Houston Green UFORE

(Urban Forest Effects)

Purpose: To build tools and systems that help state and local groups monitor and guide the development of green infrastructure to improve the quality of life in Houston.

Houston Area Urban Ecosystem Analysis

Houston Area Urban Ecosystem Analysis

Goals:

- Quantify benefits of Houston-area urban forests
- Provide information to support public policy decisions and the work of local nonprofits and agencies

Houston Area Urban Ecosystem Analysis

Findings: Houston Metropolitan Area has had significant loss of tree cover.

•Current canopy level is 27%, down 16 percent since 1972.

Air Pollution: 83 million pounds removed annually at a value of \$208 million.

Stormwater Management: \$1.33 billion in avoided retention/detention costs.

Energy Use: Annual energy savings from trees is \$26 million.

The UFORE model is currently designed to provide estimates of:

➢ Urban forest structure by land use type. Forest structure data includes such variables as species composition, number of trees, diameter, tree density, tree health, leaf area, leaf and tree biomass, and species diversity.

Amount of pollution removed by the urban forest and associated percent air quality improvement throughout the year. Pollution removal is calculated for ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide and particulate matter (<10 microns).

 \succ Urban forest volatile organic compound (VOC) emissions and the relative impact of tree species on net ozone and carbon monoxide formation throughout the year.

> Total carbon stored and net carbon annually sequestered.

Effects on building energy use and consequent effects on carbon dioxide emissions from power plants.

Compensatory value of the forest, as well as the value of air pollution removal and carbon storage and sequestration.

Houston UFORE 8-County Study Area

- •Field analysis of tree species, sizes and conditions
- •Regional analysis of land cover and land use
- •Integrated ozone modeling incorporating the latest field data and modeling techniques

Field Data Collection

Number

of plots

86

68

38

30

30

Land-use type

agricultural/range

agricultural/range

Southern

Residential

Northern

Urban green

Urban built

 332 1/6 acre plots with 1/75 microplots for trees less than 5" dbh

UFORE Sample Points

Sample - UTM Coordinates N 3340225.87 E 259221.63

Guif Coast Institute

Left Lefler 12/17, 3/11

DEC MSM 11/26/02

LOT ADD			DA	TE- WA		CRE	w= 12/	17	PHC	TO#S=			
25/15		1	PLOT S	KETCH	AND NO	TES FO	R PLO	T REL	OCAT	ION			
25115	RESS:		PLO	OT CON	TACT IN	FO (for	non-res	identia	al plots):			
0	Butterw	ick O	r. N	ame & T	itle:	(Brow	un	?) 2	Zimmern	an, Ch	adt M	le lani
Spring	1, TX 7	7389		Phone	e#: 2	81-3	57-	133	1				
IOTES:					-		S	KETC	H MAR	P			
					10	araa	e !						
					F		- X						
			Ir				X						
				2511	5		1			251	19		
				2511			8	-	Χ.				
							10	PG.					
No. of a	actual land u	ses:			Butt	erw	ick						
Plo	t center stake	ed?: Y	0										
A	spect (degre	es):											
	Slope	(%):											
		. 1	OCATI	NG LAN	DMARK	S (Iden	tify at le	east tv	vo obje	ects)			
				Descrip	tion					Distance (f	L) C	irection	(deg.)
Object #1									-				
Object #2									-				
Object #3	L												
ACTUAL LAN		SOFP			PLOT	TREE	arate si	PLC	T SHRUB		PLAN	TABLE	15
USI GROUND 96		THI WTAR	OTHER	NSOL	SOVE %PERM	%DUFF/	%SEED-	SEMAIN	VER (%).	AIN %AG	HERE	CE (%)	OTHE
COVER 2	5 25		BMP-	5	ROCK	MULCH	LINGS	4.5	s GR/	ASS CROPS	NY.		PERV
	SPECIES	HEIGHT	The AMEA	% LEAF	SPECIE	S HE	GHT %		N LEAF	SPECIES	HEIGHT	% AREA	% LEA
	SPECIES	121	10	NLEAF 90	SPECIE	s HEI	ант ъ	REA	NLEAF	SPECIES	HEIGHT	% AREA	SLEA
	Species SagoPalm Holly	2' 4'	10	40 65	SPECIE	8 HE	GHT %	AREA .	NLEAF	SPECIES	HEIGHT	% AREA	SLEA
SHRUBS	Species Sagolalm Holly Liq	2' 4'	10 5 5	40 65 70	SPECIE	S HE	GHT %	UREA	KLEAF	SPECIES	HEIGHT	% AREA	SIEA
SRUES	Species Sagofalm Holly Liq Yucc	2' 4' 3 4	10 5 5 5	90 65 70 70	BPECE	8 HE	GHT %	AREA .	S LEAF	SPECIES	HEIGHT	% AREA	SILEA
D-RUES	Sagolala Holly Lig Yucc	2' 4' 3 4	10 5 5	90 65 70 70		S HE	GHT %	AREA ·	K LEAF	SPECIES	HEIGHT	% AREA	SIEA

