Tables and their Fates

2.4 Script 3

Script 3 generates two types of files: an XML file for each County Scale MOVES run that provides instructions to the MOVES importer, and a single Windows batch script that launches the MOVES importer using each of these input files in succession. The primary purpose of the XML import specification file is to instruct MOVES to load the input files, described in more detail in Section 3.0, into the input database. All of the files generated by Script 3 – the CountyScale_County_CTY_Year_YR_Month_MNTH_Input.xml files and CountyScale_XMLImporter.bat file – are saved to the C:\SEE\MOVESXML directory. The importer batch script is executed by Script 5.

2.5 Script 4

Script 4 is the counterpart to Script 3, and creates a MOVES runspec XML for each County Scale run and an associated batch script to launch all of the County Scale MOVES runs. This batch script is also called by Script 5. All of the files created by Script 4 – the CountyScale_*CTY*_Year_*YR*_Month_*MNTH*_AvgRamps.mrs files and the *CountyScale_ExecuteMOVES.bat* file – are saved in the C:\SEE\MOVESXML directory.

The runspec XML files specify the run options, such as the geographic bounds, the time span, etc. They also specify the pollutants, which are defined in the GUI by the SEE user. The pollutants selected by the user, and any prerequisites, are saved in the file C:\LocalGen\countyPollutants.xml, which Script 4 incorporates into the MOVES runspec XML files.

2.6 Script 5

The main purpose of Script 5 is to call the batch script that launches the MOVES importer for each county (C:\SEE\MOVESXML\CountyScale_XMLImporter.bat) and the script that launches the MOVES runs (C:\SEE\MOVESXML\CountyScale_ExecuteMOVES.bat). In addition, it also removes any previous versions of the County Scale input and output databases which may have been created by an earlier run. These MySQL databases use the naming conventions countyScale_county_*CTY*_year_*YR*_month_*MNTH*_input and countyScale_county_*CTY*_year_*YR*_month_*MNTH*_output, respectively.

2.7 Script 6

In Script 6, the emissions from the County Scale MOVES run are allocated to individual links and to TAZs using the allocation factors calculated in Scripts 1 and 2.

Prior to allocating the emissions, NOx emissions, including NO, NO2, and HONO, i.e., *pollutantIDs* 3, 32, 33, and 34, in counties with Texas Low Emission Diesel (TxLED) diesel fuel formulations are adjusted downwards by multiplying by a TxLED NOx adjustment factor. Allocation to TAZ is performed separately for start emissions, off-network evaporative emissions (trip end emissions), extended idling emissions, and running evaporative emissions. These emissions are then combined into a single table, *movesoutput_zone*, for later inclusion in the emissions summaries generated in Script 10. Start emissions by TAZ are obtained by multiplying the County Scale emissions for *processIDs* 2 and 16 by the start allocation factors from Script 2. Likewise, the off-network evaporative emissions are obtained by multiplying the County Scale emissions for *processIDs* 11, 12, and 13 by the trip end allocation factors. Only emissions generated on *roadTypeID* 1 are included in the off-network evaporative emissions; the remainder of the evaporative emissions (from *processIDs* 11, 12, and 13) are allocated to running evaporative emissions. Extended idle emissions by TAZ are the County Scale emissions for *processIDs* 11, 12, and 13) are allocated to running evaporative emissions. Extended idle emissions by TAZ are the County Scale emissions for *processIDs* 11, 12, and 13) are allocated to running evaporative emissions.

Link-level running evaporative and ramp emissions are calculated from the County Scale emissions using the emissions allocation factors derived in Script 1. Per-link running evaporative emissions are obtained by multiplying the County Scale emissions for *processIDs* 11, 12, and 13 that occurred on *roadTypeIDs* other than 1 (i.e., on-road emissions) by the link-level allocation factors. Per-link ramp emissions are the County Scale emissions occurring on *roadTypeIDs* 8 and 9 multiplied by the ramp emissions allocation factors, excluding refueling emissions.

Script 6 does not produce any intermediate text files, but it does prepare MySQL used later by Script 10.

Table 2-5 shows these tables, located in many different SEE databases (on-network, off-network, and summary).

SEE Table Name		
where <i>ONDB</i> _ <i>CTY</i> = the on-network		
database for particular county, OFFDB	Next	
= the off-network database, <i>SUMDB</i> =	Used	
the summary database	By	How Table is Used
	Script	Combines County Scale hourly VMT with Project
SUMDB.crosstabVMTHourly	10	Scale hourly VMT
	Script	Combines County Scale daily VMT with Project
SUMDB.crosstabVMTDaily	10	Scale daily VMT
	Script	
OFFDB.TxLEDLookup	10	Applies TxLED factors to diesel NOx emissions
	Script	
OFFDB.movesoutput_txled	10	Extracts ramp emissions from County Scale run
	Script	Combines County Scale emissions with Project
OFFDB.movesoutput_zone	10	Scale emissions
	Script	Combines County Scale, link-level running evap
ONDB_CTY.runningEvapByLink	10	emissions with Project Scale emissions
	Script	Combines County Scale, link-level ramp
ONDB_CTY.rampEmissByLink	10	emissions with Project Scale emissions

Table 2-5. Script 6's Final MySQL Tables and their Fates

2.8 Script 7

Script 7 is analogous to Script 3, and generates two types of files: an XML file for each Project Scale MOVES run that provides instructions to the MOVES importer, and a single Windows batch script that launches the MOVES importer using each of these input files in succession. The primary purpose of the XML import specification file is to instruct MOVES to load the input files, described in more detail in Section 3, into the input database. All of the files generated by Script 7 – the County_*CTY*_Year_*YR*_Month_*MNTH*_Hour_*HR*_Input.xml files and *XMLImporter.bat* file – are saved to the C:\SEE\MOVESXML directory. The importer batch script is called by Script 9.

2.9 Script 8

Script 8 is the Project Scale analog of Script 4, and is the counterpart to Script 7. It creates a Project Scale MOVES runspec XML for each county and hour, and an associated batch script to

launch all of the Project Scale MOVES runs. This batch script is also called by Script 9. All of the files created by Script 8 – the

County_*CTY*_Year_*YR*_Month_*MNTH*_Hour_*HR*_Runstream.mrs files and the *ExecuteMOVES.bat* file – are saved in the C:\SEE\MOVESXML directory.

The runspec XML files specify the run options, such as the geographic bounds, the time span, etc. They also specify the pollutants, which are defined in the GUI by the SEE user. The pollutants selected by the user, and any prerequisites, are saved in the file C:\LOCALGEN\projectPollutants.xml, which Script 8 incorporates into the MOVES runspec XML files.

2.10 Script 9

Like Script 5, Script 9 serves primarily to launch the MOVES importer and the MOVES runs using the batch files generated in the preceding two scripts. Script 9 also clears any existing input and output databases, which are named using the following conventions: county_*CTY*_year_*YR*_month_*MNTH*_hour_*HR*_input and county_*CTY*_year_*YR*_month_*MNTH*_ hour_*HR*_output, respectively.

2.11 Script 10

Script 10 is the most time-intensive part of SEE because it performs queries on large tables that are responsible for expanding MOVES Project Scale link emissions from unique links onto all (non-ramp) links in the network based on similar properties of (1) hour of day, (2) MOVES road type, and (3) speed bin. Script 10 also summarizes SEE results from on-network and off-network components and reports them together in the Excel file located at C:\SEE\GUI-Scenario-Name_results.xlsx. At the conclusion of the SEE run, all of the messages that were reported to the command window console are copied into a text file located at C:\SEE\LocalGen\SEE_Perl.log. Each run of SEE overwrites this log file, so it should be renamed between runs if you desire to keep a record of a previous run.

There are only a few calculations involved in this script, and they are mostly involved with mapping the outputs from the representative distinct links used in the MOVES run back to all of the links in a multi-county area.

As occurs in Script 6, the first step in processing the emissions data is to multiply the NOx emissions (*polltantIDs* 3, 32, 33, and 34) in the TxLED counties by the NOx adjustment factor.

The emissions on the representative links are mapped back to the rest of the links using the emissions per SHO, with SHO calculated as:

 $SHO_l = volume_l \times length_l / average speed_l$

where SHO is the source hours of operation, volume is the number of vehicles on link l, length refers to the length of the link, and average speed is the link speed for the hour, the bin assigned by SEE.

The emissions per SHO for unique link l are then:

$$emissionsPerSHO_{l} = \frac{emissions_{l}}{SHO_{l}}$$

where l is the representative (unique) link,

emissionsPerSHO is the emission factor of the unique link, *emissions* is the mass of emissions MOVES calculated for the unique link, and *SHO* is the hours of operation on the representative link.

SEE uses these SHO-based emission rates on unique links to calculate emissions for all other on the basis of matching MOVES road type and the speed bin. More specifically, SEE calculates total emissions on each link by multiplying the SHO for each link by the emissions per SHO from the representing unique link. These link-level emissions are then combined with the linklevel running evaporative and ramp emissions calculated in Script 6 to form the overall link-level emissions summary table.

Script 10 also calculates the VMT for the final SEE summary tables. Because SEE actually uses SHO to calculate link emissions on the full link network, VMT must be calculated separately for reporting purposes. The data for the summary VMT calculations are the following:

- 1. VMT on each link is obtained from the TRANSVMT input files.
- 2. The source use type (SUT) mix is obtained from the MOVES Project Scale output by dividing each source type's VMT by the total VMT on the specific road type.
 - a. The source use type component of the MOVES output fleet mix is directly from the TTI data.

b. The fuel type component of the MOVES output fleet mix comes from the userinput Alternative Fuels and Vehicles Table (AVFT) input.

SEE calculates the VMT summary by multiplying total VMT by road type by the source use types and fuel types from the MOVES Project Scale run output for unique links. Table 2-6 lists the final output text files created by Script 10, and

Table 2-7 shows the one final table used in a later script (Script 11) for optional link output reporting.

Final Output File from Script 10 Location: C:\SEE\LocalGen\	Purpose
CTEmissHourlySummary.txt	The HourlyEmiss tab of the Excel export file
CTEmissDailySummary.txt	The DailyEmiss tab of the Excel export file
CTVMTHourlySummary.txt	The HourlyVMT tab of the Excel export file
CTVMTDailySummary.txt	The DailyVMT tab of the exported Excel file
SummaryTotals.txt	The Summary tab of the exported Excel file
offnetEmissions.txt	Generated for external QA of SEE output
linkEmissions.txt	Generated for external QA of SEE output

Table 2-6. Script 10's Output Files and their Fates

Table 2-7. Script 10's Final MySQL Tables and their Fates

SEE Table Name		
where <i>SUMDB</i> = the	Next	
summary database	Used By	How Table is Used
SUMDB.linkSummaryTotals	Script 11	Script 11: export link-level emissions

2.12 Script 11

Script 11 is an optional summarization script that is launched by the **Export link-level results** button in the SEE GUI. The summary reports detailed emissions (by link, pollutant, process, source type, fuel type, and hour of the day) for a subset of links within a zone or group of zones. To use this feature, enter one or more zones into the field under **Link-level export zones** within the **Output options** panel of the GUI **Home Screen**, then click the **Export link-level results** button. After up to approximately five minutes, the Excel file originally created in Script 10 will have a new worksheet tab called `linkSummaryTotals` containing the additional detailed results.

Script 11 does not perform any new calculations; it simply queries a large SEE summary database table named `linkSummaryTotals` to extract results for a subset of link IDs. Script 11 does this in two steps, and the GUI then imports the output into the Excel results file. First, Script 11 determines which link IDs are requested by the user by using the input field from the GUI and cross referencing the user input zones with SEE's on-network database table `link_definitions;` the links that exist in the user's zones are stored in a new SEE summary database table named `linkIDsOfInterest`. Next, Script 11 exports results from `linkSummaryTotals` where the link ID matches the link ID contained in `linkIDsOfInterest.` Script 11 writes these results to the following file: C:\SEE\LocalGen\linkSummaryTotals.txt. Finally, the GUI imports this file as new spreadsheet tab in the file C:\SEE*GUI-Scenario-Name_*results.xlsx.

Final Output File from Script 11	
Location: C:\LocalGen\	Purpose
linkSummaryTotals.txt	The link level output for the Excel results file

Table 2-8. Script 11's Output Files and their Fate

3.0 Input Files

This section presents details on the any input files that the user must provide, both for MOVES and SEE. Any files that SEE provides for MOVES are not mentioned here (after Table 3-1 and Table 3-2) because the user does not need to know how to format SEE intermediate files. The two tables below show which input files for MOVES the user must provide.

Table 3-1. User vs. SEE Responsibilities for Project Scale MOVES Inputs

	Calculated	Provided	
Database table name	by SEE	by User	Default Location
AVFT		X	C:\SEE\TCEQ_MOVES_INPUTS
Fuel Usage Fraction		X	C:\SEE\TCEQ_MOVES_INPUTS
Fuel Formulation		X	C:\SEE\TCEQ_MOVES_INPUTS
Fuel Supply		X	C:\SEE\TCEQ_MOVES_INPUTS
IM Coverage		X	C:\SEE\TCEQ_MOVES_INPUTS
Link	X		C:\SEE\CSVInputs
Link Source Type Hour	X		C:\SEE\CSVInputs
Source Type Age Distribution ¹		X	C:\SEE\TCEQ_MOVES_INPUTS
Zone Month Hour		X	C:\SEE\TCEQ_MOVES_INPUTS

1 SEE calculates the final age distribution for all MOVES Project Scale runs. See Section 2.2.1 on travel fractions for additional information.

Table 3-2. User vs. SEE	esponsibilities for Count	y Scale MOVES Inputs
-------------------------	---------------------------	----------------------

	Calculated	Provided	
Database table name	by SEE	by User	Default Location
AVFT		Х	Same as Table 3-1
Average Speed Distribution	X		C:\SEE\CSVInputs
Day VMT Fraction ¹	N/2	A	C:\SEE\TCEQ_MOVES_INPUTS
			\dummy
Fuel Usage Fraction		Х	Same as Table 3-1
Fuel Formulation		X	Same as Table 3-1
Fuel Supply		X	Same as Table 3-1
Hour VMT Fraction	X		C:\SEE\CSVInputs
HPMS Vtype Year	X		C:\SEE\CSVInputs
IM Coverage		X	Same as Table 3-1
Month VMT Fraction ²	N/2	A	C:\SEE\TCEQ_MOVES_INPUTS
			\dummy
Road Type	X		C:\SEE\CSVInputs
Road Type Distribution	X		C:\SEE\CSVInputs
Source Type Age Distribution		X	C:\SEE\TCEQ_MOVES_INPUTS
Source Type Year		Х	C:\SEE\TCEQ_MOVES_INPUTS
Zone Month Hour		Х	Same as Table 3-1

	Calculated	Provided	
Database table name	by SEE	by User	Default Location
Hotelling Activity Distribution ³		X	C:\SEE\TCEQ_MOVES_INPUTS
Hotelling Hours ³		X	C:\SEE\TCEQ_MOVES_INPUTS
Starts ³		X	C:\SEE\TCEQ_MOVES_INPUTS
Starts Hour Fraction ³		X	C:\SEE\TCEQ_MOVES_INPUTS
Starts Month Adjustment ³		Х	C:\SEE\TCEQ_MOVES_INPUTS
Starts Per Day ³		Х	C:\SEE\TCEQ_MOVES_INPUTS
Starts Source Type Fraction ³		X	C:\SEE\TCEQ_MOVES_INPUTS
Import Starts Op Mode Distribution ³		X	C:\SEE\TCEQ_MOVES_INPUTS

1, 2 These inputs are required by MOVES but should not be modified by the user; they are automatically looked up by SEE. 3 These inputs are optional (empty templates may be provided to MOVES) and MOVES has an internal methodology to calculate hotelling and starts.

3.1 Input (Flexible) File Name Conventions

Most of SEE and MOVES's input files have new filenames which replace the longer, cumbersome names originally used during previous work on SEE during 2014. The goal of the new naming convention is to shorten file names while still including key identifiers such as the county code and year, where appropriate. In addition, the files may end with a wildcard, or any combination of letters, numbers, or symbols; SEE will still recognize them. Table 3-3 shows the filename conventions for MOVES input files and Table 3-4 show the names for SEE inputs. The asterisk symbol (*) indicates a wildcard.

MOVES Table Name	Filename, where YR = 4-digit year, <i>CTY</i> = County FIPS Code, and * = wildcard
AVFT	AVFT_ <u>YR_CTY*</u> .csv
Fuel Usage Fraction	fuelUsageFraction*.csv
Fuel Formulation	fuelFormulation_YR*.csv
Fuel Supply	YR_CTY_fuelsupply*.csv
IM Coverage	YR_CTY_imcoverage*.csv
Source Type Age Distribution	YR_CTY_sutage*.csv
Source Type Year	<pre>YR_CTY_sourceTypeYear*.csv</pre>
Zone Month Hour	ZoneMonthHour*.csv
County	county_ <i>CTY</i> *.csv
Hotelling Activity Distribution	hotellingActivityDistribution*.csv
Hotelling Hours	hotellingHours_ <u>YR_DT*</u> .csv,
	where DT= Day type (WK for Weekday, or FR, SA, SU, etc.), must match the DT in filename C:\SEE\LOOKUPS\subDayType_DT.txt
Starts	starts_ <u>YR_CTY</u> *.csv

	Table 3-3.	Flexible	Filenames	for	MOVES
--	------------	----------	-----------	-----	-------

MOVES Table Name	Filename, where YR = 4-digit year, <i>CTY</i> = County FIPS Code, and * = wildcard
Starts Month Adjustment	startsMonthAdj_YR_CTY*.csv
Starts Per Day	startsPerDay_YR_CTY*.csv
Starts Hour Fraction	startsHourFrac_YR_CTY*.csv
Starts Source Type Fraction	startsSTfrac_ <i>YR_CTY</i> *.csv
Import Starts Op Mode Distribution	startsOpModeDistr_YR_CTY*.csv

Table 3-4. Flexible Filenames for SEE

SEE Table Name, where <i>ONDB</i> = the on- network database and <i>OFFDB</i> = the off-	Filename, where <u>YR</u> = 4-digit year, <u>CTY</u> =
network database	County FIPS Code, and * = wildcard
OFFDB.ExtIlde_Raw	ExtendedIdle_Capacity*.tab
ONDB_CTY.RoadTypeLookup	RoadTypeLookup*.csv
ONDB_CTY.SourceTypeAgeLookup	SourceTypeAgeLookup*.csv
OFFDB.TimePeriodLookup	TimePeriodLookup*.csv
ONDB_CTY.SUTmix_CTY_Lookup	<i>CTY_YR</i> _VMT_Mix_STFTRT*.tab
ONDB_CTY.CountyLookup	CountyLookup*.tab
ONDB_CTY.SourceTypeAgeDistLookup_CTY	YR_CTY_sutage*.csv
ONDB_CTY.HPMSVTypeYearLookup_CTY	CTY_hpmsvtypeyear.csv
OFFDB.TxLEDLookup	TxLEDadjustments*.tab
ONDB.roadType	defaultRoadType.tab (no flexibility needed)

3.2 Input File Formats for MOVES

This section describes the format requirements of each input file the user needs to provide for MOVES runs inside of SEE. The formats may not match those in the MOVES database, but they are the formats expected by MOVES data importers so that the model can read them correctly. The user also needs to provide input files for SEE (rather than MOVES) and these formats are discussed separately in Section 0.

Table 3-5. Format of AVFT Input

Columns of the AVFT table For more information, see Section 4.9 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf				
Field Name	Data Type	Comment		
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)		
modelYearID	smallint(6)	Numeric value identifying a model year.		
fuelTypeID	smallint(6)	Identifies a basic kind of fuel used by SourceTypes: 1 = Gasoline 2 = Diesel Fuel 3 = Compressed Natural Gas (CNG)		
engTechID	smallint(6)	Identifies an engine technology.		
fuelEngFraction	double	Fraction that must sum to 1 for each combination of sourceTypeID and modelYearID		

Table 3-6. Format of Fuel Formulation Input

Columns of the Fuel Formulation Table For more information, see Section 4.9 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf				
Field Name	Data Type	Comment		
fuelFormulationID	smallint(6)	Numeric value to uniquely identify a fuel type.		
fuelSubtypeID	smallint(6)	Identifies a particular kind of fuel within a FuelType. e.g. Gasoline may be conventional, or RFG, diesel may be conventional, biodiesel, Fischer-Troppes, etc.		
RVP	float	Vapor pressure, expressed in psi.		
sulfurLevel	float	sulfur content, expressed in ppm		
ETOHVolume	float	Ethanol content, expressed in volume percentage		
MTBEVolume	float	MTBE content, expressed in volume percentage		
ETBEVolume	float	ETBE content, expressed in volume percentage		
TAMEVolume	float	TAME content, expressed in volume percentage		
Columns of the Fuel Formulation Table

For more information, see Section 4.9 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Field Name	Data Type	Comment
aromaticContent	float	aromatic content, expressed as a volume percentage
olefinContent	float	olefin content, expressed as a volume percentage
benzeneContent	float	benzene content, expressed as a volume percentage
e200	float	percentage vapor at 200 degrees F
e300	float	percentage vapor at 300 degrees F
BioDieselEsterVolume	float	percent volume of biodiesel in diesel fuel
CetaneIndex	float	Not Used in MOVES2014
PAHContent	float	Not Used in MOVES2014
T50	float	temperature in degrees F at which 50% of a sample of gasoline evaporates
T90	float	temperature in degrees F at which 90% of a sample of gasoline evaporates

Table 3-7. Format of Fuel Supply Input

Columns of the Fuel Supply Table For more information, see Section 4.9 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf		
Field Name	Data Type	Comment
fuelRegionID	int(11)	Identifies the fuel region code of the county being modeled.
fuelYearID	smallint(6)	Identifies a year for which fuel supply data has been entered in the FuelSupply table. (May be used by multiple calendar years.)
monthGroupID	smallint(6)	Numeric value of 1-12 and the value <i>must</i> <i>match the SEE GUI Month ID</i>
fuelFormulationID	smallint(6)	Numeric value to identify a fuel type and it must have a corresponding entry for the fuelFormulationID in the Fuel Formulation table.

