

Efforts to Improve the Region's Water Quality

August 26, 2021

Online Meeting Notes

- The meeting is being recorded
- Microphones will be muted, and cameras turned off
- Ask your questions using the chat function or
- Use the Reactions button to raise your hand to be asked to unmute
- Use *9 to raise your hand if you are calling in on your phone

Handheld Device Tools

 Access chat or raise your hand using the 3 dots at the bottom of the screen

H-GAC's Efforts to Improve the Region's Water Quality

Watershed-based Plans Introduction

Todd Running, Program Manager

August 26, 2021

Coordinated Monitoring

- Clean Rivers Program Monitoring
- Over 400 Water Quality Monitoring Stations
- Eight Local Partners

Watershed Based Planning

- Watershed Protection Plans
- Total Maximum Daily Load Implementation Plans

Plan Implementation

Agenda

• 1:30 p.m. Watershed-based Plans Introduction	Todd Running
1:35 p.m. Septic System Outreach and Education	Brian Sims
1:50 p.m. Septic System Repair and Replacement	Daniel Albanese
2:05 p.m. Non-point Source Education	Kendall Guidroz
2:20 p.m. Urban Forestry/Riparian Cover	Justin Bower
2:35 p.m. Green Infrastructure	Steven Johnston
2:50 p.m. Targeted Monitoring	Jessica Casillas
3:05 p.m. Closing & Breakout Instructions	Todd Running
• 3:10 p.m. Watershed-specific Breakout Sessions	All

H-GAC's Efforts to Improve the Region's Water Quality

On-Site Sewage Facility Outreach and Education

Brian Sims, Senior Planner

August 26, 2021

Introduction to On-Site Sewage Facilities

On-Site Sewage Facilities (OSSFs) treat up to 5,000 gallons/day of residential or commercial wastewater "on-site"

- Utilized in areas where connection to a residential sanitary sewer collection system is not available.
- Refers to both conventional septic systems and gerobic treatment unit.
- Provide effective and appropriate wastewater treatment if they are properly designed, installed, operated, and maintained

OSSFs and Wastewater Treatment

OSSFs treat sewage and remove contaminants before they reach groundwater or surface water.

- Organic materials
- Nutrients
 - Phosphorus
 - Nitrogen
- Pathogens
 - Bacteria
 - Viruses
 - Parasites

Failing OSSFs and Water Quality Impairments

When OSSFs fail, wastewater does not receive adequate treatment

- Source of bacteria, other pathogens, and nutrients
- Can contaminate groundwater and surface water

Factors in system failure:

- Lack of maintenance
- System age
- Inappropriate system design
- Inappropriate soil type
- Hydraulic overload
- Alteration of the drainfield

"Grandfathered" systems (installed before permit requirements were in place) are often not as efficient as new systems and are more prone to failure.

Failing OSSFs and Water Quality Impairments (cont.)

- Malfunctioning systems can contribute significant nutrient and bacteria loads to waterways, particularly those in close proximity (<500 ft)
- To evaluate OSSFs as a source of pollutants, it is necessary to know the distribution and failure rates of malfunctioning systems
 - In many cases, this has to be estimated
 - If local data is not available, literature values may be used

Failing OSSFs and Water Quality Impairments (cont.)

OSSF Failure Rates

- EPA cites 10 20% failure rate nationwide
- Estimated at 12% in Texas
 - Varies by location, socioeconomic factors, etc.
 - Local knowledge (Authorized Agents, local stakeholders, etc.) is very important for accurately estimating failure rates
 - EXAMPLE: OSSF Failure Rate estimated at 50% for Westfield Estates Watershed Protection Plan due to
 - age of systems,
 - history of non-compliance with maintenance, and
 - local enforcement data from Authorized Agent

Failing OSSFs and Water Quality Impairments (cont.)

How much bacteria comes from a failing OSSF?

E. coli concentration of a failing OSSF = 1.0×10^7 cfu/100 mL

Sewage discharge rate = 70 gallons/person/day

Household Occupancy = 2.86 persons/household

Conversion Factor (CF) = 3785.4 mL/gallon

Potential Daily OSSF Load Per Day
$$=\frac{1.0 \times 10^7 cfu \, E.coli}{100 \, mL} \times \frac{70 \, gal}{person \times day^{-1}} \times \frac{2.86 \, persons}{household} \times \frac{3785.4 \, mL}{gal}$$

= 7.58 X 10¹⁰ cfu E. coli per household/day

75,800,000,000 bacteria per household per day

To determine the total load for a watershed, you can multiply this value by the total number of households and the estimated failure rate

OSSFs Locations in the Region

- H-GAC's OSSF Mapping Tool
 - Online database and GIS mapping of OSSF permits in the 13-County Region
 - Compilation and analysis of OSSF permitting data submitted to H-GAC by Authorized Agents