Plot I	lot ID =				HEICHIT	HE	GHT				CR	WN							TREES NEAR BUILDINGS								TREE CONDITION			*			
				0.0	SOFCIES	DIAMETER	TO	TOT	CROWN	•		STREET	SANDE	ATT	FOL			CIE		Г е 1	07				D4	~	ROOTS	TRUNK	BRANCHES	TWIGS	TEAVES	UTILITY	BEWARKS
			11	111 -	11	Q //	54	100	BASE	WP	SHRUB	TREE	9.4	20	DEN	E	25	F	7 60	,	917	2		-			3	3	2	12	2	5	
	1		40	44.5	HEOO	8,4	59	75	10	30	~		20	22	22	3	25	3	200	<u><u>'</u></u>	212	5				-	0	-	5	-	-		
	2		51	91.1	3.6	5.1	59	25	9	-	5		10	10	30	-	35	0	260	1	216	3				_	2						
	3		63	44:7	H20 0	6.2	54	30	10	-	5		25	20	35	-	25	0	210	1	220	3					3					_	
	4		105	47,7	Lob	14,5	54	70	40	50	-		32	25	25		30	5	40	3	138	3					3					_	
	5		123	32.1	H200	6.4	54	20	9	20	5		20	16	25	-	30	4	90	2	162	3					3	~				-	
	8		125	45.9	11	10.3	54	45	10	-	-		24	18	40	-	35	2	90	2	160	3					3						
	7		137	423	11	10	54	45	12	10	5		25	18	40	-	30	2	90	1	162	3					3	-				-	
	8		147	39.9	LOB	13.8	54	20	45	20	5		28	20	35		35	5	90	1	162	3					3					-	
	9		291	31,8	Lob	16.7	54	70	30	5	5		24	13	35		25	5	5	1	175	2					4					-	
	10		297	42	HzO	8.1	54	30	15	25	5		26	14	35	5	30	2	5	1	175	3					3	-				-	
	11		305	40,9	606	15,6	54	65	25	55	5		25	11	35		25	4	5	1	175	3					4	1			-	1	
	12																																
	13																																
	14																																
	15																																
													-																				
T R	10																																
E E	1/																																
5	18																	-		-		-											
	19	-											-					-		-													
	20															-		-		-		-			-			-					
	21												-							-		-											
	22		-										-					-	-	-		-			1.1								
	23		-																	-		-											
	24		-										-									-											
	25		-										-							-		-				-							
	26		-										-					-		-		-											
	27												-				_			-		-				_					-		
	28		-																	-		-											
	29																			-		-				-							
	30															-										_							
	31															_										_							
	32																																
	33																																
	34																																
	36																																

UFORE Urban Inventory Plot Data Sheet - Tree Info

Land Cover / Use Classification

Combined latest satellite imagery to classify land use and land cover

Land cover/use maps produced by Global Environmental Management, Inc. (GEM, Inc.)