Columns of the Fuel Supply Table For more information, see Section 4.9 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf		
Field Name	Data Type	Comment
marketShare	float	Decimal Fraction of the supply of this fuel type which this fuel formulation constitutes. Market shares must sum to 1 over fuel subtype.
marketShareCV	float	Not Used in MOVES2014

Table 3-8. Format of Fuel Usage Fraction Input

Columns of the Fuel Usage Fraction Table		
For more information, see Section 4.9 of the MOVES2014 Technical Guidance		
http://www3.epa.gov/ota	aq/models/mov	ves/documents/420b15007.pdf
Field Name	Data Type	Comment
countyID	int(11)	1000* FIPS state code + FIPS county
		identification code.
fuelYearID	int(11)	Identifies a year for which fuel supply data has
		been entered in the FuelSupply table. (May be
		used by multiple calendar years.)
modelYearGroupID	int(11)	Identifies a model year group. Use zero for a
		placeholder to indicate all model years.
sourceBinFuelTypeID	smallint(6)	Identifies the type of fuel the engine is capable of
		using:
		1 = Gasoline
		2 = Diesel Fuel
		3 = Compressed Natural Gas (CNG)
		5 = Flex Fuel (E85 or Gasoline)
fuelSupplyFuelTypeID	smallint(6)	Identifies the type of fuel:
		1 = Gasoline
		2 = Diesel Fuel 2 = Compressed Natural Cas (CNC)
		5 = Compressed Natural Gas (CNG)
usegaFreetion	double	J = Eulation (E63)
usagerraction	double	A fraction with value between 0 and 1. The usage
		countyID fuelVeerID modelVeerGroupID and
		sourceBinFuelTypeID
	1	

Columns of the I/M Coverage Table		
For more information, see Section 4.10 of the MOVES2014 Technical Guidance		
http://www3.epa.gov	/otaq/models/r	noves/documents/420b15007.pdf
Field Name	Data Type	Comment
polProcessID	smallint(6)	100*pollutantID + processID
		Set of valid combinations is determined by rows in this table.
stateID	smallint(6)	FIPS state identification code.
countyID	int(11)	1000* FIPS state code + FIPS county identification code.
yearID	smallint(6)	An actual calendar year. <i>This must match the SEE GUI calendar year</i>
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)
fuelTypeID	smallint(6)	Identifies the type of fuel:
		1 = Gasoline 2 = Diesel Fuel 3 = Compressed Natural Gas (CNG) 5 = Ethanol (E85)
IMProgramID	smallint(6)	Numeric value to uniquely identify the application of an IM program to a set of model years.
inspectFreq	smallint(6)	"1" means annual "2" means biennial "3" means continuous
testStandardsID	smallint(6)	Numeric value corresponding to one of 13 exhaust emissions tests or 7 evaporative tests available in MOVES2014.
begModelYearID	smallint(6)	Numeric value identifying a model year.
endModelYearID	smallint(6)	Numeric value identifying a model year.
useIMyn	char(1)	"Y" means I/M program is in effect "N" means I/M program is turned off
complianceFactor	float	Decimal fraction to indicate the I/M compliance rates, waiver rates and the regulatory class adjustment.

Table 3-9. Format of I/M Coverage Input

Columns of the Source Type Age Distribution Table		
For more information, see Section 4.4 of the MOVES2014 Technical Guidance		
http://www3.ep	a.gov/otaq/mod	dels/moves/documents/420b15007.pdf
Field Name	Data Type	Comment
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type
		(e.g., 11 for motorcycle)
yearID	smallint(6)	An actual calendar year. This must match the
		SEE GUI calendar year
ageID	smallint(6)	Identifies a SourceUseType age category. Values
		from 0 to 30.
		0 = new
		1 = one year old
		2 = two years old
	~	30 = thirty or more years old
ageFraction	float	Fraction of total domain SourceUseType
		population which, in a given calendar year,
		are a given age. (A set of these elements is
		sometimes often referred to informatly as a
		registration distribution .)

Table 3-10. Format of Age Distribution Input

Table 3-11. Format of Vehicle Population Input

Columns of the Population (Source Type Year) Table For more information, see Section 4.3 of the MOVES2014 Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf		
Field Name	Data Type	Comment
yearID	smallint(6)	An actual calendar year. <i>This must match the SEE GUI calendar year</i>
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)
sourceTypePopulation	float	The total population in the county of a SourceUseType in the calendar year.

Columns of the Meteorology (Zone Month Hour) Table			
For more inform	For more information, see Section 4.2 of the MOVES2014Technical Guidance		
http://www3.epa	.gov/otaq/model	s/moves/documents/420b15007.pdf	
Field Name	Data Type	Comment	
monthID	smallint(6)	Numeric value of 1-12 and <i>the value must match</i>	
		the SEE GUI Month ID	
zoneID	int(11)	Identifies a zone. Use the county ID * 10.	
hourID	smallint(6)	Numeric value of 1-24.	
temperature	float	Units of degrees Fahrenheit.	
relHumidity	float	The ratio of the amount of water vapor in the air at	
		a specific temperature to the maximum amount	
		that the air could hold at that temperature,	
		expressed as a percentage.	

Table 3-12. Format of Meteorology Input

Table 3-13. Format of County Input

Columns of the County Table		
This is not a typically required input for a MOVES Run.		
Field Name	Data Type	Comment
countyID	int(11)	1000* FIPS state code + FIPS county
		identification code.
stateID	smallint(6)	Two digit FIPS state code.
countyName	char(50)	Text string up to 50 characters long.
altitude	char(1)	Valid entries are "H" for high altitude or "L" for
		low altitude.
GPAFract	float	The geographic phase-in area (GPA) is an area
		around the Rocky Mountains where the Federal Tier
		2 sulfur control program was implemented on a
		delayed schedule. Enter a value of 0 for Texas
		counties.
barometricPressure	float	Barometric pressure in units of inches mercury
barometricPressureCV	float	Not used in MOVES2014.

Table 3-14. Format of Hotelling Activity Distribution Input

Columns of the Hotelling Activity Distribution Table For more information, see Section 4.13 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf Additional helpful information is available on PDF page 40 of the MOVES2014a User

Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment
beginModelYearID	smallint(6)	Numeric value identifying a model year.
endModelYearID	smallint(6)	Numeric value identifying a model year.
opModeID	smallint(6)	Code that identifies the operating mode. The
		relevant ones for this input are:
		200=Extended Idling (i.e., using the Main Engine)
		201=Hotelling Diesel Aux
		203=Hotelling Battery AC
		204=Hotelling APU Off
opModeFraction	float	Fraction between 0 and 1 that should sum to 1
		over operating mode IDs for a given set of
		beginModelYearID and endModelYearID.

Table 3-15. Format of Hotelling Hours Input

Columns of the Hotelling Hours Table	
For more information, see Section 4.13 of the MOVES2014Technical Guidance	
http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf	

Additional helpful information is available on PDF page 40 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment
hourDayID	smallint(6)	Combination of an hour (of any day) and a day (of any week).
		Ids are of the form hhd where
		hh is the hourID and
		d is the dayID
monthID	smallint(6)	Numeric value of 1-12 and <i>the value must match</i>
		the SEE GUI Month ID
yearID	smallint(6)	An actual calendar year. <i>This must match the</i>
		SEE GUI calendar year

Columns of the Hotelling Hours Table

For more information, see Section 4.13 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Additional helpful information is available on PDF page 40 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment	
ageID	smallint(6)	Identifies a SourceUseType age category. Values	
		from 0 to 30.	
		0 = new	
		1 = one year old	
		2 = two years old	
		30 = thirty or more years old	
zoneID	smallint(6)	Identifies a zone. Use the county ID * 10.	
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type	
		(e.g., 11 for motorcycle)	
hotellingHours	double	The number of hotelling hours for the entire week	
		for the hourDay type, month, year, ageID, and	
		zone. If weekday the hotelling hours should	
		represent hours*5 (5 weekdays in a week) or	
		hours*2 (for 2 weekend days in a week).	

Table 3-16. Format of Starts Input

Columns of the Starts Table
For more information, see Section 4.12 of the MOVES2014Technical Guidance
http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment
hourDayID	smallint(6)	Combination of an hour (of any day) and a day (of any week).
		Ids are of the form hhd where
		hh is the hourID and
		d is the dayID
monthID	smallint(6)	Numeric value of 1-12 and <i>the value must match</i>
		the SEE GUI Month ID
yearID	smallint(6)	An actual calendar year. <i>This must match the SEE</i>
		GUI calendar year

Columns of the Starts Table

For more information, see Section 4.12 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment	
ageID	smallint(6)	Identifies a SourceUseType age category. Values	
		from 0 to 30.	
		0 = new	
		1 = one year old	
		2 = two years old	
		30 = thirty or more years old	
zoneID	int(11)	Identifies a zone. Use the county ID * 10.	
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type	
		(e.g., 11 for motorcycle)	
starts	float	The number of starts that occur for a sourcetype-age	
		combination within all hour/day of a week in the	
		month in the year in the zone. The "Starts" field is	
		the number of starts within a weekly hour/day slot,	
		not the starts within a normal 24hour day's hour.	
		Similar to hotellingHours field in the	
		HotellingHours table, if you are modeling a	
		weekday the starts should represent starts*5 (5	
		weekdays in a week) or starts*2 (for 2 weekend	
		days in a week).	
startsCV	float	Not used by MOVES2014.	

Table 3-17. Format of Starts Hour Fraction Input

Columns of the Starts Hour Fraction Table				
For more information,	For more information, see Section 4.12 of the MOVES2014Technical Guidance			
http://www3.epa.gov/o	taq/models/move	es/documents/420b15007.pdf		
Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf				
Field Name Data Type Comment				
zoneID	int(11)	Identifies a zone. Use the county ID * 10.		

zoneID	int(11)	Identifies a zone. Use the county ID * 10.	
dayID	smallint(6)	Numeric value of 5 or 2 and the <i>the value must</i>	
		match the SEE GUI Day Type	
hourID	smallint(6)	Numeric value of 1 to 24.	

Columns of the Starts Hour Fraction Table

For more information, see Section 4.12 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment
allocationFraction	double	Fraction between 0 and 1 to allocate total starts per day to each hour. Fractions should sum to 1 for each day type.

Table 3-18. Format of Starts Month Adjust Input

Columns of the Starts Month Adjust Table

For more information, see Section 4.12 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf

Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf

Field Name	Data Type	Comment
monthID	smallint(6)	Numeric value of 1-12 and <i>the value must match</i>
		the SEE GUI Month ID
monthAdjustment	double	An adjustment factor of 1.0 for each month will model a situation where annual starts are evenly divided between months. This is likely an unrealistic scenario. Usually, start activity increases in the summer and decreases in the
		winter.

Table 3-19. Format of Starts Op Mode Distribution Input

Columns of the Impo	rt Starts Op Mo	de Distribution Table		
For more information,	see Section 4.12	of the MOVES2014Technical Guidance		
http://www3.epa.gov/c	otaq/models/mov	es/documents/420b15007.pdf		
Additional helpful info	ormation is availa	totag/models/moyes/documents/420b15094 pdf		
Field Name	Data Type	Comment		
sourceTypeID	smallint(6)Numeric value defining a MOVES source type (e.g., 11 for motorcycle)			
hourDayID	smallint(6)	Combination of an hour (of any day) and a day (of any week).		
		Ids are of the form hhd where		
		hh is the hourID and		
		d is the dayID		
linkID	int(11)	For this table, the linkID should equal 100 times		
		the countyID plus 1.		
polProcessID	int(11)	Numeric value of 100*pollutantID + processID.		
1		The only valid processID for this table is 2.		
opModeID	smallint(6)	Operating mode ID corresponding to the soak		
-		length (period of time for which the engine was		
		off prior to the start). Relevant values for this table		
		are:		
		101- Soak Time < 6 minutes		
		102 - 6 minutes $< -$ Soak Time < 30 minutes		
		102-30 minutes < -Soak Time < 50 minutes		
		$104 = 60 \text{ minutes} \le \text{Soak Time} \le 90 \text{ minutes}$		
		$105=90 \text{ minutes} \le \text{Soak Time} \le 120 \text{ minutes}$		
		$106 = 120$ minutes ≤ 800 solar Time ≤ 360 minutes		
		107=360 minutes <= Soak Time < 720 minutes		
		$108 = 720$ minutes $\langle = \text{Soak Time} \rangle$		
opModeFraction	opModeFraction float Numeric value between 0 and 1. These should			
·		sum to 1 over opModeIDs.		

Table 3-20. Format of Starts Per Day Input

Columns of the Starts Per Day Table For more information, see Section 4.12 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf Additional helpful information is available on PDF page 41 of the MOVES2014a User Interface Manual: http://www3.epa.gov/otaq/models/moves/documents/420b15094.pdf Comment **Field Name** Data Type zoneID int(11) Identifies a zone. Use the county ID * 10. dayID smallint(6) Numeric value of 5 or 2 and the *the value must match the SEE GUI Day Type* An actual calendar year. *This must match the* yearID smallint(6) SEE GUI calendar year The actual number of starts per day for the dayID. double startsPerDay

Table 3-21. Format of Starts Source Type Fraction Input

Columns of the Starts Source Type Fraction Table For more information, see Section 4.12 of the MOVES2014Technical Guidance http://www3.epa.gov/otaq/models/moves/documents/420b15007.pdf			
Additional helpful info	rmation is availa	ble on PDF page 41 of the MOVES2014a User	
Interface Manual: http://	//www3.epa.gov/	/otaq/models/moves/documents/420b15094.pdf	
Field Name	Data Type	Comment	
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type	
		(e.g., 11 for motorcycle)	
allocationFraction	double	Fraction between 0 and 1 that allocates starts to	
		different source use types. Fractions should sum to	
		1 across the 13 source types.	

3.3 Input File Formats for SEE

This section describes the format requirements of each input file the user needs to provide to SEE, excluding direct MOVES model inputs which were described above (Section 3.2).

Columns of the CountyLookup*.tab file		
	where * = w	ildcard
(in C:\SEE\LOC	OKUPS)	
Field Name	Data Type	Comment
County Code	Integer	County code in the
		TRANSVMT files; values
		currently used are 1-8.
County FIPS	Integer	5-digit FIPS (e.g., 48201) that
		corresponds to each County
		Code in TRANSVMT.
County Name	Text	County name (e.g., Harris).
		This field is not used by SEE.

		-	
Table 3-22.	Format of SEE's In	but County	/ Lookup
			/

Table 3-23.	Format of	SEE's Inp	out Dummy	beed v
			, <u> </u>	

Columns of the DummySpeed*.tab file where * = wildcard		
Field Name	Data Type	Comment
sourceTypeID	Integer	Numeric value defining a
	_	MOVES source type (e.g., 11
		for motorcycle)
roadTypeID	Integer	Road types are 2-5.
hourDayID	Integer	hourID*10+dayID
avgSpeedBinID	Integer	Speed bin IDs are 1-16.
avgSpeedFraction	0	Value is always 0. This is a
		dummy file.

Columns of the ExtendedIdle _Capacity*.tab file where * = wildcard		
(in C:\SEE\LOOKUPS)		
Field Name	Data Type	Comment
County FIPS	Integer	5-digit code (e.g., 48201)
TAZ	Integer	Transportation Analysis Zone
Parking capacity	Integer	Number of Overnight Truck
		Parking Spaces in the TAZ

Columns of the RoadtypeLookup*.tab file where * = wildcard		
(in C:\SEE\LOOKU	UPS)	
Field Name	Data Type	Comment
Road Type Code	Integer	Road type code of each link from the TRANSVMT files. Past values have included: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 40
Area Type Code	Integer	Area type code of each link from the TRANSVMT files. Past values have included: 1, 2, 3, 4, 5, 40
MOVES	Integer	Corresponding MOVES2010b road type
roadTypeID		ID. Values can only be 2, 3, 4, or 5.

Table 3-25. Format of SEE's Input Road Type Lookup

Important! Any functional class listed here (under the field *Road Type Code*) field that is also identified as a ramp in the GUI <u>must</u> be mapped to a MOVES road type ID 2 or 4 in this *RoadtypeLookup.tab* file. Failure to do so may result in missing links in the final inventory, with no warning/error message. SEE's method of including ramps requires these links be identified as restricted access road types when input to MOVES, and SEE determines the road type from this file.

Table 3-26. Format of SEE's Input Time Period Lookup

Columns of the TimePeriodLookup*.tab file			
	where * = wildcard		
(in C:\SEE\LOOI	KUPS)		
Field Name	Data Type	Comment	
Hour ID	Integer	Hour of Day, 1-24.	
Description of	Varchar(20)	Text description up to 20 characters.	
Time Period		This field is not used by SEE.	
Time Period ID	Char(2)	Must be a two-character description of	
		the time period (e.g., AM, MD, PM,	
		OV—or suggested O1, O2 if there are	
		two overnight periods)	

Columns of the CTY_YR_VMT_Mix_STFTRT*.tab file		
where CTY = County FIPS Code, YR = 4-digit year and		
	and * = wildcard	
(in C:\SEE\LOOK	UPS)	
Field Name	Data Type	Comment
roadTypeID	Integer	Numeric value defining a MOVES road
		type. Values can be 2, 3, 4, or 5.
sourceTypeID	Integer	Numeric value defining a MOVES
		source type (e.g., 11 for motorcycle)
fuelTypeID	Integer	Numeric value identifying a type of fuel
		used by SourceTypes:
		1 = Gasoline
		2 = Diesel Fuel
		3 = Compressed Natural Gas (CNG)
SUTMix	Double Precision	Decimal fraction for each combination
		of source and fuel type, must sum to 1
		over each road type.

Table 3-27. Format of SEE's Input VMT Mix

Table 3-28. Format of SEE's Input TxLED Adjustments

Columns of the TxLEDadjustments*.tab file		
W	here * = wildcard	
(in C:\SEE\LOOK	UPS)	
Field Name	Data Type	Comment
yearID	Integer	An actual calendar year. This must
		include the SEE GUI calendar year
sourceTypeID	Integer	Numeric value defining a MOVES
		source type (e.g., 11 for motorcycle)
Adjustment	Double Precision	Numeric value between 0 and 1. SEE
Factor		multiplies this factor with diesel-fueled
		NOx emissions. A value of "0" will
		result in a 100% NOx reduction; a value
		of "1" will result in 0% NOx reduction
		(no change).

Columns of the defaultRoadType.tab file			
(in C:\SEE\LC	(in C:\SEE\LOOKUPS)		
Field Name	Data Type	Comment	
roadTypeID	Integer	Value must be 2 and 4 on separate rows.	
Fraction	Float	Initial default value of 0.08. SEE will	
		update this value based on the actual	
		fraction of ramp VMT.	

Table 3-29. Format of SEE's Default Road Type

Table 3-30. Format of SEE's In	put Source Type Age Lookup
--------------------------------	----------------------------

Columns of the SourceTypeAgeLookup*.tab file			
where * = wildcard			
(in C:\SEE\LOOKUPS)			
Field Name	Data Type	Comment	
ageID	Integer	Identifies a SourceUseType	
		age category. Values from 0 to	
		30.	
		0 = new	
		1 = one year old	
		2 = two years old	
		30 = thirty or more years old	
sourceTypeID	Integer	Numeric value defining a	
		MOVES source type (e.g., 11	
		for motorcycle)	
survivalRate	Double	SEE doesn't use this field.	
relativeMAR	Double	Relative Mileage	
		Accumulation Rate should be	
		a fraction between 0 and 1.	
		The annual per vehicle	
		mileage accumulation for a	
		given SourceUseType and	
		Age, relative to the highest	
		annual mileage accumulation	
		rate within the HPMSVtype.	
functioningACFraction	Double	SEE doesn't use this field.	
functioningACFractionCV	Double	SEE doesn't use this field.	

Columns of the CTY_hpmsvtypeyear.csv file where CTY = County FIPS Code (in C:\SEE\TCEQ_MOVES_INPUTS)		
Field Name	Data Type	Comment
HPMSVtypeID	smallint(6)	Highway performance management system vehicle class identification number as follows:
		10 Motorcycles
		25 Passenger cars + Other 2 axle-4 tire vehicles
		40 Buses
		50 Single Unit Trucks
		60 Combination Trucks
yearID	smallint(6)	An actual calendar year. SEE does not require this to
		match the GUI calendar year because this table is only
		used for County Scale fleet mix.
VMTGrowthFactor	double	N/A in a MOVES County Scale run.
HPMSBaseYearVMT	double	Total highway miles traveled in a year by all elements
		of an HPSM vehicle type in the county.

Table 3-31. Format of SEE's Input HPMSVtypeYear

4.0 Output Files

This section briefly describes the output files from the model. SEE automatically produces an Excel spreadsheet at the end of each run, with the naming convention C:\SEE\GUI-Scenario-Name_results.xlsx. The scenario name embedded in the results spreadsheet is the same that the user provides in the GUI. The spreadsheet has five tabs by default, or six if you select the optional link-level results after the run completes. The five core summaries in the results spreadsheet are the following:

- 1. HourlyEmiss
- 2. DailyEmiss
- 3. HourlyVMT
- 4. DailyVMT
- 5. Summary

If you decide to extract link-level results from the SEE simulation, a sixth tab will become available in the results spreadsheet. For instructions on how to use the link-level outputs feature, refer to Section 2.1.1.13. After SEE completes the link output extraction, it adds the following new tab to the results file:

6. linkSummaryTotals

The 'Summary' sheet contains total on-road emissions by county in units of <u>tons</u>. The 'HourlyEmiss' and 'DailyEmiss' emissions summaries contain fields of: year ID, month ID, day ID (5 = Weekday), hour ID (for 'HourlyEmiss' tab only), county ID, fuel type ID, pollutant ID, road Type ID, and 13 columns corresponding to the 13 MOVES source types. The emissions in the source type columns are in units of <u>kilograms</u>.

The 'linkSummaryTotals' sheet has the fields county ID, SEE link ID, Anode, Bnode, hour ID, source type ID, fuel type ID, road type ID, pollutant ID, process ID, and emissionsKG. The emissions units are <u>kilograms</u>.

The VMT summary table fields are: county ID, fuel type ID, road type ID, hour ID (for 'HourlyVMT' only), and 13 source type columns where the VMT is in units of <u>miles</u>.