 - 199,006 unpermitted OSSFs (estimated)
 - 310,027 total OSSFs (estimated)

http://datalab.h-gac.com/ossf/

H-GAC's Online Information System

- Able to examine concentration of OSSFs (number of systems per square mile)
- Able to examine systems by age (based on permit date)
- Able to examine location of individual OSSFs based upon GPS coordinates
- Can measure proximity to water body
- Able to estimate the number and locations of unpermitted systems based upon parcel data for areas:
 - where there are no permitted systems
 - that are outside of a service area boundary for a permitted wastewater treatment facility

Reducing Pollution from OSSFs

- Options to reduce pollution from failing or malfunctioning OSSFs include:
 - Maintenance or repair
 - Installation of new OSSFs (when feasible)
 - Installation of low-flow devices to reduce influent volumes
 - Ongoing maintenance contracts
 - Abandonment and connection to residential sanitary sewer system
 - Homeowner education

H-GAC OSSF Educational Courses

- Homeowner Education Course
- 2-hour course
- Offered throughout the H-GAC region through watershed-based programs
- Topics include:
 - Basics of OSSF operations and maintenance
 - Guidance to assist homeowners with maintaining conventional and aerobic OSSFs
 - Course does NOT authorize a homeowner to maintain their owner system in lieu of a maintenance contract

H-GAC OSSF Educational Courses (cont.)

- Real Estate Visual Inspection Training Course
- 6-hour course
- Approved by the Texas Real Estate Commission for Continuing Education credits
- Offered throughout the H-GAC region
- Topics Include:
 - Basics of OSSF operations and maintenance
 - Different types of OSSFs
 - Rules and Regulations
 - Safety
 - Records and Documents
 - Visually inspecting conventional, lowpressure dosing, and aerobic treatment unit systems
- Includes a field portion to visually inspect an OSSF

H-GAC OSSF Educational Courses (cont.)

- Due to COVID-19 and social distancing requirements, no OSSF Educational Courses were offered during 2020 – 2021.
- H-GAC plans to develop the Homeowner Education Course for a virtual environment so remote-learning options can be available.
- Virtual learning opportunities will likely not be available in the immediate future for the Real Estate Visual Inspection Training Course since that course is specifically designed to include an in-person field component (the inspection of an actual functioning system).
 - To be reevaluated as the COVID-19 threat level changes

Questions? Comments?

CONTACT INFORMATION

Brian Sims Senior Planner Houston-Galveston Area Council

Phone: (713)-993-2438

Email: brian.sims@h-gac.com

H-GAC's Efforts to Improve the Region's Water Quality

Septic System Repair and Replacement

Daniel Albanese, Planner

August 26, 2021

Project Description

Provides assistance to low-income homeowners to repair or replace malfunctioning or failing on-site sewage facilities (OSSFs)

Failing conventional system

New aerobic OSSF

Applicant Qualifications

- In order to qualify, applicants must:
 - · own and reside in the home
 - reside in one of the eligible counties
 - have a combined household income at or below 80% of the median income for the county
 - have a failed or malfunctioning OSSF

Pipe discharging to field

Installation of new spray field

Source of Funding

Funding for this project is being provided by both
 TCEQ and the Harris County District Attorney's Office

SUPPLEMENTAL ENVIRONMENTAL PROJECT FUNDING for SEPTIC or AEROBIC SEWAGE FACILITY REPAIR/REPLACEMENT

WORK PERFORMED WITH PENALTY MONIES FROM A TEXAS COMMISSION ON ENVIRONMENTAL QUALITY ENFORCEMENT ACTION

SUPPLEMENTAL ENVIRONMENTAL
PROJECT FUNDING
SEPTIC or AEROBIC SEWAGE
FACILITY REPAIR/REPLACEMENT
DONATED BY

HARRIS COUNTY DISTRICT ATTORNEY
KIM K. OGG

SEP History

- \$339,926.00 in funding utilized to date
- 39 applicants have qualified and are on the waiting list
- 14 OSSF repairs
- 24 replacement Aerobic OSSFs installed
- 2 replacements upcoming
- Pump-outs for seven homeowners in Bailey's Prairie (Brazoria County)

Failing OSSFs

Recent Project Success

- Installation of new aerobic
 OSSF in Bay City (Matagorda
 County) October 2020
 - Funded by T.C.E.Q
- Installation of new aerobic
 OSSF in Industry (Austin
 County) January 2021
 - Funded by T.C.E.Q

Next Steps

- Continue marketing SEP program to potential contributors
- Continue seeking qualified applicants
 - Local Authorized Agents and Designated Representatives
 - Referrals from local governmental officials and agencies
 - Public Outreach events
 - Word-of-mouth from previous program recipients
- Continue identifying qualified vendors

Quotes from Project Recipients

"I really appreciate your help and assistance in helping my mother out. Thank you so much! And glad to know that there are people and organizations that help their citizens and people in these situations. Just to let you know people do appreciate your consideration and help! You don't know how much.... I just want you to know you make a huge difference in people's lives."