Houston Area Results Cover Types

- Ag/Range lands 48%
 North 13%
 South 35%
- Forest 28%
 North 22%
 South 6%
- Developed lands 24%
 Residential 13%
 Urban Built 5.5%
 Urban Green 5.5%

Houston Area Results

- •Number of trees: 663 million
- •Most common species: Chinese tallow (23%)
- •All oak species: 14.6%
- •Regional tree cover: 23.6%
- •Annual benefits: \$455 million
- •Structural value: \$206 billion

Houston Area Results Tree Density's

Land Cover Type	Area Sq.Miles	Trees Millions	Density Trees Sq/Mile	Species
South Forest	400.2	88.8	221 771	20
North Forest	1,321.9	382.3	289,209	20 69
South Ag/Range	2,110.1	71.8	34,009	12
North Ag/Range	794.3	36.6	90,345	15
Residential	782.2	43.9	56,137	36
Urban – Green	327.4	33.9	103,434	26
Urban – Built	327.4	5.9	18,097	14
Total	6063.6	663.1	106,951*	70**

*Average Density

** Total Primary Tree Species Identified in analysis

Most Common Trees

•	Chinese tallow tree	23.0%
•	Loblolly pine	18.7%
•	All Oaks	14.6%
•	Cedar elm	6.9%
•	Water oak	5.4%
•	Hawthorn	4.8%
•	Sweetgum	4.6%
•	Sugarberry	4.1%
•	Green ash	3.7%
•	Baldcypress	3.3%

Exotics

The percent exotic from each of the land classifications are:

N. Ag/Range — 8.5% N Forest BL — 19.7% N. Forest Co — 12.4% N Forest Mi — 14.4% Residential — 38.1% <u>S. Ag/Range — 78.7%</u> S. Forest — 24.9% Urban Built — 14%

Most of the trees found within the study were native to North America (72%) and out of the native trees (65%) are native to the State of Texas.

Urban Forest Benefits Status:

State of the Urban Forest

•Report Complete analysis of urban forest health, structure, function and benefits

•Air Quality Report

December 2004

Houston Metropolitan Area Report:

Analytical Assessment of Structure, Function, and Value

Air Pollution Removal

- 166 tons/day
- \$295.2 million / year

Carbon Storage and Sequestration

Trees in the Houston area store 39 million tons of carbon (\$721 million value) and annually sequesters 1.6 million tons of atmospheric carbon (\$29 million value).

Tree Effects on Building Energy Use

Trees in the Houston region provide \$131 million annually in direct and indirect energy savings.

Monetary Value of the Regional Forest

Structural Values:

•Replacement or Compensatory value: \$205.8 billion (based on CTLA guidelines)

•Carbon Storage: \$721 million

Functional (Annual) Values:

•Carbon Sequestration: \$29 million

•Pollution Removal: \$295 million

•Energy Savings: \$131 million

Total Monetary Value is over \$206 billion

Houston's Region Forest Future

At at 7% mortality rate, approximately 2 million additional trees per year would be needed to maintain existing canopy coverage.

University of Houston

Effects of Land Cover Changes on the Air Quality in the Houston-Galveston Area

- Conduct meteorological, emissions, and air quality sensitivity modeling
- Incorporate most up-to-date detailed land use and land cover data
- Working with latest air quality models to determine the effects of tree cover changes on ozone
- Integrates field data within models

University of Houston

Effects of Land Cover Changes on the Air Quality in the Houston-Galveston Area

Preliminary Findings:

•ISOP emissions/voc's decrease

•Ambient air temperature increase

•Some (minimal) increase in overall ozone

GIS and Computer Tools

GIS and Computer Tools Status

•Development of Windows based program to help partners/cooperators in determining best tree species for specific planting objectives.

•Development of GIS program that estimates future urban forest effects across the Houston area based on growth rates, mortality rates and changes in land use classes.

FUTURE EFFECTS

- 30 year grow-out scenarios
- Tree mortality
- Tree planting
- Tree growth
- Land use change

Questions?