Spatial Emissions Estimator (SEE): Overview and User Documentation for Houston-Galveston- Brazoria Implementation

FINAL REPORT

Prepared for:

Houston-Galveston Area Council

Prepared by:

Eastern Research Group, Inc.

October 1, 2014

ERG Project No: 3924.00.001.001

Spatial Emissions Estimator (SEE):

Overview and User Documentation for

Houston-Galveston-Brazoria Implementation

FINAL REPORT

Prepared for:

Houston-Galveston Area Council

Prepared by:

Scott Fincher

Allison DenBleyker

John Koupal

Sandeep Kishan

3508 Far West Blvd., Suite 210, Austin, TX 78731 • Phone: 512-407-1820 • Fax: 512-419-0089

Arlington, VA • Atlanta, GA • Austin, TX • Boston, MA • Chantilly, VA • Chicago, IL • Cincinnati, OH • Hershey, PA Prairie Village, KS • Lexington, MA • Nashua, NH • Research Triangle Park, NC • Sacramento, CA

Eastern Research Group, Inc.

David Kall

Tarannum Rima

Cambridge Systematics, Inc.

October 1, 2014

3508 Far West Blvd., Suite 210, Austin, TX 78731 • Phone: 512-407-1820 • Fax: 512-419-0089 Arlington, VA • Atlanta, GA • Austin, TX • Boston, MA • Chantilly, VA • Chicago, IL • Cincinnati, OH • Hershey, PA Prairie Village, KS • Lexington, MA • Nashua, NH • Research Triangle Park, NC • Sacramento, CA

Table of Contents

1.0	INTI	RODUCTION	1		
2.0	MOI	DEL DESIGN	2		
	2.1	Overview	2		
	2.2	On-network approach	4		
	2.3	Off-network approach	6		
3.0	BEN	CHMARK RESULTS	10		
4.0	USIN	NG SEE	12		
4.0	4.1	Getting Started: Requirements, Installation, Configuration, and Execution	12		
	4.2	SEE Inputs	16		
		4.2.1 Inputs from the GUI	16		
		4.2.2 Inputs related to the TDM or TRANSVMT	19		
		4.2.3 Inputs required by MOVES	20		
	4.3	SEE Outputs	33		
		4.3.1 Instructions for Reading Outputs using the GUI	33		
		4.3.2 Instructions for Reading Outputs using the MySQL Query Browser	34		
5.0	TRA	NSVMT UPDATES	34		
	5.1	Running TRANSVMT with new speed model	35		
	5.2	Input Files Required for New Speed Model	36		
6.0	OPP	ORTUNITIES FOR INVENTORY IMPROVEMENT	42		
	6.1	Updating speed model	42		
	6.2	Adding Heavy-duty "hot spots"			
	6.3	Updating vehicle starts based on travel model			
	6.4	Updating Long-Haul VMT and Idle Hours			
	6.5	Adding Road Grade	45		
	6.6	Using Actual Speeds	45		
7.0	CON	ICLUSIONS	45		
8.0	ACK	NOWLEDGEMENTS	46		
9.0	REF	ERENCES	46		

Attachment A: TRANSVMT Analysis

List of Appendices

Appendix A: Existing TRANSVMT Input Files Appendix B: Facility Type Codes

- Appendix C: Speed Reduction Factors from New Speed Model
- Appendix D: Speed Reduction Factors from Current Speed Model
- Appendix E: Speed Factors for Free Flow Speed and LOS E Speed in Current Speed Model
- Appendix F: Sample JCF file
- Appendix G: Sample Inputs for New Speed Model

List of Tables

Table 1. Benchmark Comparison of SEE and MOVES County Scale Runs	10
Table 2. Project Scale (On-network) MOVES inputs for SEE	20
Table 3. County Scale (Off-Network) MOVES inputs for SEE	21
Table 4. File naming requirements for all User supplied MOVES inputs	21
Table 5. Details for the AVFT Table User Input	22
Table 6. Details for the Fuel Formulation Table User InputError! Bookmark not defined	ned.
Table 7. Details for the Fuel Supply Table User Input	25
Table 8. Details for the I/M Coverage Table User Input	26
Table 9. Details for the Source Type Age Distribution Table User Input	27
Table 10. Details for the Population Table User Input	28
Table 11. Details for the Meteorology Table User Input	29
Table 12. List of SEE ancillary input files, their purpose, and when they need updating by Us	ser.
	30
Table 13. Details for the County Lookup SEE Ancillary File	30
Table 14. Details for the Dummy Speed SEE Ancillary File	31
Table 15. Details for the Extended Idle Allocation SEE Ancillary File	31
Table 16. Details for the Link Definitions SEE Ancillary File	31
Table 17. Details for the Road Type Lookup SEE Ancillary File	31
Table 18. Details of the Time Periods Designation SEE Ancillary File	32
Table 19. Details of the VMT Mix SEE Ancillary File	32
Table 20. Details of the TxLED Adjustment Factor SEE Ancillary File	32

List of Figures

Figure 1. Overview of SEE Flow	4
Figure 2. Start Allocation Example (Harris County AM Peak)	
Figure 3. Park Allocation Example (Harris County AM Peak)	
Figure 4. Potential Extended Idle Locations from Truck Stop Plus database	9
Figure 5. NOx results by Link/TAZ (12 AM)	11
Figure 6. NOx results by link/TAZ (6 PM)	
Figure 7. SEE GUI Input tab, shown pre-populated with values.	
Figure 8. Input Dialog Box	
Figure 9. Average Speed Distribution with New Speed Model	
Figure 10. Bayport Container Terminal, Port of Houston	

Figure 11. Heavy-Duty	Truck NOx Emissions, Bayport Terminal

1.0 INTRODUCTION

Under contract with the Houston-Galveston Area Council (H-GAC), Eastern Research Group, Inc. (ERG) and Cambridge Systematics, Inc. have developed a modeling framework for estimating regional on-road emission inventories of criteria, toxic and GHG emissions for each hour of a day with highly detailed spatial resolution, including emission "hot-spots" not on the traditional travel network such as truck stops and port terminals. This framework has been named the Spatial Emissions Estimator (SEE) and employs MOVES2010b at both the project and county scale to cover all needed emission processes in accord with EPA modeling guidance (1). The first implementation of SEE has been completed for the Houston-Galveston-Brazoria (HGB) metropolitan area of Texas, and is termed HGB-SEE. Among the novel features of the first HGB-SEE implementation are a) the application of MOVES project scale to develop a regional emissions inventory, which introduces the possibility of including road grade impacts at an area-wide level; b) allocation of off-network emissions to transportation analysis zones based on travel demand model origin/destination matrices and spatial analysis of truck extended idle locations. For future implementation, the framework can be extended to include heavy-duty emission "hot spots" not already accounted for in the travel model network such as port terminals and distribution centers. HGB-SEE also incorporates an updated version of a link processing script (TRANSVMT) developed by the Texas Transportation Institute (TTI). The updated TRANSVMT includes the option of a new speed-post processing model which provides a broader range of average network speeds, to allow a more accurate assessment of speed distribution and related emissions across the HGB area.

The SEE framework provides a comprehensive system for estimating regional emissions per EPA guidance, and a platform for further customization to account for emissions hot-spots. The high degree of spatial detail lends itself well to improving input of on-road emissions to photochemical air quality model frameworks, which require hourly emission estimates often by 1 or 4km grid cell. Finally, the ability to account for road grade in regional emissions analysis adds a new dimension previously focused only on project level hot spot analysis for MOVES. This report presents an overview of the broader HGB-SEE design, results of benchmark runs compared to MOVES2010b run in county scale inventory mode, detailed user documentation for the first implementation of HGB-SEE, and updates to the TRANSVMT utility. A discussion of how the framework could be expanded to improve the emissions inventory from this benchmark baseline is also included.

2.0 MODEL DESIGN

2.1 Overview

The Houston-Galveston-Brazoria modeling domain covers eight counties in Southeast Texas, encompassing one of nation's largest ozone nonattainment areas outside of California, with a population of over 6 million people. H-GAC's travel demand modeling characterizes this area with approximately 68,000 unique roadway links and 5,000 travel analysis zones (TAZs). H-GAC's motivation for a new modeling tool was to update to MOVES from MOBILE6 for conformity-level analysis while estimating emissions for each link and zone in the HGB area. An additional motivation was to have a framework that could account for emissions from heavyduty trucks that occur at specific locations not accounted for on the travel network, the foremost being terminals at the Port of Houston, as well as numerous distribution centers and warehouses with a high concentration of trucks.

Previously, H-GAC's emission inventory development with MOBILE6 relied on a suite of programs developed by TTI which combine MOBILE6 emission rates with travel activity data to estimate emission as the roadway link level (2). As part of the upgrade to MOVES, H-GAC desired not only link-level emissions for running emissions, but also emissions at the TAZ level for the off-network emission processes of vehicle start, evaporative and heavy-duty truck extended idle. This required full integration of link travel and zone-based trip activity from the H-GAC travel model. For zone-level extended idle emission, this also involved estimating specific locations of truck idling based on GIS analysis of truck stops in the HGB area. For use of the emissions in SIP and conformity analysis, a primary requirement was that SEE produce an inventory consistent with that estimated with MOVES run in county scale inventory mode and developed based on EPA's modeling guidance.

Broader software requirements were a simple GUI-driven system, ability to model base and projection years per conformity requirements, flexibility in output aggregation (e.g. link, zone, county, region), and ability to use MOVES database tables directly to supply needed data not provided by travel model activity data. The latter requirement allows the user to employ the MOVES county data manager (CDM) framework to populate tables containing necessary input data such as vehicle population, fuels, inspection/maintenance, meteorology and age distribution. In this way, execution of SEE parallels that of MOVES in terms of input preparation, a key difference being the use of travel demand model output directly to provide major activity inputs such as VMT, average speed and road type distribution. The modeling suite makes use of a preprocessing utility that prepares raw travel demand model output for use in SEE, known as TRANSVMT. TRANSVMT was first developed by TTI to produce link-level activity for

emissions modeling from raw travel model output by post-processing link speeds, and creating links to represent bidirectional travel and trips within a travel zone (i.e. intrazonal links). For SEE, TRANSVMT was updated by Cambridge Systematics to give the user the option of using an updated TTI speed post-processing model that results in a broader, and more realistic, range of network speeds.

Another requirement was the ability to quickly incorporate updates to SEE when new versions of MOVES are released. To address this, SEE was designed to use direct MOVES runs as much as possible, while relying on supplemental scripting for calculations that are universal to different MOVES versions. The conceptual design of SEE realizes this goal to a high degree, in that it is possible for the SEE approach to rely almost exclusively on direct MOVES runs and output. The need for improved runtime performance did require moving some MOVES calculation steps outside of MOVES using PERL scripts, so that direct MOVES runs could focus on producing the output needed for these calculation steps.

Figure 1 shows an overall flow of SEE. The data canisters in red denote input data preparation before running SEE. Beginning with raw travel demand model output (traffic volume and average speed by link; trip origins and destination by TAZ), pre-processing for SEE includes running the updated TRANSVMT script to produced hourly link-level volume and speeds. SEE also requires data in MOVES input table format for non-travel related inputs. For allocation of extended idle emissions, a table of idle activity allocation factors by TAZ is also required. For HGB-SEE, the MOVES and idle allocation inputs were developed and provided to H-GAC, and will generally be re-used for HGB-SEE runs until a change in input is desired by H-GAC. Pre-processing of travel demand data is required for each unique travel model run or to invoke the alternate speed post-processing routine.

Once the inputs have been prepared, to execute SEE the user makes basic input/output selections in a simple GUI. Within SEE, the on-network and off-network approaches are different but integrated into one system, with common input/output databases. PERL scripts set up and execute a separate set of MOVES runs for on-network and off-network emission processes and then post-processes the MOVES results into link- and zone-level emissions, or sum to a coarser level of aggregation as specified by the user. The post-process scripts also implement the Texas Low Emission Diesel (TxLED) program reductions. The details of the on-and off-network processes are discussed in the following sections.

2.2 On-network approach

Within SEE, on-network and off-network emissions are generated through a separate set of MOVES runs which share basic inputs for fuels, meteorology, age distribution, I/M and vehicle population. On-network emissions (except ramps and running loss evaporative emissions, as described below) are generated using MOVES project scale runs combined with PERL scripts that scale emissions to every link in the HGB area, for each hour of the day. This approach allows bottom-up calculation of regional emission inventory from individual links, while retaining the spatial distribution of travel network emissions. Using MOVES at the project scale to estimate link-level emissions also introduces the possibility of including road grade in regional emission inventory estimates. This was not implemented in HGB-SEE because the HGB modeling domain is fundamentally flat, and road grade effects are assumed to be small in the regional inventory. However, for areas with more varied terrain, this feature could allow for estimation of a potentially meaningful grade effect on overall inventory.

Within SEE, PERL scripts are used to prepare MOVES inputs by converting TRANSVMT output to MOVES project database link inputs. It is possible to set up MOVES project scale to run all links in the HGB area directly, for each hour of the day. This approach was initially attempted to address the desire for more reliance on direct MOVES runs over external scripting, but abandoned when it became clear that runtime would be prohibitive. This led to the development of a streamlined approach, where the links defined for the MOVES project runs were only those with unique combinations of road type and average speed, known as "unique links". With emissions from these links, the remainder of links can be estimated simply by scaling emissions from the unique links according to source hours operating (SHO) of each link, defined in MOVES as VMT divided by the average speed for each link. This process replicates internal MOVES logic for calculating total emissions in inventory mode. In Harris County (the largest in the eight-county HGB area), using the unique link approach with the exact post-processed travel model speeds reduced the number of links to process through MOVES from roughly 25,000 to 425. This approach made the runtime of SEE manageable; however, in benchmark runs comparing to MOVES county scale inventory runs, it was determined that a more exact replication of the MOVES county scale approach could be achieved by defining unique links not by the exact link speeds, but by the midpoint of the 16 MOVES speed bins the link would fall into. This replicated the county-level on-network results better, and had the residual impact of reducing the number of unique links further, to just 26 in Harris County (down from 25,000). This became the default approach for SEE, for optimum runtime performance and best replication of county-scale results. However, the option for exact speed unique links was retained, because despite longer runtime, using exact speeds produces a more refined emissions estimate. Sensitivity runs comparing the exact speed vs. bin speed approaches found small emission differences, on the order of 1-2 percent.

Differences in the MOVES county and project scale approaches led to some challenges in getting the project-based SEE results to match MOVES county scale results. The first was that within MOVES, county scale converts age distributions to travel fraction (fraction of miles driven by each age), while project scale does not. This is intentional, as the travel fraction calculation within county scale is meant to estimate regional trends of older vehicles driving less; for project scale this calculation isn't done as age distribution is mean to reflect the actual distribution of vehicles in the specific project area. For application of project scale for regional analysis within SEE, however, the travel fraction calculation needed to be introduced. А related challenge was reconciling the VMT mix approach between project scale and county scale. County scale uses information provided by the user for total VMT, road type distribution and vehicle population to estimate a regional mix of source type VMT, on each road type. Project scale instead uses source type fractions for each link (sourceTypeHourFraction). For the SEE project scale runs, age distributions and SourceTypeHourFractions had to be produced for MOVES which would replicate the county-scale travel fraction and VMT mix calculations. To accomplish this, PERL scripts were developed which adjusted the user-provided age distribution

to account for relative mileage accumulation rates, and to calculate sourceTypeHourFractions by road type that mimicked the MOVES county-scale VMT mix approach.

Another challenge introduced by differences in MOVES project and county scale approach was freeway ramps. The HGB travel model estimates ramps as separate roadway links, with variations in speed. Some links classified as ramps are relatively long, e.g. ¹/₂ mile or more (the Houston freeway system has many flyovers transitioning from one freeway to another that contribute to this). Since it was desirable to estimate emissions for these individually in SEE, an approach was developed to define each ramp as a link in MOVES, with a unique operating mode distribution assigned based on average speed. This approach was developed using the operation mode distributions derived from MOVES county scale runs for restricted roads with ramp fraction set to 100 percent, for each of the MOVES speed bins. However, in implementing this approach SEE was not able to match the emissions increment at county scale when ramp fraction derived from the HGB travel model was introduced. The inclusion of ramp-specific link emissions was ultimately dropped, and ramp emissions in SEE are instead calculated using the county scale runs performed for off-network emissions, based on ramp fractions calculated from the HGB travel model at the county, rather than link, level. For future improvements it is still desirable to model each ramp link individually; MOVES2014 will treat ramps as separate road types, which will make link-specific ramp emissions in SEE more feasible when updated to **MOVES2014**.

A final challenge introduced by differences in MOVES project and county scale approach was on-network evaporative emissions (i.e., running loss). MOVES project scale doesn't include evaporative emissions, so these emissions were also added to the "off-network" county scale runs within SEE.

While not implemented in the first version of HGB-SEE, using MOVES project scale provides the opportunity to include road grade in regional emission inventory calculations. This would require road grade estimates for each link on a network, or at the least the subset where grade would be significant enough to influence emissions. It could be implemented in SEE by adding grade to speed and road type in the determination of unique links.

2.3 Off-network approach

Off-network emissions include start (exhaust and crankcase), evaporative (permeation, vapor venting, liquid leaks and refueling) and extended idle emission processes. With the exception of refueling, these are estimated in SEE with a MOVES county scale run for a weekday, producing emission results by hour. Refueling is not estimated in SEE intentionally,

following the precedent set by the TTI's suite of modeling tools for on-road emissions. The county scale MOVES run shares input tables with the on-network project scale runs for vehicle population, fuels, fuel technology, inspection/maintenance, meteorology, age distribution. For the remaining input tables unique to county scale activity (total VMT, hourly VMT distribution, road type VMT distribution and average speed distribution), input tables are produced by PERL scripts that aggregate link-level activity estimated by the travel model and pre-processed using TRANSVMT, according to EPA's modeling guidance. This is needed because in MOVES, offnetwork activity is related to on-network activity (e.g., hours parked depends on hours operating); using aggregated TRANSVMT activity ensures the off-network activity is consistent with travel model network results.

The results of the county-scale MOVES runs are then allocated to roughly 5,000 TAZs in the HGB area with PERL scripts and allocation factors by TAZ and time of day. This process could also happen within MOVES, and was first attempted using MOVES custom domain and populating the Zone table directly with start, park and extended idle allocation factors. However, the runtime was prohibitively long, likely because when this approach is used in MOVES the model is repeating the entire emissions calculation process for each zone, allowing for different meteorology by zone as would occur with emission inventories at the grid cell level prepared for photochemical air quality modeling. If the same meteorology is used for an entire county, the level of detail in the internal MOVES allocation approach is unnecessary, and allocation of emissions to zones can be done through post-processing. This approach was taken in SEE because runtime performance was much better.

Allocation factors for start and evaporative emissions are calculated within SEE using PERL scripts, based on travel demand model origin/destinations by zone. Start allocations are based on number of trip origins by zone, and evaporative (park) allocations are based on number of trip ends by zone. These are estimated by the HGB travel model for four time periods - AM peak, Midday, PM peak and Overnight – and allocations are estimated for each time period and applied to the appropriate hourly MOVES results. Example start and park allocations are shown in Figure 2 and Figure 3, for the AM peak in Harris County.

Figure 2. Start Allocation Example (Harris County AM Peak)

Figure 3. Park Allocation Example (Harris County AM Peak)

Extended idle allocations by TAZ were developed using GIS analysis of locations where extended idling will most likely occur across the HGB area – i.e. truck stops, rest stops and other commercial establishments that allow truck idling. For this analysis ERG used the commercially available Truck Stops Plus database, which contains over 7,300 trucks stops nationwide and includes all major chain truck stops, as well as independent truck stops (3). This dataset includes the size category of each truck stop (less than 20 parking spaces, 20-70 parking spaces, and more than 70 parking spaces), and other relevant detail such as whether overnight parking is allowed, fees charged for overnight parking, and what services and facilities (e.g. showers) are offered. These data were deemed useful to determine how much extended idling may occur at any given location; candidate locations for the HGB area are shown in Figure 4. These were used to assign extended idle activity to TAZ, and produce the allocation factors applied to county-scale extended idle emissions by hour.

Figure 4. Potential Extended Idle Locations from Truck Stop Plus database

3.0 BENCHMARK RESULTS

Initial runs were performed to compare SEE results to MOVES county scale inventory mode results using inputs developed for the 2018 HGB SIP, and updated travel demand modeling produced by HGAC. All inputs were aligned between SEE and MOVES, with MOVES inputs for meteorology, fuels, inspection/maintenance, vehicle population, age distribution and fuel technology mix taken directly from SIP inputs posted publicly by the Texas Commission on Environmental Quality (TCEQ) (4). SEE's processing of the TRANSVMT output for 2018 produced the link-level inputs for the project scale SEE runs, and the countyscale inputs of VMT, hourly VMT distribution, average speed distribution, and road type distribution. This ensured that the SEE vs. MOVES county scale runs were directly comparable.

Results of the benchmark runs are shown in Table 1, with emission results for HC, CO and NOx reported in tons per day (TPD) for each of the eight counties. As shown, the county level and overall totals for SEE and MOVES county scale are within one-half percent for each pollutant.

Benchmark (EPA's Guidance of running MOVES at County Domain/Scale)									
2018 Summer Weekday									
County	CountyName	HC (TPD)	CO (TPD)	NOX (TPD)	VMT (Mi/day)	Population			
48201	Harris	32.78	404.92	56.22	106,980,215	3,183,222			
48039	Brazoria	3.05	31.35	4.54	7,236,298	327,273			
48071	Chambers	0.88	10.29	3.65	3,275,260	42,386			
48157	Fort Bend	4.91	49.20	6.83	11,892,122	587,414			
48167	Galveston	2.28	24.86	3.17	5,849,575	250,959			
48291	Liberty	1.30	13.67	2.90	2,966,501	84,882			
48339	Montgomery	4.50	47.97	7.37	12,438,787	469,788			
48473	Waller	0.70	9.12	1.74	2,322,507	39,278			
8-County To	otal	50.40	591.39	86.43	152,961,266	4,985,203			
HGB-SEE Re	sults								
HGB-SEE Re 2018 Summ	sults er Weekday								
HGB-SEE Re 2018 Summ County	esults er Weekday CountyName	HC (TPD)	CO (TPD)	NOX (TPD)	VMT (Mi/day)	Population			
HGB-SEE Re 2018 Summ County 48201	er Weekday CountyName Harris	HC (TPD) 32.78	CO (TPD) 405.04	NOX (TPD) 56.10	VMT (Mi/day) 106,980,205	Population 3,183,222			
HGB-SEE Re 2018 Summ County 48201 48039	esults er Weekday CountyName Harris Brazoria	HC (TPD) 32.78 3.05	CO (TPD) 405.04 31.37	NOX (TPD) 56.10 4.54	VMT (Mi/day) 106,980,205 7,236,300	Population 3,183,222 327,273			
HGB-SEE Re 2018 Summ County 48201 48039 48071	esults er Weekday CountyName Harris Brazoria Chambers	HC (TPD) 32.78 3.05 0.88	CO (TPD) 405.04 31.37 10.30	NOX (TPD) 56.10 4.54 3.65	VMT (Mi/day) 106,980,205 7,236,300 3,275,260	Population 3,183,222 327,273 42,386			
HGB-SEE Re 2018 Summ County 48201 48039 48071 48157	esults er Weekday CountyName Harris Brazoria Chambers Fort Bend	HC (TPD) 32.78 3.05 0.88 4.91	CO (TPD) 405.04 31.37 10.30 49.22	NOX (TPD) 56.10 4.54 3.65 6.82	VMT (Mi/day) 106,980,205 7,236,300 3,275,260 11,892,122	Population 3,183,222 327,273 42,386 587,414			
HGB-SEE Re 2018 Summ County 48201 48039 48071 48157 48167	er Weekday CountyName Harris Brazoria Chambers Fort Bend Galveston	HC (TPD) 32.78 3.05 0.88 4.91 2.28	CO (TPD) 405.04 31.37 10.30 49.22 24.87	NOX (TPD) 56.10 4.54 3.65 6.82 3.16	VMT (Mi/day) 106,980,205 7,236,300 3,275,260 11,892,122 5,849,576	Population 3,183,222 327,273 42,386 587,414 250,959			
HGB-SEE Re 2018 Summ County 48201 48039 48071 48157 48167 48291	er Weekday CountyName Harris Brazoria Chambers Fort Bend Galveston Liberty	HC (TPD) 32.78 3.05 0.88 4.91 2.28 1.30	CO (TPD) 405.04 31.37 10.30 49.22 24.87 13.68	NOX (TPD) 56.10 4.54 3.65 6.82 3.16 2.90	VMT (Mi/day) 106,980,205 7,236,300 3,275,260 11,892,122 5,849,576 2,966,501	Population 3,183,222 327,273 42,386 587,414 250,959 84,882			
HGB-SEE Re 2018 Summ County 48201 48039 48071 48157 48167 48167 48291 48339	er Weekday CountyName Harris Brazoria Chambers Fort Bend Galveston Liberty Montgomery	HC (TPD) 32.78 3.05 0.88 4.91 2.28 1.30 4.50	CO (TPD) 405.04 31.37 10.30 49.22 24.87 13.68 48.00	NOX (TPD) 56.10 4.54 3.65 6.82 3.16 2.90 7.35	VMT (Mi/day) 106,980,205 7,236,300 3,275,260 11,892,122 5,849,576 2,966,501 12,438,783	Population 3,183,222 327,273 42,386 587,414 250,959 84,882 469,788			
HGB-SEE Re 2018 Summ County 48201 48039 48071 48157 48167 48291 48339 48473	esults er Weekday CountyName Harris Brazoria Chambers Fort Bend Galveston Liberty Montgomery Waller	HC (TPD) 32.78 3.05 0.88 4.91 2.28 1.30 4.50 0.70	CO (TPD) 405.04 31.37 10.30 49.22 24.87 13.68 48.00 9.13	NOX (TPD) 56.10 4.54 3.65 6.82 3.16 2.90 7.35 1.74	VMT (Mi/day) 106,980,205 7,236,300 3,275,260 11,892,122 5,849,576 2,966,501 12,438,783 2,322,507	Population 3,183,222 327,273 42,386 587,414 250,959 84,882 469,788 39,278			

 Table 1. Benchmark Comparison of SEE and MOVES County Scale Runs

Results are produced by SEE at the link and TAZ level for each hour of the day. Example results of this are shown in Figure 5 and Figure 6 for midnight and 6 PM. The links reflect on-network emission totals, while the zones reflect off-network totals. Note that some zones show high emissions even at midnight; these are the zones where extended idle emissions were allocated.

4.0 USING SEE

The first implementation of SEE uses a Microsoft Excel-based user interface to accept user inputs, execute a series of PERL scripts which set up and run MOVES2010b, and summarize outputs to the level of detail specified in the user. This section serves as a User's Guide for each of these steps. In general, because SEE was designed to set up and execute MOVES runs, the user does not need to interact directly with MOVES in execution of the model. However, as discussed in Section 4.2, SEE does use MOVES input database tables directly (in .csv format), meaning that the user will need to be familiar with the format of these tables, and their creation/modification through EPA-provided tools such as the MOVES County Data Manager (CDM). While MOVES is not run directly by the user in SEE, the user will need to have basic familiarity with the model and MOVES county database inputs.

4.1 Getting Started: Requirements, Installation, Configuration, and Execution

Requirements: SEE requires installation of Microsoft Excel 2007 (or later), ActivePerl 5.16.2 (or later), and MOVES2010b (with its associated MySQL version 5.5.12 installation).

Without any of these components, SEE will fail to run properly. MOVES and MySQL should be installed and configured following EPA's guidance provided as part of the MOVES installation package. Perl is provided with the SEE.zip installation and Perl must be installed in order for the SEE tools to run. The location of the Perl installation is not important, and ERG recommends using the paths that are recommended by Perl's installer.

Installation: SEE is packaged in a .zip file provided to the user. To install SEE, download SEE.zip and extract it to your C:\ directory. The installation file contains several sample inputs for the tool, including a set of TRANSVMT hourly files, and MOVES inputs for the SIP benchmark case. It also contains the Perl scripts and GUI. The first time you open SEE, it is helpful to open Excel first, and then find SEE through the open file dialog. Doing this helps Excel establish the native path for the tool. The SEE.zip file must be unzipped directly under C:\ such that the following directory structure exists:

- C:\SEE\CSVInputs
- C:\SEE\LocalGen
- C:\SEE\LOOKUPS
- C:\SEE\MOVESXML
- C:\SEE\TCEQ_MOVES_INPUTS
- C:\SEE\TRANSVMT

Configuration: To configure SEE, open up the tool by double-clicking on SEE_GUI_beta.xlsm. This will start the tool within Microsoft Excel. Every time you launch SEE, Excel will display a security warning; click on the associated Options button, then enable the content. To turn off this security warning, the trust center can be configured within Excel to allow SEE to run without displaying security warnings.

SEE comes pre-populated with data and options that should allow the user to begin an initial run. However, for future runs, the user will want to update the options. In reviewing the GUI, note the following:

- Yellow fields are static and *must not be modified*.
- Peach fields are user inputs.
- Green fields are descriptive information.
- The white block at the bottom contains buttons to execute various scripts.

Many of the options listed will not need to be modified by the user at all, especially the path statements. However, updates to calendar year, month, day type, counties to model, and so forth can all be made here. Note that although the initial configuration only contains a single county, modeling of multiple counties is allowed by using a comma-delimited list of FIPS codes in the *countylist* field.

Execution: There are three ways to execute the scripts that make up the SEE tool. In any case, start by pressing the **Generate Options File** button. This takes all of the user variables and writes them to a config.ini file in the SEE directory. Next, the user may run the scripts collectively by (1) clicking on the **Run ALL Scripts** button or (2) clicking on the **Run OFF-Net Scripts** button, followed by the **Run ON-Net Scripts** button. This process steps through all 10 scripts, from pre-processing, to model setup and execution, to post-processing.

Alternatively in a third option, the user may click through each of the scripts individually using the bottom set of buttons (starting with **1- PreProc VMT** and continuing onward). This is sometimes helpful as a quality assurance step when setting up new scenarios or testing new input files. In any case, the scripts *must be run sequentially*, since later scripts are dependent on results from earlier scripts.

Explanation of the Function of each Script:

Script 1 (1_Process_TransVMT_Links.plx). Script 1 imports the 24 hourly TRANSVMT files and calculates many of the activity inputs for the off-network county scale and on-network project scale MOVES runs. The exact MOVES inputs that SEE produces are listed later in this document in Table 2 and Table 3 denoted by the 'X' in the column '**Calculated by SEE**.'

Script 2 (2_Process_ZonePeriodTrips.plx). Script 2 imports the 4 (or different number of time periods) Origin/Destination (O/D) trip files and calculates the trip start and end allocations for each period and assigns them to hours of day based on the time period definitions file.

Script 3 (3_Generate_off-net_MOVES_DataImporter.plx). Script 3 writes the MOVES data importer XML files for the off-network county scale MOVES run; by default the location of these intermediate files for SEE can be found under C:\SEE\MOVESXML. This script executes quickly in a matter of 1-2 seconds.

Script 4 (4_Generate_off-net_MOVES_RunspecFiles.plx). Script 4 writes the MOVES run specification (a.k.a. runspec) XML files for the off-network county scale MOVES runs; by

default the location of these intermediate files for SEE can be found under C:\SEE\MOVESXML. This script executes quickly in a matter of 1-2 seconds.

Script 5 (5_Execute_off-net_MOVES_Runs.plx). Script 5 executes two Windows batch (.BAT) files that were created by Script 3 and 4 respectively. The .BAT files run MOVES from the command line to (1) build the county scale MOVES input database and (2) execute the county scale MOVES run.

Script 6 (6_PostProcess_off-net_MOVES_CountyScale.plx). Script 6 allocates the county total emissions to TAZ using the allocations SEE calculated in Script 2 and MOVES outputs produced by Script 5. Script 6 also applies TxLED adjustments and sums the emissions to prepare them for later addition to the on-network results.

Script 7 (7_Generate_on-net_MOVES_XML.plx). Script 7 writes the MOVES data importer XML files for the on-network project scale MOVES runs for each hour; by default the location of these intermediate files for SEE can be found under C:\SEE\MOVESXML. This script executes quickly in a matter of 1-2 seconds.

Script 8 (8_Generate_on-net_MOVES_Runstreams.plx). Script 8 writes the MOVES run specification (runspec) XML files for the on-network project scale MOVES runs for each hour; by default the location of these intermediate files for SEE can be found under C:\SEE\MOVESXML. This script executes quickly in a matter of 1-2 seconds.

Script 9 (9_Execute_on-net_MOVES_Runstreams.plx). Script 9 executes two Windows batch (.BAT) files that were created by Script 7 and 8 respectively. The .BAT files run MOVES from the command line to (1) build the project scale MOVES input databases and (2) execute the project scale MOVES runs.

Script 10 (10_PostProcess_on-net_MOVES_Links.plx). Script 10 uses the output from the on-network project scale MOVES runs for unique links (completed in Script 9) to calculate the emission inventory for all links, and it applies TxLED fuel adjustments. Script 10 also compiles the previously-calculated off-network emissions, adding them to a common table with the on-network emissions. Finally, Script 10 prepares summaries of the total emissions and outputs them as text files to C:\SEE\LocalGen. The GUI imports these files into Excel when the "Import Results" button is pushed.

MOVES Multiple Worker Configuration: Sample files have been included to set up MOVES to work with a single master and multiple workers. In doing so, the user must first

enable file sharing within Windows, and specifically grant read/write access to the shared work folder defined in MOVESConfiguration.txt, located in the main MOVES directory. By default, this is the \SharedWork folder.

Once this access is granted, the user should update WorkerConfiguration.txt and manyworkers.txt to reflect the location of the shared directory. This will take the form of \<u>MasterComputer</u>Sharedwork, as shown in the example files. The user may then run the provided MOVES3Workers.bat to have three concurrent workers running on a single machine. This file may be modified to prepare other numbers of workers as well – 2 and 4 are common.

4.2 SEE Inputs

SEE requires a variety of inputs from the user that fall into one of four broad categories below. The category with the greatest number of files by far is item # 3, MOVES inputs.

- 1. Inputs to SEE from the GUI
- 2. Inputs to SEE related to the TDM or TRANSVMT
- 3. Inputs to SEE required by MOVES
- 4. Other inputs that are ancillary to SEE (e.g., cross-reference "lookup" files)

The corresponding four sections in this guide outline each SEE input type and where it can be found in the installation in order to change the file for a different application.

4.2.1 Inputs from the GUI

The Excel GUI contains a number of options used to run SEE, as shown in Figure 7. Starting at the top of Figure 7 moving downward, the User inputs and their function are briefly described.

User model selection options:

- 1. **Speedbin** may be set to either "0" (run all distinct links using all speeds rounded to the nearest integer) or a value of "1" (run distinct links where speeds have been binned into the 16 MOVES speed bins). The default value of "1" reduces MOVES runtime by running fewer links.
- 2. **CalYear** determines the calendar year of the MOVES run. It is the User's responsibility to ensure that the TRANSVMT year matches this year. Acceptable values include 1990 or 1999-2050.
- 3. **MonthID** determines the month of the MOVES run. It is the User's responsibility to ensure the seasonality of the TRANSVMT results is consistent with the MonthID.

- 4. **DayType** determines the day type of the MOVES runs: weekday or weekend. It is the Users responsibility to ensure that the TRANSVMT results (typically a weekday) match this day type.
- 5. **Countylist** is a list of one or more counties in the 8-county HGB area to run.
- 6. **Dbroot** is the naming scheme that SEE will use to name the MySQL databases where emissions results are calculated and stored. The variable can be used as a scenario description to track different executions of SEE.

User directory options:

- 1. **TRANSVMTpathPerl** is a directory location where SEE expects to finds the hourly link files from TRANSVMT and the origin/destination trip matrices. The User can set any directory path, but the slashes must be forward slash format "/".
- 2. **TRANSVMTpathSQL** must be the same directory as above (7), but using backward slash formats "\".
- 3. **MVSINPath** is the location of all MOVES model inputs to run SEE for the default case (July 2018 Weekday, all 8 counties). More detail on these files can be found in section 3 of this document. User must input a directory with a forward slash format "/".
- 4. **MVSINPT** is the same as above (9), but using backward slash formats "\".
- 5. **Inpath** is the location of lookups required by SEE. Most of these files should not need to be modified by the User, but they are described in detail in Section 4.
- 6. **Localoutpath** is the location where SEE's Perl scripts write a lot of their intermediate output files, which are CSV-formatted files that will be some key inputs to MOVES. Section 3 clearly defines which MOVES inputs are calculated by SEE vs. User-supplied. Use forward slashes "/".
- 7. **Tempperlpath** is the same directory as above (12) except using a backward slash format "\".
- 8. **SCRPTMVSINPT** is a directory where all CSV are copied from **localoutpath** (item 12). This is an extra step to enable SEE's files to be copied to a network location that is regularly backed up, rather than a local hard drive location such as C:\.
- 9. **Workpath** is another directory that SEE writes to. All MOVES data importer XML files, MOVES run specification XML files, and Windows executable batch files are written to this directory.
- 10. **MOVESPath** is the path to the local MOVES2010b installation.

	A E	B C	D	E	
1	[ToolVars]	Va	ariable	Description	
2	speedbin =	= 1 Sr	peed Bin Approach Flag	1 for binned MOVES speeds, 0 for speeds rounded to nearest integer	
3	CalYear =	= 2018 <mark>C</mark> a	alendar Year	Four digit year. Only one year permitted at a time.	
4	MonthID =	= 7 <mark>M</mark>	lonth	Calendar months 1-12. Only one month permitted at a time	
5	DayType =	= 5 Da	ау Туре	5 for weekday or 2 for weekend. Only one day type permitted at a time.	
6	countylist =	= 48039,48071 Co	ounties to model	Comma separated FIPS codes of counties to model. <i>No spaces!</i>	
7	dbroot =	SEE_MULTICOUNTY SC	cenario name	Name of scenario. This is used in internal database nomenclature.	
				Location of TRANSVMT files, Perl path format. Only one set of TRANSVMT	
8	TRANSVMTpathPerl =	C:/SEE/TRANSVMT/ TF	RANSVMT data path	files per directory!	
				Location of TRANSVMT files, DOS path format. <i>Only one set of TRANSVMT</i>	
9	TRANSVMTpathSQL =	C:\SEE\TRANSVMT\ TF	RANSVMT data path (DOS)	files per directory!	
10	MVSINPath =	C:/SEE/TCEQ_MOVES_INPUTS/ Pa	ath for TCEQ lookups	Location of MOVES inputs provided by TCEQ, Perl path format	
11	MVSINPT =	C:\SEE\TCEQ_MOVES_INPUTS\ Pa	ath for TCEQ lookups (DOS)	Location of MOVES inputs provided by TCEQ, DOS path format	
12	inpath =	C:/SEE/LOOKUPS/ In	put Path for lookups to scripts	Path for various lookup tables (fleet mix, road type, age distribution, etc)	
13	localoutpath =	C:/SEE/LocalGen/ Lo	ocal CSV output path	Path for generation of CSV files locally	
				Path for Perl execution of DOS commands. Same as above, switch slash	
14	tempperlpath =	C:\SEE\LocalGen\ Lo	ocal CSV output path (DOS)	direction	
		Pa	ath for Script-generated CSV for input to	Path for copying local CSVs to network (MySQL has issues writing directly	
15	SCRPTMVSINPT =	C:\SEE\CSVInputs\ M	IOVES	to network share.) DOS path format.	
		Pa	ath for Script-generated XML and	Working directory for MOVES XML and runspec files. This can remain	
16	WorkPath =	C:\SEE\MOVESXML\ ru	unspecs for input to MOVES	static regardless of scenario.	
17	MOVESPath =	C:\Users\Public\MOVES20120410\	10VES Install path	Path to local MOVES installation	
18					
19	Generate Option	ns File Run OFF-Net Scripts (1-6) Run ON-Net Scripts (7-10)	Run ALL Scripts (1-10)	Import Results Note: Direction of slash in paths is important!	
20					
21					
22	1 - Pre Proc VM	AT 2 - PreProc Trips 3 - OFF-Net DB Imp 4 - OFF-N	et Runspec 5 - OFF-Net Evecute	6 - PostProc OFE-Net	
23	1 110100 11		5 off Net Zecute		
24					
25		7 - ON-Net DB Imp 8 - ON-Net	et Runspec 9 - ON-Net Execute	10 - Post Proc ON-Net	
26					

Figure 7. SEE GUI Input tab, shown pre-populated with values.

4.2.2 Inputs related to the TDM or TRANSVMT

The inputs related to the travel demand model (TDM) consist of one of four types—the hourly link files from TRANSVMT, the O/D trips, the time period definitions file, and the link definitions file.

Default Locations:

C:\SEE\TRANSVMT\	(24 hourly link files and 4 period trip files)
C:\SEE\LOOKUPS\TimePeriodDesignation.tab	(definition of time periods)
C:\SEE\LOOKUPS\link_definitions.tab	(definition of links)

Requirements: The hourly link files from TRANSVMT must be named ending with the capital letter T, followed by the two digit hour of day (i.e., T01, T02 ... T23, T24). SEE is programmed to loop through as many hourly files as are present in the directory entered in the GUI. Only one set of 24 files should be present.

The O/D trip files are flexible in the number of time periods allowed, but SEE requires a very specific filename format. The first of two requirements is that the time period abbreviation must be embedded in the filename as the first two characters of the file (for example, "AM" for morning peak period O/D trips file). The second requirement is that the filename must end with the six characters "HR.ASC" including the period. SEE loops through and calculates the start and ends distribution from every file in the directory that ends in `HR.ASC`.

The time period definition file is a TAB-formatted file that can be opened and modified with Excel. There are 3 columns in this file (1) hour, (2) time period description, and (3) time period as a 2-character abbreviation. Column 2 is not used by SEE and is only helpful for documenting Column 3, the time period code. SEE uses Column 3 to assign trip start or end distributions to hours of the day.

The link definition file is a TAB-formatted file with three columns—link ID, Anode, and Bnode. The file should contain each combination of Anode and Bnode present in any hour of TRANSVMT files. The link ID is a unique identifier to refer to each Anode, Bnode combination. The SIP budget TRANSVMT files had 44,633 link IDs and the revised 2018 transportation model's TRANSVMT files (current as of September 2014) have 68,036 unique link IDs.

How to change:

There should only be one set of TRANSVMT link files and one set of O/D trip files in the directory at one time and they need to match the existing file fixed-column formats.

The default names for the default 4 trip files provided with the tool are the following:

AM_3HR.ASC MD_6HR.ASC PM_7HR.ASC OV_11HR.ASC

In order to accommodate different periods, for example two overnight time periods, one possibility for new naming that meets SEE's requirements could be "O1_5HR.ASC" and "O2_6HR.ASC".

4.2.3 Inputs required by MOVES

The two tables below list all MOVES inputs for on-network using the Project Scale (Table 2) and off-network using the County Scale (Table 3), the source (SEE or User), and the default location of the files. As shown, SEE calculates the inputs related to fleet activity while the User must supply inputs related to fleet descriptions (e.g., source type age distribution) and meteorology. Most of the user-supplied MOVES inputs are used in both on-network and off-network runs and they require a specific naming convention that makes use of the county FIPS code.

	Calculated	Provided	
Database table name	by SEE	by User	Default Location
AVFT		Х	C:\SEE\TCEQ_MOVES_INPUTS
Fuel Formulation		Х	C:\SEE\TCEQ_MOVES_INPUTS
Fuel Supply		Х	C:\SEE\TCEQ_MOVES_INPUTS
IM Coverage		Х	C:\SEE\TCEQ_MOVES_INPUTS
Link	Х		C:\SEE\CSVInputs
Link Source Type Hour	Х		C:\SEE\CSVInputs
Source Type Age Distribution		X	C:\SEE\TCEQ_MOVES_INPUTS
Zone Month Hour		X	C:\SEE\TCEQ_MOVES_INPUTS

Table 2. Project Scale (On-network) MOVES inputs for SEE

	Calculated	Provided	
Database table name	by SEE	by User	Default Location
AVFT		Х	Same as Table 2
Average Speed Distribution	Х		C:\SEE\CSVInputs
Day VMT Fraction ¹	N/A		C:\SEE\TCEQ_MOVES_INPUTS\dummy
Fuel Formulation		Х	Same as Table 2
Fuel Supply		Х	Same as Table 2
Hour VMT Fraction	Х		C:\SEE\CSVInputs
HPMS Vtype Year	Х		C:\SEE\CSVInputs
IM Coverage		Х	Same as Table 2
Month VMT Fraction ²	N/2	4	C:\SEE\TCEQ_MOVES_INPUTS\dummy
Road Type ³	Х		C:\SEE\CSVInputs
Road Type Distribution	Х		C:\SEE\CSVInputs
Source Type Age Distribution		Х	Same as Table 2
Source Type Year		X	C:\SEE\TCEQ_MOVES_INPUTS
Zone Month Hour		Х	Same as Table 2

Table 3. C	County Scale (Off-Network) MOVES in	puts for SEE
------------	----------------	-------------	------------	--------------

^{1, 2} These are required by MOVES but should not be modified by the User; they are automatically looked up by SEE.

³ Road Type contains ramp fractions by MOVES road type that are set to zero in order to match the TTI approach.

Requirements: The User supplied MOVES files must follow the existing naming convention of provided files with the tool. These are listed below:

Database table name	Filename, where \${c}= County FIPS Code			
AVFT	AVFT_ <mark>\${c}</mark> .csv			
Fuel Formulation	fuelFormulation_mvs10bFormatted.csv			
Fuel Supply	mvs10a_hgb2018_s_ \${c} _er_CDB_in.fuelsupply.csv			
IM Coverage	mvs10a_hgb2018_s_ \${c} _er_CDB_in.imcoverage.csv			
Source Type Age Distribution	mvs10a_MDB20100830_HGB \${c} _2011j_SUTage.csv			
Source Type Year	hgb2018_mvs10a_\${c}_VEHPOP_2018_sourcetypeyear.csv			
Zone Month Hour	ZoneMonthHour_8county.csv			

Table 4. File naming requirements for all User supplied MOVES inputs

The month and year inside these files must match the GUI inputs for **CalYear** and **MonthID** from Figure 7. All the MOVES input files for the HGB area year 2018 were downloaded directly from the TCEQ FTP site and most are provided directly with SEE unmodified. In some cases, files had to be converted from MOVES version 2010a to 2010b formats. One example of this conversion was the fuel engine fractions (of gas and diesel) by

Columns of the AVFT table

model year. The TCEQ website version lists a fuel engine fractions text file that MOVES2010a used to read through the GUI. However, in MOVES2010b this is an actual input table called AVFT. ERG reformatted this MOVES input for compatibility with the latest version of MOVES. Minor reformats were also necessary for the fuel formulation file (relating to T50, T90 fuel parameter fields which were not part of MOVES2010a fuel formulation format). The AVFT file provided with SEE is based on TTI's fuel mix information that is county-specific rather than a statewide average.

How to change: We highly recommend leaving the provided example files unmodified, and copying the entire directory to a new name to update the files that need changing. Note that the provided MOVES inputs are specific to the month July and year 2018 and reflect the files provided by TCEQ for calculating the SIP budget.

To assist with input file formatting, the MOVES county data manager in the MOVES model GUI can be used to export tables in the correct format for MOVES to provide to SEE. Also, the existing example files are correctly formatted, so any User-generated files could also be compared to these as a check. Below, Table 5 through Table 11 list all MOVES-related input files by input for – Alternate Vehicles and Fuels Table (AVFT), Fuel Formulation, Fuel Supply, Inspection and Maintenance (I/M) Coverage, Source Type Age Distribution, and Population (Source Type Year). The other MOVES input data, as noted previously, is created by SEE based on TRANSVMT hourly files. Each User input for MOVES is explained in a separate table, with the column names (Field Name) listed in order as they should appear from left to right. For example, the AVFT input provided to SEE should be a CSV file with 5 columns—from Left to Right as sourceTypeID, modelYearID, fuelTypeID, engTechID, fuelEngFraction—as shown below in Table 5.

For more information, see Section 3.9.1 of the MOVES2010b Technical Guidance http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf			
Field Name	Data Type	Comment	
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)	
modelYearID	smallint(6)	Numeric value identifying a model year.	

 Table 5. Details for the AVFT Table User Input

Columns of the AVFT table

For more information, see Section 3.9.1 of the MOVES2010b Technical Guidance http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf

TH LINI		a
Field Name	Data Type	Comment
fuelTypeID	smallint(6)	Identifies a basic kind of fuel used by
		SourceTypes:
		1 = Gasoline
		2 = Diesel Fuel
		3 = Compressed Natural Gas (CNG)
engTechID	smallint(6)	Identifies an engine technology.
fuelEngFraction	double	Fraction that must sum to 1 for each combination
		of sourceTypeID and modelYearID

Table 6. Details for the Fuel Formulation Table User Input

Columns of the Fuel For	Columns of the Fuel Formulation Table			
For more information, see	e Section 4.10.	1.1 of the MOVES2010b Technical		
Guidance				
http://www.epa.gov/otaq/	models/moves	/documents/420b12028.pdf		
	I	1		
Field Name	Data Type	Comment		
fuelFormulationID	smallint(6)	Numeric value to uniquely identify a fuel		
	sinainit(0)	trans		
		type.		
fuelSubtypeID	smallint(6)	Identifies a particular kind of fuel within		
		a FuelType. e.g. Gasoline may be		
		conventional, or RFG, diesel may be		
		conventional, biodiesel, Fischer-Troppes,		
		etc.		

Columns of the Fuel Formulation Table

For more information, see Section 4.10.1.1 of the MOVES2010b Technical Guidance

http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf

Field Name	Data Type	Comment
RVP	float	Vapor pressure, expressed in psi.
sulfurLevel	float	sulfur content, expressed in ppm
ETOHVolume	float	Ethanol content, expressed in volume percentage
MTBEVolume	float	MTBE content, expressed in volume percentage
ETBEVolume	float	ETBE content, expressed in volume percentage
TAMEVolume	float	TAME content, expressed in volume percentage
aromaticContent	float	aromatic content, expressed as a volume percentage
olefinContent	float	olefin content, expressed as a volume percentage
benzeneContent	float	benzene content, expressed as a volume percentage
e200	float	percentage vapor at 200 degrees F
e300	float	percentage vapor at 300 degrees F
BioDieselEsterVolume	float	percent volume of biodiesel in diesel fuel
CetaneIndex	float	Not Used in MOVES2010b
PAHContent	float	Not Used in MOVES2010b
T50	float	temperature in degrees F at which 50% of a sample of gasoline evaporates

Columns of the Fuel Formulation Table

For more information, see Section 4.10.1.1 of the MOVES2010b Technical Guidance

http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf

Field Name	Data Type	Comment
T90	float	temperature in degrees F at which 90% of a sample of gasoline evaporates

Table 7. Details for the Fuel Supply Table User Input

Columns of the Fuel Supply Table
For more information, see Section 4.10.1.2 of the MOVES2010b Technical
Guidance
http://www.epa.gov/otag/models/moves/documents/420b12028.pdf

Field Name	Data Type	Comment
countyID	int(11)	1000* FIPS state code + FIPS county
		identification code.
fuelYearID	smallint(6)	Identifies a year for which fuel supply data has
		been entered in the FuelSupply table. (May be
		used by multiple calendar years.)
monthGroupID	smallint(6)	Numeric value of 1-12 and the value <i>must</i>
		match the SEE GUI Month ID
fuelFormulationID	smallint(6)	Numeric value to identify a fuel type and it
		must have a corresponding entry for the
		fuelFormulationID in the Fuel Formulation
		table.
marketShare	float	Decimal Fraction of the supply of this fuel
		type which this fuel formulation constitutes.
		Market shares must sum to 1 over fuel
		subtype.
marketShareCV	float	Not Used in MOVES2010b

Table 8. Details for the I/M Coverage Table User Input

Columns of the I/M	I Coverage Ta	ble	
For more informatio	n, see Section	4.11 of the MOVES2010b Technical	
Guidance			
http://www.epa.gov/	'otaq/models/m	noves/documents/420b12028.pdf	
Field Name	Data Type	Comment	
polProcessID	smallint(6)	100*pollutantID + processID	
		Set of valid combinations is determined by	
		rows in this table.	
stateID	smallint(6)	FIPS state identification code.	
countyID	int(11)	1000* FIPS state code + FIPS county	
		identification code.	
yearID	smallint(6)	An actual calendar year. This must match	
		the SEE GUI calendar year (CalYear)	
sourceTypeID	smallint(6)	Numeric value defining a MOVES source	
		type (e.g., 11 for motorcycle)	
fuelTypeID	smallint(6)	Identifies a basic kind of fuel used by	
		SourceTypes:	
		1 = Gasoline	
		2 = Diesel Fuel	
		3 = Compressed Natural Gas (CNG)	
IMProgramID	smallint(6)	Numeric value to uniquely identify the	
		application of an IM program to a set of	
		model years.	
inspectFreq	smallint(6)	"1" means annual	
		"2" means biennial	
		"3" means continuous	

Columns of the I/M	Coverage Ta	ble		
For more information	n, see Section	4.11 of the MOVES2010b Technical		
Guidance				
http://www.epa.gov/	http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf			
Field Name	Data Type	Data Type Comment		
testStandardsID	smallint(6)	Numeric value corresponding to one of 13 exhaust emissions tests or 7 evaporative tests listed in Table 4 of the MOVES2010b Technical Guidance.		
begModelYearID	smallint(6)	Numeric value identifying a model year.		
endModelYearID	smallint(6)	Numeric value identifying a model year.		
useIMyn	char(1)	"Y" means I/M program is in effect "N" means I/M program is turned off		
complianceFactor	float	Decimal fraction to indicate the I/M compliance rates, waiver rates and the regulatory class adjustment. See Section 4.11.1.6 of the MOVES 2010b Technical Guidance for more information.		

Table 9. Details for the Source Type Age Distribution Table User Input

Columns of the Source Type Age Distribution Table

For more information, see Section 4.4 of the MOVES2010b Technical Guidance http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf

Field Name	Data Type	Comment
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)
yearID	smallint(6)	An actual calendar year. <i>This must match the SEE GUI calendar year (CalYear)</i>

Columns of the Source Type Age Distribution Table

For more information, see Section 4.4 of the MOVES2010b Technical Guidance http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf

Eald Manage	Data Tara	Comment
Field Name	Data Type	Comment
ageID	smallint(6)	Identifies a SourceUseType age category. Values
_		from 0 to 30
		0 = new
		1 = one year old
		2 = two years old
		2
		30 = thirty or more years old
ageFraction	float	Fraction of total domain SourceUseType
		population which, in a given calendar year,
		are a given age (Δ set of these elements is
		are a given age. (A set of these elements is
		sometimes often referred to informally as a
		"registration distribution".)

Table 10. Details for the Population Table User Input

Columns of the Population (Source Type Year) Table				
For more information, s	ee Section 4.3	of the MOVES2010b Technical Guidance		
http://www.epa.gov/ota	http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf			
Field Name	Data Type	Comment		
yearID	smallint(6)	An actual calendar year. <i>This must match the</i> <i>SEE GUI calendar year (CalYear)</i>		
sourceTypeID	smallint(6)	Numeric value defining a MOVES source type (e.g., 11 for motorcycle)		
salesGrowthFactor	float	Not used for MOVES runs in SEE.		
sourceTypePopulation	float	The total population in the county of a SourceUseType in the calendar year.		

migrationrate	float	Not used for MOVES runs in SEE.

Table 11. Details for the Meteorology Table User Input

Columns of the Meteorology (Zone Month Hour) Table		
For more information, see Section 4.2 of the MOVES2010b Technical Guidance		
http://www.epa.gov/otaq/models/moves/documents/420b12028.pdf		

Field Name	Data Type	Comment	
monthID	smallint(6)	Numeric value of 1-12 and <i>the value must match</i> <i>the SEE GUI Month ID</i>	
zoneID	int(11)	Identifies a zone. Use the county ID * 10.	
hourID	smallint(6)	Numeric value of 1-24.	
temperature	float	Units of degrees Fahrenheit.	
relHumidity	float	The ratio of the amount of water vapor in the air at a specific temperature to the maximum amount that the air could hold at that temperature, expressed as a percentage.	

4.2.3.1 Other Inputs

This last category of inputs to SEE are mostly lookup files required for the model to run, but aren't directly related to MOVES. Table 12 lists each lookup file, its purpose and when the User should update it.

Default Location: C:\SEE\LOOKUPS\

191	n			
Filename	Purpose	when to update		
CountyLookup.tab	Cross-reference of TDM County Code to FIPS Codes	If TDM county codes 1-8 change, or if TDM coverage is expanded to a new county		
DummySpeed.tab	Required file to help SEE correctly format the `Average Speed Distribution` table	Never		
ExtIdle_8Co_Zone_and_Capacity.ta b	Provides SEE total number overnight truck parking spaces by county and TAZ	If the spatial location of TAZ's change, or new/better truck stop data become available		
Link_definitions.tab	Provides SEE with a list of all links (distinct Anode, Bnode pairs) in the travel network	If TDM link definitions change, or a different year of TDM is run		
RoadtypeLookup.tab	Cross-reference of TDM functional class and area type to the MOVES Road Type ID 2-5	If user decides to model ramps explicitly as ramps or H-GAC transportation planners change the definitions of TDM functional classes or area types		
TimePeriodDesignation.tab	PeriodDesignation.tab Assigns hours of day (1-24) to a TDM time period			
TTI_\${c}_StFtRt_FleetMix.tab (where \${c} = County FIPS Code)	I_\${c}_StFtRt_FleetMix.tab here \${c} = County FIPS Code)VMT fractions for each MOVES road type where fractions sum to 1 over source and fuel type			
TxLEDadjustments.tabAdjustment factors to reduce NOx emissions from diesel-fueled vehicles. Factors depend on Sourc Type and Calendar Year		SEE is already populated with reasonable estimates for all calendar years out to 2050; however a precise year's adjustment factors can be replaced if running different calendar year than 2018 or if age distributions change.		

Table 12. List of SEE ancillary input files, their purpose,and when they need updating by User.

Below defines the fields of each ancillary file, separately by filename listed above in Table 12.

Table 13. Details for	the	County	Lookup	SEE	Ancillary	/ File
-----------------------	-----	--------	--------	-----	-----------	--------

Columns of the CountyLookup.tab file			
(in C:\SEE\LOOKU	JPS)		
Field Name Data Type		Comment	

Columns of the CountyLookup.tab file (in C:\SEE\LOOKUPS)		
Field Name Data Type Comment		
County Code	Integer	County code in the TRANSVMT
		files; values currently used are 1-8.
County FIPS	Integer	5-digit FIPS (e.g., 48201) that
		corresponds to each County Code in
		TRANSVMT.
County Name	Text	County name (e.g., Harris). This
		field is not used by SEE.

Table 14. Details for the Dummy Speed SEE Ancillary File

Columns of the DummySpeed.tab file			
(in C:\SEE\LOOKUPS)			
Field Name Data Type Comment			
sourceTypeID	Integer	Numeric value defining a MOVES	
		source type (e.g., 11 for motorcycle)	
roadTypeID	Integer	Road types are 2-5.	
hourDayID	Integer	hourID*10+dayID	
avgSpeedBinID	Integer	Speed bin IDs are 1-16.	
avgSpeedFraction	0	Value is always 0. This is a dummy	
		file.	

Table 15. Details for the Extended Idle Allocation SEE Ancillary File

Columns of the ExtIdle_8Co_Zone_and_Capacity.tab file			
(in C:\SEE\LOOKUPS)			
Field NameData TypeComment			
County FIPS	Integer	5-digit code (e.g., 48201)	
TAZ Integer Transportation Analysis Zone			
Parking capacity Integer Number of Overnight Truck Parking			
Spaces in the TAZ			

|--|

Columns of the Link_definitions.tab file (in C:\SEE\LOOKUPS)			
Field Name Data Type Comment		Comment	
Link ID	Integer	Unique link identification code,	
		numbers from 1 to N where N is the	
		total number of links in the	
TRANSVMT files in any hou			
A node	Integer	The start node ID code of a	
		directional link, as defined in	
		TRANSVMT	
B node	Integer	The end node ID code of a	
		directional link, as defined in	
		TRANSVMT	

Table 17. Details for the Road Type Lookup SEE Ancillary File

Columns of the RoadtypeLookup.tab file (in C:\SEE\LOOKUPS)		
Field Name	Data Type	Comment
Road Type Code	Integer	Road type code of each link from the
		TRANSVMT files. Current values are:
		1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15,
		40
Area Type Code	Integer	Area type code of each link from the
		TRANSVMT files. Current values are: 1,
		2, 3, 4, 5, 40
MOVES roadTypeID	Integer	Corresponding MOVES2010b road type
		ID. Values can only be 2, 3, 4, or 5.

Table 18. Details of the Time Periods Designation SEE Ancillary File

Columns of the TimePeriodDesignation.tab file (in C:\SEE\LOOKUPS)			
Field Name Data Type Comment			
Hour ID	Integer	Hour of Day, 1-24.	
Description of Time	Varchar(20)	Text description up to 20 characters. This	
Period field is not used by SEE.			
Time Period ID	Char(2)	Must be a two-character description of the	
time period (e.g., AM, MD, PM, OV—or			
		suggested O1, O2 if there are two	
		overnight periods)	

Table 19. Details of the VMT Mix SEE Ancillary File

Columns of the TTI_\${c}_StFtRt_FleetMix.tab file		
where \${c} = County FIPS Code		
(in C:\SEE\LOOKUPS	5)	
Field Name	Data Type	Comment
roadTypeID	Integer	Numeric value defining a MOVES road type.
		Values can be 2, 3, 4, or 5.
sourceTypeID	Integer	Numeric value defining a MOVES source type
	-	(e.g., 11 for motorcycle)
fuelTypeID	Integer	Numeric value identifying a type of fuel used
		by SourceTypes:
		1 = Gasoline
		2 = Diesel Fuel
		3 = Compressed Natural Gas (CNG)
SUTMix	Double Precision	Decimal fraction for each combination of source
		and fuel type, must sum to 1 over each road
		type.

Table 20. Details of the TxLED Adjustment Factor SEE Ancillary File

Columns of the TxLEDadjustments.tab file			
(in C:\SEE\LOOKUPS)			
Field Name Data Type Comment			

Columns of the TxLEDadjustments.tab file (in C:\SEE\LOOKUPS)		
Field Name	Data Type	Comment
yearID	Integer	An actual calendar year. This must include the
		SEE GUI calendar year (CalYear)
sourceTypeID	Integer	Numeric value defining a MOVES source type
		(e.g., 11 for motorcycle)
Adjustment Factor	Double Precision	Numeric value between 0 and 1. SEE multiplies
		this factor with diesel-fueled NOx emissions. A
		value of "0" will result in a 100% NOx
		reduction; a value of "1" will result in 0% NOx
		reduction (no change).

4.3 SEE Outputs

This section provides a quick guide on how to review outputs from SEE. There are two methods that can be used to look at SEE results. The first method is through the Excel GUI, and the second is to navigate SEE's output databases using the MySQL query browser.

4.3.1 Instructions for Reading Outputs using the GUI

Steps:

- 11. Wait for confirmation that Script 10 has completed.
- 12. Click the button "Import Results" located to the right side of the GUI.

The "Import Results" button brings in SEE emissions and VMT summaries into the GUI into spreadsheet tabs located to the right of the Input tab. The summary tabs are named:

- 13. 'HourlyEmiss,'
- 14. 'DailyEmiss,'
- 15. 'HourlyVMT,'
- 16. 'DailyVMT' and
- 17. 'Summary'

The 'Summary' sheet contains total on-road emissions by county in units of <u>tons</u>. The 'HourlyEmiss' and 'DailyEmiss' emissions summaries contain fields of: year ID, month ID, day type ID (5=weekday), hour ID (for 'HourlyEmiss' tab only), county ID, pollutant ID, MOVES road type ID, and 13 columns corresponding to the 13 MOVES source types. The emissions under the source types are in units of <u>kilograms</u>.

In the VMT tables, the fields are: county ID, MOVES road type ID, hour ID (for 'HourlyVMT' only), and 13 source type columns where the VMT is in units of <u>miles</u>.

4.3.2 Instructions for Reading Outputs using the MySQL Query Browser

The Query Browser allows the User to export the highest level of detail results in SEE that contains emissions by link, zone, and hour. This result set is too large to bring into the Excel GUI.

Steps:

- 18. Wait for confirmation that Script 10 has completed.
- 19. Open MySQL Query Browser and use the following query to display the full set of results:
 - select * from **\${dbroot**}_offnet.output_fulldetail_**\${c}**;
- 20. Substituting the variables:
 - **\${dbroot}** = the scenario name specified in the input panel of the GUI, row 7.
 - \${c} = county FIPs code

5.0 TRANSVMT UPDATES

TRANSVMT is a script developed by TTI that processes direct output from HGAC's four-step travel demand model into link and zone level activity data used for emissions estimation. As part of the work under this contract, H-GAC requested new quality assurance checks on TRANSVMT to ensure transportation network changes were reflected in final VMT results, and an update to add the option of a second speed post-processing model that reflects a more accurate distribution of network average speeds, especially for heavy congestion levels. These tasks were undertaken by Cambridge Systematics, Inc., and are documented fully in Attachment A. An excerpt from this work is included in this section, to provide documentation to users wishing to implement the updated speed model in the TRANSVMT hourly files provided as input to SEE, discussed previously in Section 4.2.2.

The revised TRANSVMT program includes three speed models: Dallas, Houston (current speed model) and new speed model (based on Fortran code). The Dallas and current Houston speed model were implemented by (Texas Transportation Institute) TTI and can be run using the guidance provided by TTI's MOVES Utility user guide. Cambridge Systematics incorporated the new speed model (originally written in Fortran Language) into the TRANSVMT program. The

revised TRANSVMT program is capable of running any of the three speed models using the JCF file and the input files appropriate for the speed model. Appendix F provides the sample JCF file for the new speed model.

5.1 Running TRANSVMT with new speed model

- 21. Download the revised application TTIDEV2014.exe to the local machine.
- 22. Prepare the JCF file. The sample JCF file is shown in Appendix F. In the JCF file, the code "/SPDF" tells the program to use new speed model.
- 23. Prepare the input files. The new speed model requires almost all of the input files used by the current speed model. The new speed model has its own speed reduction factor file. In addition to the files that are already used by the TRANSVMT program, the new speed model requires the following files:
 - Speed Limit File
 - Free Flow Speed File
 - LOS E Speed File
 - g/c Ratio File
 - Run Time Factor File
 - Signal Type File
 - Arrival Type File
 - Progression Factor File
 - Cycle Length File
 - Speed Reduction Factor File
- 24. Before running the TRANSVMT program, please make sure that there is no blank space in the file names and in the folder names. For example, if the folder name is "Speed Model" then rename it to "SpeedModel". Otherwise, the program will give an error since the program reads the keywords from each line of the JCF by using the delimiter of blank space or tab.
- 25. Before running the program, please make sure the output folder is empty. Otherwise, the program will give error.
- 26. Click on the exe file. The dialog box shown in Figure 8 will pop up. Type the JCF file name along with path in the textbox of the dialog box.

Figure 8. Input Dialog Box

5.2 Input Files Required for New Speed Model

The following describes the input files used by the new speed model.

Speed Limit File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RTYPE: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

SPDA1: Speed limit in area type code equals to 1.

SPDA2: Speed limit in area type code equals to 2.

SPDA3: Speed limit in area type code equals to 3.

SPDA4: Speed limit in area type code equals to 4.

SPDA5: Speed limit in area type code equals to 5.

Free Flow Speed File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The free flow speed is calculated by adjusting the speed limit. The program uses different adjustment methods and the adjustment values based on the area type and the road type. The program uses the Equation 16 or Equation 17 to calculate the free flow speed.

<i>If Adjustment method = 1 then Free flow speed = Speed limit + Adjustment value</i>	Equation 1
<i>If Adjustment method</i> = 2 <i>then Free flow speed</i> = <i>Speed limit</i> * <i>Adjustment value</i>	Equation 2

The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

ADJTYP1: This column represents the adjustment method for area type code equals to 1. ADJVAL1: This column represents the adjustment value for area type code equals to 1. ADJTYP2: This column represents the adjustment method for area type code equals to 2. ADJVAL2: This column represents the adjustment value for area type code equals to 2. ADJTYP3: This column represents the adjustment method for area type code equals to 3. ADJVAL3: This column represents the adjustment value for area type code equals to 3. ADJVAL3: This column represents the adjustment value for area type code equals to 3. ADJTYP4: This column represents the adjustment method for area type code equals to 4. ADJVAL4: This column represents the adjustment value for area type code equals to 4. ADJVAL4: This column represents the adjustment value for area type code equals to 5. ADJVAL5: This column represents the adjustment value for area type code equals to 5.

LOS E Speed File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The LOS E speed is calculated by adjusting the free flow speed. The program uses different adjustment methods and the adjustment values based on the area type and the road type. The program uses the Equation 18, Equation 19, or Equation 20 to calculate the LOS E speed.

<i>If Adjustment method</i> = 1 <i>then LOS E speed</i> = <i>Free flow speed</i> + <i>Adjustment value</i>	Equation 3
<i>If Adjustment method</i> = 2 <i>then LOS E speed</i> = <i>Free flow speed</i> * <i>Adjustment value</i>	Equation 4
<i>If Adjustment method</i> = 3 <i>then LOS E speed</i> = <i>Adjustment value</i>	Equation 5

The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files. ADJTYP1: This column represents the adjustment method for area type code equals to 1. ADJVAL1: This column represents the adjustment value for area type code equals to 1. ADJTYP2: This column represents the adjustment method for area type code equals to 2. ADJVAL2: This column represents the adjustment value for area type code equals to 2. ADJVAL2: This column represents the adjustment walue for area type code equals to 2. ADJTYP3: This column represents the adjustment method for area type code equals to 3. ADJVAL3: This column represents the adjustment value for area type code equals to 3. ADJVAL3: This column represents the adjustment walue for area type code equals to 4. ADJVAL4: This column represents the adjustment walue for area type code equals to 4. ADJVAL4: This column represents the adjustment walue for area type code equals to 4. ADJVAL4: This column represents the adjustment walue for area type code equals to 5. ADJVAL5: This column represents the adjustment walue for area type code equals to 5.

g/c Ratio File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

GCR1: This column represents the traffic signal's g/c ratio for area type code equals to 1.

GCR2: This column represents the traffic signal's g/c ratio for area type code equals to 2.

GCR3: This column represents the traffic signal's g/c ratio for area type code equals to 3.

GCR4: This column represents the traffic signal's g/c ratio for area type code equals to 4.

GCR5: This column represents the traffic signal's g/c ratio for area type code equals to 5.

Run Time Factor File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The TRANSVMT program determines the run time factor of the arterial links

based on the distance between the traffic signals and the free flow speed on the link. The program logic determines the distance between signals based on the link length of the arterial road types. The value of the run time factor is interpolated from the input data file by the program. The file should have column headers and the name of the headers should be named as the following:

LENGTH: This column represents the distance between traffic signals.

25: This column represents the run time factors at 25 mph free flow speed.

30: This column represents the run time factors at 30 mph free flow speed.

35: This column represents the run time factors at 35 mph free flow speed.

40: This column represents the run time factors at 40 mph free flow speed.

45: This column represents the run time factors at 45 mph free flow speed.

50: This column represents the run time factors at 50 mph free flow speed.

55: This column represents the run time factors at 55 mph free flow speed.

60: This column represents the run time factors at 60 mph free flow speed.

Signal Type File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

SGLA1: This column represents the traffic signal type for area type code equals to 1.

SGLA 2: This column represents the traffic signal type for area type code equals to 2.

SGLA 3: This column represents the traffic signal type for area type code equals to 3.

SGLA 4: This column represents the traffic signal type for area type code equals to 4.

SGLA 5: This column represents the traffic signal type for area type code equals to 5.

Arrival Type File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

ARVTYP1: This column represents the arrival type at signal for area type code equals to 1. ARVTYP2: This column represents the arrival type at signal for area type code equals to 2. ARVTYP3: This column represents the arrival type at signal for area type code equals to 3. ARVTYP4: This column represents the arrival type at signal for area type code equals to 4. ARVTYP5: This column represents the arrival type at signal for area type code equals to 5.

Progression Factor File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The TRANSVMT program determines the progression factor based on the volume to capacity ratio, the signal type and the arrival type. The program determines the factor for the link volume to capacity (VC) ratio by rounding the VC ratio to the single decimal digit. If the V/C ratio less than 0.1 then the progression factor for VC ratio equals to 0.1 is used. If the V/C ratio greater than 1 then the progression factor for VC ratio equals to 1 is used. The file should have column headers and the name of the headers should be named as the following:

VC: The column represents the volume to capacity ratio.

SG1_A1: This column represents the progression factor for signal type=1 and arrival type = 1. SG1_A2: This column represents the progression factor for signal type=1 and arrival type = 2. SG1_A3: This column represents the progression factor for signal type=1 and arrival type = 3. SG1_A4: This column represents the progression factor for signal type=1 and arrival type = 4. SG1_A5: This column represents the progression factor for signal type=1 and arrival type = 5. SG2_A1: This column represents the progression factor for signal type=2 and arrival type = 1. SG2_A2: This column represents the progression factor for signal type=2 and arrival type = 2. SG2_A3: This column represents the progression factor for signal type=2 and arrival type = 3. SG2_A4: This column represents the progression factor for signal type=2 and arrival type = 4. SG2_A5: This column represents the progression factor for signal type=2 and arrival type = 3. SG3_A1: This column represents the progression factor for signal type=3 and arrival type = 1. SG3_A2: This column represents the progression factor for signal type=3 and arrival type = 2. SG3_A3: This column represents the progression factor for signal type=3 and arrival type = 3. SG3_A4: This column represents the progression factor for signal type=3 and arrival type = 4. SG3_A5: This column represents the progression factor for signal type=3 and arrival type = 5.

Cycle Length File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

CYCLE1: This column represents the traffic signal's cycle length for area type code equals to 1.

CYCLE2: This column represents the traffic signal's cycle length for area type code equals to 2.

CYCLE3: This column represents the traffic signal's cycle length for area type code equals to 3.

CYCLE4: This column represents the traffic signal's cycle length for area type code equals to 4.

CYCLE5: This column represents the traffic signal's cycle length for area type code equals to 5.

Speed Reduction Factor File

This file should be in *.txt format. The TRANSVMT program determines the speed reduction factors based on the volume to capacity ratio. The value of the factor is interpolated from the input data. The snapshot of the sample file is provided at Appendix B. The file should have column headers and the name of the headers should be named as the following:

VC: This column represents the volume to capacity ratio.

SRF: This column represents the speed reduction factor.

6.0 OPPORTUNITIES FOR INVENTORY IMPROVEMENT

The benchmark results presented above were focused on replicating MOVES county level results using MOVES inputs developed for the HGB SIP. As such, the results do not include several potential improvements to the HGB inventory possible through SEE. Features which H-GAC can implement through SEE that are not included in the current HGB SIP inventory are outlined in this section.

6.1 Updating speed model

As discussed in Section 5.0, Cambridge Systematics implemented a new speed postprocessing model provided by H-GAC (and developed by TTI) into the TRANSVMT travel model processing script. The new model broadens the range of average speeds coming out of the travel model by considering signals in arterial speed calculations. The new model also calculates free flow and congested speeds for freeways differently, and accounts for very low speeds on highly congested roads by continuing to lower speed at volume/capacity ratios greater than 1.5. The resulting changes in speed are shown in Figure 9. Initial MOVES sensitivity runs suggest that the new speed model results will increase typical day NOx emissions about two percent, with larger increases (closer to ten percent) during periods of congestion.

6.2 Adding Heavy-duty "hot spots"

SEE will include the feature to add heavy-duty hot spots as individual links run through MOVES project scale. The initial implementation of this is focused on two port container

terminals operated by the Port of Houston – Bayport and Barbour's Cut – with significant operation of heavy-duty "drayage" trucks (Figure 10). Drayage truck activity, fleet characteristics and emissions in these port terminals were characterized as part of the Houston Port study conducted by EPA/TCEQ/H-GAC and supported by ERG in 2009-10 (5). This study used gate entry/exit data to quantify truck age distribution (which can vary considerably from regional distributions) and the number of trucks by hour in each terminal. Portable activity monitors were used to establish the within-terminal operating mode distribution, characterized by idle and low speed operation. These data were used to develop MOVES project-scale inputs to model heavy truck emissions within the port terminal for each hour of a typical summer day. Results for Bayport terminal are shown in Figure 11, by hour (the terminal is only open during the day). The daily total is small, about 0.1% of total NOx inventory in Harris County, however with the potential to extend this approach to the large number of private terminals in Houston and other hot spots like distribution centers, warehouses etc. when truck activity data are available, the influence on regional emissions as well as localized exposure will be more significant. Within SEE these emissions will be assigned to TAZ to increase overall inventory, and account for spatial and temporal contributions of these emissions.

Figure 11. Heavy-Duty Truck NOx Emissions, Bayport Terminal

6.3 Updating vehicle starts based on travel model

For the benchmark runs, the initial implementation of HGB-SEE relies on the MOVES default estimate of the number of starts per vehicle, coupled with HGB-specific vehicle populations. This results in a total start estimate that differs considerably from the number of trips estimated by the travel demand model. For example, for the AM peak the in Harris County, the MOVES default approach results in 2.7 million starts, while the HGB travel model estimates 2.0 million starts. This difference would results in a large change in start, and overall emissions. The number of starts/vehicle in MOVES could be updated to reflect the travel model trips and/or other HGB-specific travel activity data gathered via travel surveys, etc. However, careful consideration must be given to account for chained trips, or trips that have more than one engine start. For example a single home-to-work trip in the travel model may not account for short-term stops such as a stop for a cup of coffee. From an emissions perspective, this is two starts not one.

6.4 Updating Long-Haul VMT and Idle Hours

For consistency with the current SIP, current long-haul truck VMT estimates in HGB-SEE are based on MOVES default allocations which are uniform across road type and region of the country. Under a separate project, ERG has developed long-haul truck VMT allocations that vary by region and MOVES road type based on FHWA's Freight Analysis Framework, for use in the 2011 National Emissions Inventory (6). These updated allocations could be implemented in SEE, and also used to update the total extended idle hours for the HGB, which are based in part on long-haul truck activity.

6.5 Adding Road Grade

While not implemented in HGB-SEE, using MOVES project scale provides the opportunity to include road grade in regional emission inventory calculations. This would require road grade estimates for each link on a network, or at the least the subset where grade would be significant enough to influence emissions.

6.6 Using Actual Speeds

As discussed under on-network approach above, the option for using exact speed unique links was retained because despite longer runtime. This approach does produce a more refined emissions estimate by not binning the average speeds, which was necessary to match benchmark runs. Initial runs comparing the two approaches found that exact speed vs. binned unique links resulted in small emission differences, on the order of 1-2 percent.

7.0 CONCLUSIONS

The SEE modeling framework combines project and county scale features of MOVES into an integrated regional emissions inventory tool with a high degree of spatial detail. The model adheres to EPA modeling guidance to ensure applicability for SIP and transportation conformity analyses. Among the novel features of HGB-SEE are a) the application of MOVES project scale to develop a regional emissions inventory, which introduces the possibility of including road grade impacts at an area-wide level; b) allocation of off-network emissions to transportation analysis zones based on travel demand model origin/destination matrices and spatial analysis of truck extended idle locations; and c) inclusion of heavy-duty emission "hot spots" not already accounted for in the travel model network such as port terminals and distribution centers. Users interact with SEE through a simple GUI, and are able to use MOVES inputs directly, so that existing MOVES tools such as the county data manager can be used to prepare SEE inputs. Benchmark runs of SEE show agreement of MOVES county scale runs to within one-half percent for all pollutants. The framework provides many opportunities for improving regional emissions inventory based on better local data.

8.0 ACKNOWLEDGEMENTS

The authors gratefully acknowledge Graciela Lubertino, Chris Van Slyke and Chi Ping Lam of H-GAC for project funding and technical direction; Heather Perez of ERG, who performed GIS analysis and produced the allocation and emission maps presented in this paper; Alan Standard of ERG, who produced Bayport emission results presented in Section 6; Kelly Martin of ERG for report formatting and editing; and Dennis Perkinson and L.D. White of TTI for providing model inputs previously developed for the HGB region.

9.0 REFERENCES

- 27. U.S. EPA, Using MOVES to Prepare Emission Inventories in State Implementation Plans and Transportation Conformity: Technical Guidance for MOVES2010, 2010a and 2010b, Report No. EPA-420-B-012-028, 2012
- 28. TTI, Texas Transportation Institute Emissions Inventory Utilities User's Guide, 2009
- 29. Memorandum from ERG to Coordinating Research Council: "Processing of Truck Stop Plus Database", 2014 (<u>http://www.crcao.com/reports/recentstudies2014/A-88/CRC A88_TruckStopDatabase Memo.pdf</u>)
- TCEQ Emissions Modeling FTP Site (ftp://amdaftp.tceq.texas.gov/pub/Mobile_EI/HGB/mvs/)
- 31. Fulper et. al, "Preliminary Results of Drayage Heavy-Duty Diesel Truck Testing in the Port of Houston Area", Presentation at Coordinating Research Council On-Road Vehicle Emissions Workshop, 2010
- 32. Memorandum from ERG to Coordinating Research Council: "Evaluation of Data Sources for Improving NEI Inputs", 2014 (http://www.crcao.com/reports/recentstudies2014/A-88/CRC A-88 Task 1 Memo Final 04302014.pdf)

Attachment A: TRANSVMT Analysis

Memorandum

- TO: John Koupal and Scott Fincher, ERG; Graciela Lubertino, H-GAC
- FROM: Tara Rima and David Kall, Cambridge Systematics
- DATE: September 16, 2014

RE: TRANSVMT program documentation for H-GAC

This technical memorandum documents the work of Cambridge Systematics (CS)'s as a subcontractor to ERG on the H-GAC project entitled "Motor Vehicle Emission Simulator (MOVES) Suite of Programs to Estimate Emission Inventories at Link Level." The memo describes CS's effort on upgrading the TRANSVMT module, which is a post-processing script that helps to add detail to travel demand model outputs for use in the creation of MOVES inputs. In this task, CS team performed the following actions in chronological order:

- 1. Review of Existing TRANSVMT Program.
- 2. Evaluating the Current and New Speed Models.
- 3. Implementation of the new speed model in TRANSVMT program and providing guidance to use the revised program.

1. Review of Existing TRANSVMT Program

The existing TRANSVMT program code was reviewed to understand the inputs, outputs and functionalities of the program. To test the sensitivity of program results towards the changes in the inputs, the program was run using different inputs and the outputs were investigated.

The TRANSVMT module has the following major functions:

- Calculates hourly VMT (vehicle mile travelled) for each of the 24 hours of the day using travel model volumes by four times of day and an hourly factor input file.
- Adjusts calculated VMT using three factors: HPMS adjustment factors (often suggested by EPA for conformity work to reconcile HPMS VMT with model VMT), seasonal factors (could be used to adjust annual average VMT from the model to a particular season, such as summer when conducting MOVES runs for ozone), VMT adjustment factor (appears to be available for the user to make any other VMT adjustments they deem necessary).
- Applies split factors for the links from the travel demand model that have combined volumes for both directions. TRANSVMT reports the split volumes as two links (on two lines of the output) instead of one.
- Applies one of two speed post-processing methods (Dallas model and current Houston model) to calculate speed for each link for each of the 24 hours of the day. Since centroid connectors represent a collection of small roads in a zone, capacity is not available and speed from the travel demand model is used directly.
- Creates intra-zonal VMT to represent all travel within a single TAZ since the travel demand model does not account for this travel on its network links or centroid connectors. TRANSVMT estimates speed and VMT for these intra-zonal links and adds them on to the end of the link output tables.
The resulting outputs are 24 files (one for each hour of the day) that each includes VMT and operational speeds for each link (network links, centroid connectors, and intra-zonal links). TRANSVMT also provides a summary output file that includes the VMT, the VHT (vehicle hour travelled) and the operational speed by hour, county, and roadway functional class (centroid connectors and intra-zonal links are listed as a separate functional class).

Calculation of Hourly VMT

The hourly VMT is calculated for each link of the travel model network. The process calculates the inter-zonal and the intra-zonal VMT. The input files used in the calculation are:

- Travel model's output link-database that contains assigned traffic volume, distance travelled, county, zone, functional class and area type information for each of the network links by each of the time of day (TOD) periods (AM, PM, midday and overnight).
- Trip tables (travel model output files) that contain trips between each of the origin and destination zones in the network by each of the TOD periods.
- Intra-zonal travel time from the travel model.
- Hourly fraction of VMT for each of the 24 hours of a day. The hourly fractions for each of the TOD periods sum up to 1. Since there are four TOD periods, the hourly fractions sum up to four for 24 hours.
- HPMS adjustment factor by county.
- VMT adjustment factor by county.
- Seasonal adjustment factor by county.
- Directional split factor by area type, functional class and each of the TOD periods.

The inter-zonal VMT is calculated from the assigned traffic volume and the distance travelled. Equation 1 is used to calculate the hourly VMT.

$VMT_{lchfad} = Traffic_Volume_{lt} * Distance_Travelled_{lt} * Direction_Split_{fa}$	Equation 6	
*Hourly_Fraction _h * HPMS_Adjustment_Factor _c * VMT_Adjustment_Factor _c *		
Seasonal_Adjustment_Factor _c		
Where:		
1 = Travel model network link		
c = County in which the link exists		
h = Hour of a day (varies between $1-24$)		
f = Functional class of link		
a = Area type of link		
d = Direction of link		
t = TOD periods (AM, midday, PM or overnight)		
The intra-zonal VMT is calculated from the travel model generated intra-zonal	tring and the	

The intra-zonal VMT is calculated from the travel model generated intra-zonal trips and the intra-zonal distance travelled. The program gets the average travel speed in each zone from the travel data. It calculates the intra-zonal VMT using Equation 2.

$VMT_{zchfad} = Intrazonal_Trip_{zt} * Average_Zonal_Speed_{zt} * 60*Intrazonal_Trime_{zt} * Equation$		
Direction_Split _{fa} *Hourly_Fraction _h * HPMS_Adjustment_Factor _c *		
VMT_Adjustment_Factor _c * Seasonal_Adjustment_Factor _c		
Where:		
z = Travel analysis zone		
c = County in which the zone exists		
h = Hour of a day (varies between $1-24$)		
f = Functional class of zone connector link		
a = Area type of zone		
d = Direction of zone connector link		
t = TOD periods (AM, midday, PM or overnight)		

Testing the TRANSVMT program

TRANSVMT program was tested to assess the program's response towards the changes in travel demand model data. The testing was performed by modifying the travel model files by four times of day (*_*HRAM.asc, *_*HRMD.asc, *_*HRPM.asc and *_*HROV.asc). These files have the traffic volume by network link. The field TOT_FLOW represents the traffic volume in these files. Two tests were performed to determine the program's responses. In the first round of the testing, the TRANSVMT input files that were not available and was created from the examples in the TTI documentation. These are shown in Appendix A. The second round of testing was performed after receiving the TRANSVMT input files from HGAC for the model scenarios FOC and Phase3.

First Round of Testing

In the first test of the first round, the TOT_FLOW flow column was multiplied by 0.5 in all of travel data files (*_*HRAM.asc, *_*HRMD.asc, *_*HRPM.asc and *_*HROV.asc). That means, the flow was reduced by 50% all over the network for each of the TOD periods. Then, the TRANSVMT program was run in Visual Studio using the modified files as inputs. The output files were compared with the outputs from the run using the original files. The comparison shows that the VMT decreased by almost 50% from the original VMT. The reduction in flow means less congestion. As a result, the speed increased in the peak periods (AM or PM).

In the second test of the first round, the TOT_FLOW flow column was multiplied by 2 in all of travel data files (*_*HRAM.asc, *_*HRMD.asc, *_*HRPM.asc and *_*HROV.asc). That means, the flow was doubled all over the network for each of the TOD periods. Then, the

TRANSVMT program was run in Visual Studio using the modified files as inputs. The output files were compared with the outputs from the run using the original files. The comparison shows the increase in VMT by almost 100% from the original VMT. The increase in flow means more congestion. As a result, the speed got reduced in the peak periods (AM or PM).

Please note that the changes in flow had insignificant impact on the speed during overnight and midday period since congestion was not an issue in these periods.

Second Round of Testing

After receiving the TRANSVMT input files for the travel model scenarios FOC and Phase3 from H-GAC, the second round of testing was performed. The TRANSVMT program was run from Visual Studio.

To run TRANSVMT for scenario FOC, all the input files for this scenario are placed under the "FOC" scenario folder. The JCF file for the scenario was updated based on the path locations of the input and the output files.

Similarly, to run TRANSVMT for scenario Phase 3, all the input files for this scenario are placed under the "Phase3" scenario folder. The JCF file for the scenario was updated based on the path locations of the input and the output files

Table 1 shows the VMT summaries for the inputs and the outputs of TRANSVMT program. Note that the VMT output differs from the input, but this is expected due to the use of HPMS adjustment factors and another VMT adjustment factor. The VMT output by TRANSVMT differs between scenarios by approximately the same percentage as the VMT inputs.

	Input to TRANSVMT		Output from TRANSVMT	
	FOC	Phase3	FOC	Phase3
AM	35,574,200.89	35,578,873.45	33,153,284.80	33,157,536.62
MD 45,547,209.88 45,553,143.38		42,577,724.76	42,583,041.82	

 Table 1. VMT Input/Output Summary for Two Scenarios

PM	53,757,911.13	53,763,990.78	50,185,866.03	50,191,306.38
OV	26,518,976.58	26,522,430.18	24,806,981.86	24,810,056.55
Daily	161,398,298.47	161,418,437.80	150,723,857.46	150,741,941.36
Daily VMT %				
Difference between				
FOC and Phase 3	0.0125%		0.0120%	

The test runs of the TRANSVMT programs confirmed that the program is sensitive to model changes and the changes in the program outputs are consistent with the changes in the input data.

. Evaluating the Current and New Speed Models

This section focuses on the findings related to investigating the speed post-processing procedures currently employed by TRANSVMT and by a new speed model found in a separate Fortran program. The TRANSVMT program considers two speed model options: Dallas Model and current Houston model. The current Houston speed model resembles the HGAC's new preferred speed model that is implemented in the Fortran program (provided to CS by HGAC). The differences between the new speed model and the current Houston model portion of TRANSVMT were investigated to determine if changes need to be made to TRANSVMT to reflect the method in the new speed model.

The evaluation process adopted following steps:

- Calculation of post-processed speed in different speed models.
- Comparison of post-processed speeds calculated by different speed models.
- Recommendations on speed models.

The current and new speed models use different equations and factors depending on area type and facility type. For simplicity, two facility types: freeways (facility types 1-8) and arterials (facility types 9-17) were considered in the comparison of two models. The full list of facility types can be found in Appendix B.

New Speed Model – Freeway Links

The new speed model uses Equation 3 or Equation 4 to calculate the post-processed (operational) speed for freeway links. If the link volume to capacity (v/c) ratio is less than or equal to 1 then the program uses Equation 3. Equation 4 is used when v/c ratio is greater than 1. For centroid connectors, the program uses the model speed.

POST-PROCESSED SPEED (V/C<=1) =FREE FLOW SPEED –	SRF*	Equation 8
(FREE FLOW SPEED-ESTIMATED SPEED)		-
Where:		

(suburban); 50 mph for area types 4 & 5 (fringe suburban, rural)

SRF =Speed-reduction-factor (see Appendix C)
FREE FLOW SPEED = Speed Limit +X;
Where X=3 mph for area types 1-3 (CBD, urban, suburban) X=4 mph for area type 4 (fringe suburban) X=6 mph for area type 5 (rural)
Note: Speed Limit is from a speed limit file that varies by functional class and area type.
ESTIMATED SPEED = Speed at LOS E = 35 mph for area types 1 &2 (CBD, urban); 40 mph for area type 3

POST-PROCESSED SPEED(V/C>1) =((ESTIMATED SPEED -
0.1*ESTIMATED SPEED)*(1.15/(1.0+(0.15*(VC^4.2))))) + 0.1*ESTIMATEDEquation 9SPEEDWhere:

VC = Volume to capacity ratio

ESTIMATED SPEED = Speed at LOS E = 35 mph for area types 1 &2 (CBD, urban); 40 mph for area type 3 (suburban); 50 mph for area types 4 & 5 (fringe suburban, rural)

Appendix C shows the speed-reduction-factors used in the new speed model, which varies by volume to capacity ratio. The model code interpolates the value of SRF from the table using the link v/c ratio. Note that the existing TRANSVMT program uses similar speed reduction factors, but actually employs 25 sets of them that vary by area type and functional class.

New Speed Model – Arterial Links

The new speed model uses Equation 5 through Equation 9 to calculate the post-processed (operational) speed for arterial links when the volume to capacity ratio is less than or equal to 1. The calculated speed on the arterial captures the signal operational factors. These factors depend on the area type and the road type of the arterial links.

D1=((0.38*C)*((1.0-GC)**2))/(1.0-(GC*VC))	Equation 10
D2=SQRT(((VC-1.0)**2)+((16.0*VC)/(CAPPL)))	Equation 11
D3=(173.0*(VC**2))*((VC-1.0)+D2)	Equation 12
DLNK=1.3* (D1+D3)* PF *XSGMI*XDST	Equation 13
SPD1=(XDST)/((XRTF*(XDST/XSPV0))+(DLNK/3600.0))	Equation 14
Where:	
C = Cycle length of signal along the arterial link	
GC= GC ratio of signal along the arterial link	
VC = Volume to capacity ratio	
CAPPL = Capacity per hour per lane (=900 vehicle/hr/lane used in the program))
PF = Progression factor at traffic signals	
XRTF = runtime factor	

XDST = Link length in mile XSPV0 = Free flow speed in mph SPD1 = Speed on arterial in mph

For volume to capacity ration greater than 1, the program uses Equation 10.

SPD2=((SPD1-0.1*SPD1)*(1.15/(1+0.15*VC^3))+0.1*SPD1	Equation 15
---	-------------

Where:

SPD1 = Speed in mph on arterial calculated from Equation 9

Please note that the process applies Equation 9 regardless of the values of volume to capacity ratio (VC). For VC less than or equal to 1, the value calculated from the Equation 9 is set to the final operational speed on the arterial link. For VC greater than 1, the process further applies Equation 10.

Current Speed Model – Freeway and Arterial Links

The current speed model (Houston portion of the TRANSVMT program) uses Equation 11, Equation 12, or Equation 13 to calculate the post-processed speed for both freeway and arterial links. Equation 11 is used when v/c ratio is less than or equal to 1. Equation 12 is used when v/c ratio greater than 1 and less than 1.5. Equation 13 is used when v/c ratio is greater than or equal to 1.5. For the centroid connectors, model speed is used as post-processed speed.

POST-PROCESSED SPEED (V/C<=1) =FREE FLOW SPEED – SRF*	Equation 16
(FREE FLOW SPEED-ESTIMATED SPEED)	1
POST-PROCESSED SPEED (1 <v *<="" c<1.5)="ESTIMATED" speed="" td=""><td>Equation 17</td></v>	Equation 17
(1.15/(1.0+(0.15*(VC^4)))	-
POST-PROCESSED SPEED(V/C>=1.5) = ESTIMATED SPEED *	Equation 18
(1.15/(1.0+(0.15*(1.5^4)))	
Where	
SRF =Speed-reduction-factor (see Appendix D)	
V/C = Volume to capacity ratio	

In the current speed model, SRF for a given V/C ratio varies by functional class and by area type (see Appendix D). The input SRF values are interpolated to get the SRF for link v/c ratio.

Equation 14 and Equation 15 are used to calculate the free-flow speed and the estimated speed respectively, which are used as inputs to Equation 11 through Equation 13 above.

FREE FLOW SPEED = Model Speed * Speed Factor for free-flow	Equation 19
ESTIMATED SPEED = Model Speed * Speed Factor at LOS E	Equation 20

The speed factors used in Equation 14 and Equation 15 vary by the functional class and area type. They can be found in Appendix E.

Example Post-Processed Speed Results for Four Link Types

Figure 1 shows example results for post-processed speed for an example urban freeway link and an example rural freeway link. For each of these two links both the current and new speed model equations and factors described above were employed for comparison of the difference in results. Figure 2 presents the same results, but sets the free flow speed and LOS E speed for the current speed model to that used in the new speed model. This illustrates the remaining differences if the method for calculating free flow speed and LOS E speed in the current speed model were altered to equal the method from the new speed model. As can be seen in Figure 2, the two models predict almost exactly the same speed when the free flow speed and LOS E speed and LOS E speed in the only significant difference is that current model speeds stay the same for all V/C above 1.5.

Figure 3 shows example results for post-processed speed for an example urban arterial link and an example rural arterial link. For each of these two links, both the current and new speed model equations and factors described above were employed for comparison of the difference in results. Figure 4 presents the same results, but sets the free flow speed for the current speed model to that used in the new speed model. It also sets the LOS E speed to 30% of the free flow speed (default for freeways in new speed model with no area type, although LOS E speed is not used in new speed model for arterials). This illustrates the remaining differences if the method for calculating free flow speed in the current speed model were altered to equal the method from the new speed model and the LOS E speed calculation method were simplified. As can be seen in Figure 4, these modifications help bring the rural arterial speeds predicted by the current speed model closer to those predicted by the new speed model, but actually make the urban arterial speed predictions further apart. Overall, the arterial speed results between the current and new speed models are very different due to the completely different calculation approaches.

Figure 1. Example Post-Processed Speeds on a Freeway Link

Figure 2. Example Post Processed Speeds on a Freeway Link with Modifications

Figure 3. Example Post-Processed Speeds on an Arterial Link

3. Revised TRANSVMT Program

The revised TRANSVMT program includes three speed models: Dallas, Houston (current speed model) and new speed model (based on Fortran code). The Dallas and current Houston speed model were implemented by (Texas Transportation Institute) TTI and can be run using the guidance provided by TTI's MOVES Utility user guide. Cambridge Systematics incorporated the new speed model (originally written in Fortran Language) into the TRANSVMT program. The revised TRANSVMT program is capable of running any of the three speed models using the JCF file and the input files appropriate for the speed model. Appendix F provides the sample JCF file for the new speed model.

Instructions to run TRANSVMT program with Fortran Speed Model

- 1. Download the revised application TTIDEV2014.exe to the local machine.
- 2. Prepare the JCF file. The sample JCF file is shown in Appendix F. In the JCF file, the code "/SPDF" tells the program to use new speed model.
- 3. Prepare the input files. The new speed model requires almost all of the input files used by the current speed model. The new speed model has its own speed reduction factor file. In addition to the files that are already used by the TRANSVMT program, the new speed model requires the following files:
 - Speed Limit File
 - Free Flow Speed File
 - LOS E Speed File
 - g/c Ratio File
 - Run Time Factor File
 - Signal Type File
 - Arrival Type File
 - Progression Factor File
 - Cycle Length File
 - Speed Reduction Factor File
- 4. Before running the TRANSVMT program, please make sure that there is no blank space in the file names and in the folder names. For example, if the folder name is "Speed Model" then rename it to "SpeedModel". Otherwise, the program will give an error since the program reads the keywords from each line of the JCF by using the delimiter of blank space or tab.

- 5. Before running the program, please make sure the output folder is empty. Otherwise, the program will give error.
- 6. Click on the exe file. The dialog box shown in Figure 6 will pop up. Type the JCF file name along with path in the textbox of the dialog box.

Figure 6. Input Dialog Box

Input Files Required for New Speed Model

The following describes the input files used by the new speed model.

Speed Limit File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RTYPE: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

SPDA1: Speed limit in area type code equals to 1.

SPDA2: Speed limit in area type code equals to 2.

SPDA3: Speed limit in area type code equals to 3.

SPDA4: Speed limit in area type code equals to 4.

SPDA5: Speed limit in area type code equals to 5.

Free Flow Speed File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The free flow speed is calculated by adjusting the speed limit. The program uses different adjustment methods and the adjustment values based on the area type and the road type. The program uses the Equation 16 or Equation 17 to calculate the free flow speed.

If Adjustment method = 1 then Free flow speed = Speed limit + Adjustment value	Equation 21
If Adjustment method = 2 then Free flow speed = Speed limit * Adjustment value	Equation 22

The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

ADJTYP1: This column represents the adjustment method for area type code equals to 1.

ADJVAL1: This column represents the adjustment value for area type code equals to 1.

ADJTYP2: This column represents the adjustment method for area type code equals to 2.

ADJVAL2: This column represents the adjustment value for area type code equals to 2.

ADJTYP3: This column represents the adjustment method for area type code equals to 3.

ADJVAL3: This column represents the adjustment value for area type code equals to 3.

ADJTYP4: This column represents the adjustment method for area type code equals to 4.

ADJVAL4: This column represents the adjustment value for area type code equals to 4.

ADJTYP5: This column represents the adjustment method for area type code equals to 5.

ADJVAL5: This column represents the adjustment value for area type code equals to 5.

LOS E Speed File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The LOS E speed is calculated by adjusting the free flow speed. The program uses different adjustment methods and the adjustment values based on the area type and the road type. The program uses the Equation 18, Equation 19, or Equation 20 to calculate the LOS E speed.

If Adjustment method = 1 then LOS E speed = Free flow speed + Adjustment value	Equation 23
If Adjustment method = 2 then LOS E speed = Free flow speed * Adjustment value	Equation 24
If Adjustment method = 3 then LOS E speed = Adjustment value	Equation 25

The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

ADJTYP1: This column represents the adjustment method for area type code equals to 1.

ADJVAL1: This column represents the adjustment value for area type code equals to 1.

ADJTYP2: This column represents the adjustment method for area type code equals to 2.

ADJVAL2: This column represents the adjustment value for area type code equals to 2.

ADJTYP3: This column represents the adjustment method for area type code equals to 3.

ADJVAL3: This column represents the adjustment value for area type code equals to 3.

ADJTYP4: This column represents the adjustment method for area type code equals to 4.

ADJVAL4: This column represents the adjustment value for area type code equals to 4.

ADJTYP5: This column represents the adjustment method for area type code equals to 5.

ADJVAL5: This column represents the adjustment value for area type code equals to 5.

g/c Ratio File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

GCR1: This column represents the traffic signal's g/c ratio for area type code equals to 1.

GCR2: This column represents the traffic signal's g/c ratio for area type code equals to 2.

GCR3: This column represents the traffic signal's g/c ratio for area type code equals to 3.

GCR4: This column represents the traffic signal's g/c ratio for area type code equals to 4.

GCR5: This column represents the traffic signal's g/c ratio for area type code equals to 5.

Run Time Factor File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The TRANSVMT program determines the run time factor of the arterial links based on the distance between the traffic signals and the free flow speed on the link. The program logic determines the distance between signals based on the link length of the arterial road types. The value of the run time factor is interpolated from the input data file by the program. The file should have column headers and the name of the headers should be named as the following:

LENGTH: This column represents the distance between traffic signals.

25: This column represents the run time factors at 25 mph free flow speed.

30: This column represents the run time factors at 30 mph free flow speed.

35: This column represents the run time factors at 35 mph free flow speed.

40: This column represents the run time factors at 40 mph free flow speed.

45: This column represents the run time factors at 45 mph free flow speed.

50: This column represents the run time factors at 50 mph free flow speed.

55: This column represents the run time factors at 55 mph free flow speed.

60: This column represents the run time factors at 60 mph free flow speed.

Signal Type File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

SGLA1: This column represents the traffic signal type for area type code equals to 1.

SGLA 2: This column represents the traffic signal type for area type code equals to 2.

SGLA 3: This column represents the traffic signal type for area type code equals to 3.

SGLA 4: This column represents the traffic signal type for area type code equals to 4.

SGLA 5: This column represents the traffic signal type for area type code equals to 5.

Arrival Type File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

ARVTYP1: This column represents the arrival type at signal for area type code equals to 1.

ARVTYP2: This column represents the arrival type at signal for area type code equals to 2.

ARVTYP3: This column represents the arrival type at signal for area type code equals to 3.

ARVTYP4: This column represents the arrival type at signal for area type code equals to 4.

ARVTYP5: This column represents the arrival type at signal for area type code equals to 5.

Progression Factor File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The TRANSVMT program determines the progression factor based on the volume to capacity ratio, the signal type and the arrival type. The program determines the factor for the link volume to capacity (VC) ratio by rounding the VC ratio to the single decimal digit. If the V/C ratio less than 0.1 then the progression factor for VC ratio equals to 0.1 is used. If the V/C ratio greater than 1 then the progression factor for VC ratio equals to 1 is used. The file should have column headers and the name of the headers should be named as the following:

VC: The column represents the volume to capacity ratio.

SG1_A1: This column represents the progression factor for signal type=1 and arrival type = 1.

SG1_A2: This column represents the progression factor for signal type=1 and arrival type = 2.

SG1_A3: This column represents the progression factor for signal type=1 and arrival type = 3.

SG1_A4: This column represents the progression factor for signal type=1 and arrival type = 4.

SG1_A5: This column represents the progression factor for signal type=1 and arrival type = 5. SG2_A1: This column represents the progression factor for signal type=2 and arrival type = 1. SG2_A2: This column represents the progression factor for signal type=2 and arrival type = 2. SG2_A3: This column represents the progression factor for signal type=2 and arrival type = 3. SG2_A4: This column represents the progression factor for signal type=2 and arrival type = 4. SG2_A5: This column represents the progression factor for signal type=2 and arrival type = 5. SG3_A1: This column represents the progression factor for signal type=3 and arrival type = 1. SG3_A2: This column represents the progression factor for signal type=3 and arrival type = 2. SG3_A3: This column represents the progression factor for signal type=3 and arrival type = 4. SG3_A4: This column represents the progression factor for signal type=3 and arrival type = 4. SG3_A4: This column represents the progression factor for signal type=3 and arrival type = 5. SG3_A4: This column represents the progression factor for signal type=3 and arrival type = 5.

Cycle Length File

This file should be in *.txt format. The snapshot of the sample file is provided at Appendix G. The file should have column headers and the name of the headers should be named as the following:

RDTYP: This column represents road type. The road type codes follow the same coding configuration as the RTYPE field in the network link data files.

LANE: This column represents the number of lanes.

CYCLE1: This column represents the traffic signal's cycle length for area type code equals to 1.

CYCLE2: This column represents the traffic signal's cycle length for area type code equals to 2.

CYCLE3: This column represents the traffic signal's cycle length for area type code equals to 3.

CYCLE4: This column represents the traffic signal's cycle length for area type code equals to 4.

CYCLE5: This column represents the traffic signal's cycle length for area type code equals to 5.

Speed Reduction Factor File

This file should be in *.txt format. The TRANSVMT program determines the speed reduction factors based on the volume to capacity ratio. The value of the factor is interpolated from the

input data. The snapshot of the sample file is provided at Appendix B. The file should have column headers and the name of the headers should be named as the following:

VC: This column represents the volume to capacity ratio.

SRF: This column represents the speed reduction factor.

Appendix A: Existing TRANSVMT Input Files

The following JCF file was created to instruct TRANSVMT on the input file locations. /JOB Cal VMT

/STEP Step1 TRANSVMT

 $/LST C: \D-Drive \HGAC_AirQuality \TRANSVMT \output \HGA_2018_TRANSVMT. \\Ist$

/HDR C:\D-Drive\HGAC_AirQuality\TRANSVMT\input\HGA_2018TRANSVMT.txt

 $/ HRF \quad C: \ D-Drive \ HGAC_AirQuality \ TRANSVMT \ input \ PERFACT3.txt$

 $\label{eq:ccfc} \ensuremath{\mathsf{CCFC}}\ensuremath{\mathsf{C:}D-Drive}\ensuremath{\mathsf{HGAC}_AirQuality}\ensuremath{\mathsf{TRANSVMT}\input\\mathsf{HGA}_ccCode.txt}$

/DTYP C:\D-Drive\HGAC_AirQuality\TRANSVMT\input\HGA_daytype.txt

/VADJ C:\D-

 $Drive \ HGAC_AirQuality \ TRANSVMT \ input \ COUNTY_VMTadjustment_newHPMS2.txt$

 $\label{eq:radius} \end{tabular} \label{eq:radius} \end{tabular} \end{tabular} \label{radius} \end{tabular} \end{$

 $\label{eq:c:D-Drive} \label{eq:constraint} $$ TMPD $$ C:\D-Drive\HGAC_AirQuality\TRANSVMT\input\TimePerDesignation.txt $$$

/LNKA C:\D-Drive\HGAC_AirQuality\TRANSVMT\networks\2018_3hram.asc

/LNKM C:\D-Drive\HGAC_AirQuality\TRANSVMT\networks\2018_6hrmd.asc

/LNKP C:\D-Drive\HGAC_AirQuality\TRANSVMT\networks\2018_4hrpm.asc

/LNKO C:\D-Drive\HGAC_AirQuality\TRANSVMT\networks\2018_11hrov.asc

 $/ MTXM \quad C: \ \ C: \ \ D-Drive \ \ HGAC_AirQuality \ \ \ TRANSVMT \ intratrips_output \ intratrips_18_md.txt$

 $/MTXP C:\D-Drive\HGAC_AirQuality\TRANSVMT\intratrips_output\intratrips_18_pm.txt$

 $\label{eq:spdh} SPDH C:\D-Drive\HGAC_AirQuality\TRANSVMT\input\HGAC2007_CAPFACT_SPDFACT.txt$

 $/SRFD \quad C: \ D-Drive \ HGAC_AirQuality \ TRANSVMT \ input \ srfdata.txt$

 $\label{eq:cross_cond} \end{tabular} \label{eq:cross_cond} CRD \quad C:\D-Drive\HGAC_AirQuality\TRANSVMT\input\HGA_coordinates.txt$

Appendix B: Facility Type Codes

Code	Description	Code	Description
0	Centroid Connector	20	HOV/transitways (barrier-separated)
1	Radial freeways without frontage roads	21	HOV ramps – bus only
2	Radial freeways with frontage roads	22	Transfers from park-and-ride (PNR) to transit stop
3	Circumferential freeways without frontage roads	23	Transfers from local bus to commuter/express bus
4	Circumferential freeways with frontage roads	24	Transfers from walk access node to transit stop
5	Radial tollways without frontage roads	25	Drive-access connectors
6	Radial tollways with frontage roads	26	Bus only: from street to transit center (TC)
7	Circumferential tollways without frontage roads	27	HOV-only slip ramps
8	Circumferential tollways with frontage roads	28	Transfer from pseudo-PNR to transit stop
9	Principal arterials with some grade separations	29	HOV terminal ramps
10	Principal arterials – divided	30	Rail
11	Principal arterials – undivided	40	High-Occupancy Toll (HOT) Lane
12	Other arterials – divided	41	HOT ramp to PNR/TC
13	Other arterials – undivided	47	HOT slip ramp
14	One-way pairs	49	HOT ramp
15	One-way facilities	50	Freeway frontage road
16	Major Collectors	51	Tollway frontage road
17	Minor Collectors	52	Freeway/tollway ramps to/from frontage roads
18	Ferries	53	Freeway/tollway direct connector (DC) ramps
19	Saturated arterials	60	Diamond lane (non-barrier separated HOV lane)
For yellow highlighted facility codes, Model Speed = Post-Processed Speed			

Appendix C: Speed Reduction Factors from New Speed Model

Volume/Capacity (V/C) Ratio	Speed Reduction Factor (SRF)
0	0.00000
0.05	0.00005
0.10	0.00010
0.15	0.00025
0.20	0.00040
0.25	0.00095
0.30	0.00150
0.35	0.00250
0.40	0.00350
0.45	0.00480
0.50	0.00610
0.55	0.00735
0.60	0.00860
0.65	0.00930
0.70	0.01000
0.75	0.06750
0.80	0.12500
0.85	0.27300
0.90	0.42000
0.95	0.60000
1.00	1.00000

SRFATYPE	1	2	3	4	5	1	2	3	4	5
SRFFUNCL	1	1	1	1	1	2	2	2	2	2
VC000	0	0	0	0	0	0	0	0	0	0
VC005	0.000071	0.00007	0.000059	0.000152	0.00005	0.006115	0.005572	0.005318	0.005797	0.005024
VC010	0.000143	0.000141	0.000118	0.00031	0.000101	0.012657	0.011546	0.011023	0.012013	0.010428
VC015	0.000317	0.000314	0.000277	0.000575	0.000251	0.019681	0.017955	0.017138	0.018665	0.01622
VC020	0.000493	0.000489	0.000438	0.000848	0.000401	0.027301	0.024897	0.023755	0.025844	0.022486
VC025	0.00107	0.001066	0.000999	0.001528	0.00095	0.035656	0.032494	0.030987	0.033665	0.029339
VC030	0.00165	0.001647	0.001561	0.00222	0.001501	0.044925	0.040897	0.038973	0.042266	0.036903
VC035	0.002683	0.002681	0.002574	0.003373	0.002501	0.055333	0.050301	0.047893	0.051826	0.045354
VC040	0.003721	0.003721	0.003588	0.004548	0.003501	0.067177	0.060958	0.057977	0.062574	0.054902
VC045	0.005064	0.005069	0.004904	0.006046	0.004801	0.080856	0.073209	0.069537	0.074814	0.065836
VC050	0.006416	0.006427	0.006223	0.007579	0.006101	0.096929	0.087524	0.083001	0.088967	0.078542
VC055	0.007729	0.007751	0.007496	0.009112	0.007351	0.116198	0.10458	0.098982	0.105624	0.093568
VC060	0.009198	0.009231	0.008777	0.010808	0.0086	0.178632	0.150135	0.134765	0.143449	0.117174
VC065	0.010014	0.010075	0.009532	0.012323	0.009301	0.212849	0.191713	0.180643	0.189867	0.166438
VC070	0.011025	0.011134	0.01033	0.013813	0.01	0.299051	0.257425	0.235109	0.247396	0.210565
VC075	0.068545	0.068664	0.067864	0.071657	0.067501	0.364268	0.327594	0.309366	0.322575	0.291684
VC080	0.126384	0.126589	0.125365	0.129613	0.125	0.512044	0.44555	0.408617	0.420419	0.364731

Appendix D: Speed Reduction Factors from Current Speed Model

VC085	0.274393	0.274656	0.273275	0.277432	0.272998	0.661535	0.596413	0.558168	0.563032	0.502952
VC090	0.421942	0.422511	0.420317	0.425296	0.419998	0.943044	0.847576	0.781113	0.777343	0.678943
VC095	0.601467	0.601927	0.600379	0.606288	0.599998	0.999574	0.994104	0.979402	0.968648	0.927899
VC100	1	1	1	1	1	1	1	1	1	1

SRFATYPE	1	2	3	4	5	1	2	3	4	5
SRFFUNCL	3	3	3	3	3	4	4	4	4	4
VC000	0	0	0	0	0	0	0	0	0	0
VC005	0.005904	0.005165	0.005825	0.005719	0.004897	0.007019	0.008344	0.008245	0.008569	0.007211
VC010	0.012232	0.010713	0.012089	0.011889	0.010213	0.014519	0.017349	0.017148	0.017841	0.015096
VC015	0.019026	0.016652	0.018799	0.018496	0.01591	0.022519	0.026856	0.026545	0.027575	0.023369
VC020	0.026397	0.02307	0.02606	0.025642	0.022083	0.031138	0.036976	0.036546	0.037877	0.032129
VC025	0.03448	0.030074	0.034001	0.033447	0.028842	0.04052	0.047843	0.047285	0.048874	0.041494
VC030	0.043445	0.037801	0.04278	0.042068	0.036326	0.050845	0.059625	0.058925	0.060728	0.051616
VC035	0.053507	0.046422	0.052601	0.051696	0.04471	0.062344	0.072527	0.071673	0.073637	0.062683
VC040	0.06495	0.056159	0.063727	0.06258	0.054217	0.075319	0.086815	0.085794	0.087858	0.07494
VC045	0.078149	0.06731	0.076509	0.075052	0.065142	0.090167	0.102834	0.101634	0.103727	0.08871
VC050	0.093626	0.080277	0.091426	0.089559	0.077877	0.107441	0.121044	0.119657	0.121696	0.104427
VC055	0.112125	0.095637	0.109158	0.106729	0.092971	0.127931	0.14208	0.140503	0.142391	0.122696
VC060	0.160931	0.121772	0.137353	0.133021	0.111686	0.17756	0.166845	0.165088	0.166705	0.144383
VC065	0.204527	0.170557	0.180732	0.170111	0.139717	0.213854	0.201498	0.195405	0.195963	0.170771
VC070	0.27396	0.217161	0.229772	0.221289	0.186973	0.287648	0.239409	0.232326	0.233805	0.204167
VC075	0.347177	0.29678	0.303847	0.292276	0.25228	0.356337	0.294192	0.280575	0.282181	0.247513

Appendix D: Speed Reduction Factors from Current Speed Model (continued)

VC080	0.467852	0.375617	0.388437	0.370352	0.310705	0.477705	0.359918	0.344583	0.344944	0.305887
VC085	0.618592	0.517077	0.520689	0.486983	0.401186	0.61675	0.461761	0.435804	0.433434	0.389197
VC090	0.853008	0.704824	0.718901	0.672792	0.55156	0.85407	0.600135	0.570212	0.56603	0.51483
VC095	0.994426	0.945199	0.940031	0.879321	0.753091	0.973073	0.812025	0.772738	0.762127	0.709009
VC100	1	1	1	1	1	1	1	1	1	1

Appendix E: Speed Factors for Free Flow Speed and LOS E Speed in Current Speed Model

ATYPE	FUNCL	SRFATYPE	SRFFUNCL	SPD0FACT	SPD1FACT
1	1	1	1	1.198177	0.802524
2	1	2	1	1.158839	0.768691
3	1	3	1	1.063315	0.757099
4	1	4	1	1.168733	0.901573
5	1	5	1	1.192189	0.809269
1	2	1	1	1.198177	0.802524
2	2	2	1	1.158839	0.768691
3	2	3	1	1.063315	0.757099
4	2	4	1	1.168733	0.901573
5	2	5	1	1.192189	0.809269
1	3	1	1	1.054545	0.636364
2	3	2	1	1.054545	0.636364
3	3	3	1	0.997586	0.689655
4	3	4	1	0.950484	0.806452
5	3	5	1	1.083538	0.769231
1	4	1	4	1.238447	0.750462
2	4	2	4	0.895662	0.636429
3	4	3	4	0.89064	0.662149
4	4	4	4	1.199254	0.913293
5	4	5	4	1.192486	1.006409
1	5	1	2	1.154026	0.642357
2	5	2	2	0.827978	0.560208
3	5	3	2	0.890652	0.668272
4	5	4	2	1.102505	0.822853
5	5	5	2	1.176415	0.955472

ATYPE	FUNCL	SRFATYPE	SRFFUNCL	SPD0FACT	SPD1FACT
1	6	1	3	1.145946	0.681081
2	6	2	3	0.811634	0.562673
3	6	3	3	0.81318	0.616082
4	6	4	3	0.81318	0.865193
5	6	5	3	1.290531	1.118835
1	7	1	4	1.238447	0.750462
2	7	2	4	0.895662	0.636429
3	7	3	4	0.89064	0.662149
4	7	4	4	1.199254	0.913293
5	7	5	4	1.192486	1.006409
1	8	1	5	1	1
2	8	2	5	1	1
3	8	3	5	1	1
4	8	4	5	1	1
5	8	5	5	1	1
1	9	1	4	1	1
2	9	2	4	1	1
3	9	3	4	1	1
4	9	4	4	1	1
5	9	5	4	1	1
1	10	1	1	1.198177	0.802524
2	10	2	1	1.158839	0.768691
3	10	3	1	1.063315	0.757099
4	10	4	1	1.168733	0.901573
5	10	5	1	1.192189	0.809269
1	11	1	1	1.198177	0.802524
2	11	2	1	1.158839	0.768691

ATYPE	FUNCL	SRFATYPE	SRFFUNCL	SPD0FACT	SPD1FACT
3	11	3	1	1.063315	0.757099
4	11	4	1	1.168733	0.901573
5	11	5	1	1.192189	0.809269
1	12	1	2	1.154026	0.642357
2	12	2	2	0.827978	0.560208
3	12	3	2	0.890652	0.668272
4	12	4	2	1.102505	0.822853
5	12	5	2	1.176415	0.955472
1	13	1	3	1.145946	0.681081
2	13	2	3	0.811634	0.562673
3	13	3	3	0.81318	0.616082
4	13	4	3	0.81318	0.865193
5	13	5	3	1.290531	1.118835
1	14	1	3	1.145946	0.681081
2	14	2	3	0.811634	0.562673
3	14	3	3	0.81318	0.616082
4	14	4	3	0.81318	0.865193
5	14	5	3	1.290531	1.118835
1	15	1	4	1.238447	0.750462
2	15	2	4	0.895662	0.636429
3	15	3	4	0.89064	0.662149
4	15	4	4	1.199254	0.913293
5	15	5	4	1.192486	1.006409
1	16	1	5	1	1
2	16	2	5	1	1
3	16	3	5	1	1
4	16	4	5	1	1

ATYPE	FUNCL	SRFATYPE	SRFFUNCL	SPD0FACT	SPD1FACT
5	16	5	5	1	1

Appendix F: Sample JCF file

/JOB TRANSVMT

/STEP Step1 TRANSVMT

- $/HDR \quad C:\TRANSVMT\speedmodel\input\HGA_2017 transvmt.txt$
- /HRF C:\TRANSVMT\speedmodel\input\PERFACT3.txt
- /CCFC C:\TRANSVMT\speedmodel\input\HGA_ccCode.txt
- $/ SPLT C: TRANSVMT \\ speedmodel \\ input \\ HGAC_DIRSPLITS.txt$
- $\label{eq:constraint} $$ DTYP C:\TRANSVMT\speedmodel\input\HGA_daytype.txt $$$
- $/VADJ \quad C:\TRANSVMT\speedmodel\input\COUNTY_VMTadjustment_newHPMS2.txt$
- /RADI C:\TRANSVMT\speedmodel\networks\radii2017.asc
- $/TMPD \quad C: \ TRANSVMT \ speedmodel \ input \ time PerDesignation.txt$
- $/LNKM \quad C:\TRANSVMT\speedmodel\networks\2018AQ_MD6HR_NETWORK.asc$
- $/LNKP C: TRANSVMT speedmodel networks \ 2018AQ_PM4HR_NETWORK. asc$
- $/LNKO C: TRANSVMT speedmodel networks \ 2018 AQ_OV11 HR_NETWORK. asc$
- $/ MTXM \quad C: \ TRANSVMT \ speedmodel \ networks \ intratrips \ output \ intratrips \ 17 \ md.txt$
- $/MTXO C:\TRANSVMT\speedmodel\networks\intratrips_output\intratrips_17_ov.txt$
- $/ SPDF C: TRANSVMT \\ speedmodel \\ input \\ HGAC2007 \\ CAPFACT \\ SPDFACT.txt$

- /CRD C:\TRANSVMT\speedmodel\input\HGA_coordinates.txt
- /SPDLMT C:\TRANSVMT\speedmodel\input\speedlimit.txt
- /FFSPD C:\TRANSVMT\speedmodel\input\Freeflowspeed.txt
- /LSESPD C:\TRANSVMT\speedmodel\input\LOSESpeed.txt
- /SGLTYP C:\TRANSVMT\speedmodel\input\sglty.txt
- /PFFAC C:\TRANSVMT\speedmodel\input\pffac.txt
- / RUNF C: TRANSVMT speedmodel input run fac.txt
- /CYCLE C:\TRANSVMT\speedmodel\input\cycle.txt
- /ARVTY C:\TRANSVMT\speedmodel\input\arvty.txt
- /GCRAT C:\TRANSVMT\speedmodel\input\gcratio.txt
- /SRFF C:\TRANSVMT\speedmodel\input\SRFF.txt

Appendix G: Sample Inputs for New Speed Model

RDTYP	LANE	:	SPDA1	SPDA2	SPDA3	SPDA4	SPDA5
	1	1	55	60	60	65	65
	1	2	55	60	60	65	65
	1	3	55	60	60	65	65
	1	4	55	60	60	65	65
	1	5	55	60	60	65	65
	1	6	55	60	60	65	65
	1	7	55	60	60	65	65
	1	8	55	60	60	65	65
	1	9	55	60	60	65	65
	1	10	55	60	60	65	65
	2	1	55	60	60	65	65
	2	2	55	60	60	65	65
	2	3	55	60	60	65	65
	2	4	55	60	60	65	65
	2	5	55	60	60	65	65
	2	6	55	60	60	65	65
	2	7	55	60	60	65	65

Figure G.1: Snapshot from speed limit file

Figure G.2: Snapshot from free flow speed file

_												
I	RDTYP		ADJTYP1	ADJVAL1	ADJTYP2	ADJVAL2	ADJTYP3	ADJVAL3	ADJTYP4	ADJVAL4	ADJTYP5	ADJVAL5
		1	1	. 3	1	. 3	1	3	1	4	1	6
		2	1	. 3	1	. 3	1	3	1	4	1	6
		3	1	. 3	1	. 3	1	3	1	. 4	1	6
		4	1	. 3	1	. 3	1	3	1	4	1	6
		5	1	. 3	1	. 3	1	3	1	4	1	6
		6	1	. 3	1	. 3	1	3	1	4	1	6
		7	1	. 3	1	. 3	1	3	1	4	1	6
		8	1	. 3	1	. 3	1	3	1	4	1	6
		9	2	0.85	2	0.85	2	0.85	2	0.9	1	4
	1	10	2	0.85	2	0.85	2	0.85	2	0.9	1	4
	1	11	2	0.85	2	0.85	2	0.85	2	0.9	1	4
	1	12	2	0.85	2	0.85	2	0.85	2	0.9	1	4
	1	13	2	0.85	2	0.85	2	0.85	2	0.9	1	4
	1	14	2	0.85	2	0.85	2	0.85	2	0.9	1	4
L			-						-			

RDT	ΥP	ADJTYP1	ADJVAL1	ADJTYP2	ADJVAL2	ADJTYP3	ADJVAL3	ADJTYP4	ADJVAL4	ADJTYP5	ADJVAL5
	1	. 3	35	3	35	3	40	3	50	3	50
	2	3	35	3	35	3	40	3	50	3	50
	3	3	35	3	35	3	40	3	50	3	50
	4	3	35	3	35	3	40	3	50	3	50
	5	3	35	3	35	3	40	3	50	3	50
	6	3	35	3	35	3	40	3	50	3	50
	7	3	35	3	35	3	40	3	50	3	50
	8	3	35	3	35	3	40	3	50	3	50
	9	2	0.3	2	0.3	2	0.3	2	0.3	2	0.3
	10	2	0.3	2	0.3	2	0.3	2	0.3	2	0.3
	11	. 2	0.3	2	0.3	2	0.3	2	0.3	2	0.3
	12	2	0.3	2	0.3	2	0.3	2	0.3	2	0.3

Figure G.3: Snapshot from LOS E speed file

Figure G.4: Snapshot from g/c ratio file

RDTYP	LANE	GCR1	GCR2	GCR3	GCR4	GCR5	
	1	1	1	1	1	1	1
	1	2	1	1	1	1	1
	1	3	1	1	1	1	1
	1	4	1	1	1	1	1
	1	5	1	1	1	1	1
	1	6	1	1	1	1	1
	1	7	1	1	1	1	1
	1	8	1	1	1	1	1
	1	9	1	1	1	1	1
	1	10	1	1	1	1	1

Figure G.5: Snapshot from runtime factor file

LENICEU	25	20	25	40	45	50		60
LENGTH	25	30	35	40	45	50	55	60
0.2	1.146	1.142	1.241	1.278	1.363	1.447	1.588	1.692
0.25	1.063	1.079	1.17	1.222	1.3	1.378	1.482	1.586
0.3	1.032	1.048	1.069	1.133	1.237	1.342	1.446	1.55
0.35	1.03	1.045	1.045	1.1	1.206	1.313	1.419	1.525
0.4	1.027	1.041	1.021	1.067	1.175	1.283	1.392	1.5
0.45	1.025	1.038	1.011	1.05	1.138	1.225	1.312	1.4
0.5	1.023	1.034	1.001	1.033	1.1	1.167	1.233	1.3
0.55	1.021	1.031	1.001	1.03	1.09	1.15	1.21	1.27
0.6	1.018	1.027	1.001	1.027	1.08	1.133	1.187	1.24
0.65	1.016	1.024	1.001	1.023	1.07	1.117	1.163	1.21
0.7	1.014	1.021	1.001	1.02	1.06	1.1	1.14	1.18
0.75	1.011	1.017	1.001	1.017	1.05	1.083	1.117	1.15
0.8	1.009	1.014	1.001	1.013	1.04	1.067	1.093	1.12
0.85	1.007	1.01	1	1.01	1.03	1.05	1.07	1.09
0.9	1.005	1.007	1	1.007	1.02	1.033	1.047	1.06
0.95	1.002	1.003	1	1.003	1.01	1.017	1.023	1.03
1	1	1	1	1	1	1	1	1

Figure G.6: Snapshot from signal type file

RDTYP	LANE	SGLA1	SGLA2	SGLA3	SGLA4	SGLA5	
	9	1	2	2	2	3	1
	9	2	2	2	2	3	1
	9	3	2	2	2	3	1
	9	4	2	2	2	3	1
	9	5	2	2	2	3	1
	9	6	2	2	2	3	1
	9	7	2	2	2	3	1
	9	8	2	2	2	3	1

Figure G.7: Snapshot from arrival type file

RTYPE	LANE	ARVTYP	1 ARVTYP	2 ARVTYP	3 ARVTYP	4 ARVTYP	P5
	9	1	5	5	5	5	5
	9	2	5	5	5	5	5
	9	3	5	5	5	5	5
	9	4	5	5	5	5	5
	9	5	5	5	5	5	5
	9	6	5	5	5	5	5
	9	7	5	5	5	5	5
	9	8	5	5	5	5	5
:	10	1	5	5	5	5	5
	10	2	-				-

Figure G.8: Snapshot from progression factor file

VC		SG1_A1	SG1_A2	SG1_A3	SG1_A4	SG1_A5	SG2_A1	SG2_A2	SG2_A3	SG2_A4	SG2_A5	SG3_A1	SG3_A2	SG3_A3	SG3_A4	SG3_A5
	0.1	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.2	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.3	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.4	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.5	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.6	1.85	1.35	:	L 0.72	0.53	1.54	1.08	0.85	0.62	0.4	1.85	1.35	1	L 0.72	0.42
	0.7	1.675	1.285	:	L 0.77	0.6	1.395	1.03	0.85	0.665	0.45	1.675	1.285	1	L 0.77	0.475
	0.8	1.5	1.22	:	L 0.82	0.67	1.25	0.98	0.85	0.71	0.5	1.5	1.22	1	L 0.82	0.53
	0.9	1.45	1.2	:	L 0.86	0.745	1.205	0.96	0.85	0.745	0.555	1.45	1.2	1	L 0.86	0.59
	1	1.4	1.18	:	L 0.9	0.82	1.16	0.94	0.85	0.78	0.61	1.4	1.18	1	L 0.9	0.65

Figure G.9: Snapshot from cycle length file

RTYPE	LANE		CYCLE1	CYCLE2	CYCLE3	CYCLE4	CYCLE5
	9	1	75	75	70	70	60
	9	2	75	75	70	70	60
	9	3	75	75	70	70	60
	9	4	75	75	70	70	60
	9	5	75	75	70	70	60
	9	6	75	75	70	70	60
	9	7	75	75	70	70	60
	9	8	75	75	70	70	60
:	10	1	75	75	70	70	60

VC	SRF						
	0	0					
	0.05	0.00005					
	0.1	0.0001					
	0.15	0.00025					
	0.2	0.0004					
	0.25	0.00095					
	0.3	0.0015					
	0.35	0.0025					
	0.4	0.0035					
	0.45	0.0048					
	0.5	0.0061					
	0.55	0.00735					
	0.6	0.0086					
	0.65	0.0093					
	0.7	0.01					
	0.75	0.0675					
	0.8	0.125					
	0.85	0.273					
	0.9	0.42					
	0.95	0.6					
	1	1					

Figure G.10: Snapshot from speed reduction factor file