- Resident, Baytown

For More Information

For more information regarding H-GAC's SEP for Homeowner Wastewater Assistance, please contact:

Program Support Specialist
Houston-Galveston Area Council
Daniel.Albanese@H-GAC.com
832-681-2692

H-GAC's Efforts to Improve the Region's Water Quality

Non-point Source Education: Coastal Communities Toolbox, Interactive Exhibits, and More

Kendall Guidroz, Planner

August 26, 2021

The Coastal Communities project is funded in part by the TCEQ through a grant from the United State Environmental Protection Agency

Coastal Communities Project

- What?
 - Water Quality
 Outreach & Education
 resources
- Who?
 - Our smaller coastal communities
- Mhy
 - To remove barriers for city staff
- Hows
 - A One-Stop-Shop for resources

www.coastalcommunitiestx.com

Outreach Toolbox & Roadmap

- Project website
- Roadmap messaging
- H-GAC & partner resources
- Model ordinances
- Links to funding, training, and meeting opportunities

www.coastalcommunitiestx.com

Outreach Toolbox & Roadmap

Four Focus Behaviors

- Pet Waste Disposal
- Disposal of Fats, Oils, & Grease (FOG)
- Litter & Illegal Dumping
- Maintenance of On-Site Sewage Facilities (OSSFs)

The Roadmap Messaging

The Roadmap Messaging (cont.)

The Roadmap Messaging (cont.)

Expanding the Toolbox

- Expanding the Resources Expanding the Toolbox Resources
 - Engaging more communities
 - Working with partners on a Community-Based Social Marketing Pilot Project
 - Combatting improper FOG disposal in apartments

Hands-on Exhibits & Posters

900,000 | 312 Tons

DEFEAT THE GREASE MONSTER DISPLAY

AND MATERIALS (FOCUS ON FATS, OILS,

GREASE DISPOSAL)

H-GAC **OUTREACH MATERIALS**

A variety of other brochures created by partner organizations may be available. Availability of reports and other documents should be discussed with project managers.

PITCH THE POOP INTERACTIVE GAME

AND MATERIALS (FOCUS ON BACTERIA)

Hands-on Exhibits & Posters

Hands-on Exhibits & Posters (cont.)

Hands-on Exhibits & Posters (cont.)

Hands-on Exhibits & Posters (cont.)

Trash Free Texas

- A Trash Free Waters project
- Key Goals:
 - Add "Adopt-A-Spots
 - Support local cleanup efforts
 - Help restaurants reduce single-use plastics

www.trashfreetexas.org www.h-gac.com/trash-free-texas

Texas Stream Team

- Citizen Science volunteer water quality monitoring
- 3 Phases of Training
- Part of a state-wide program
- Trainings on hold Contact: stream.team@h-gac.com

THE MEADOWS CENTER FOR WATER AND THE ENVIRONMENT

TEXAS STATE UNIVERSITY

Texas Stream Team

h-gac.com/Texas-stream-team

Contact Information

KENDALL GUIDROZ

Environmental Planner

Houston-Galveston Area Council

Direct | 713-993-2469

h-gac.com

CoastalCommunitiestx.com

waterresources@h-gac.com

H-GAC's Efforts to Improve the Region's Water Quality

Urban Forestry and Riparian Cover

Justin Bower, Principal Planner

August 26, 2021

The Region's Urban Forests

Houston's Urban Forest

- Ecosystem services beyond aesthetics
 - Heat reduction
 - Flood mitigation
 - Health benefits
 - Water/air quality improvement
 - Biodiversity/habitat
 - Carbon reduction, etc.
- Focus of many local efforts

H-GAC's Role

- Regional Coordination
- Regional Support
- Identifying/pursuing funding
- Data Analyses
- Potential funding role

- Examples
 - Houston Area Urban Forests
 - City of Houston grants
 - Cypress Creek CSP

Building Riparian Function

- Streamside areas are last line of defense
- Multiple benefits; flood, quality, habitat, etc.
- Applicable to urban, suburban, rural land uses
- Many existing programs
- Examples
 - Riparian Tool
 - Focus in WPPs, etc.

For more information, contact:

Justin Bower
Principal Planner, H-GAC
713-499-6653
justin.bower@h-gac.com

3555 Timmons Lane, Suite 120, Houston, TX 77077

H-GAC's Efforts to Improve the Region's Water Quality

Green Infrastructure: Designing for Impact

Steven Johnston, Senior Planner

August 26, 2021

Why H-GAC?

www.h-gac.com/go/LID

LID/Green Infrastructure (Survey)

Are your familiar with the terms Low Impact Development (LID) or Green Infrastructure?

LID Desirability and Feasibility (Survey)

Which LID or Green Infrastructure solutions do you think are most feasible or desirable?

Development Impacts: 2040

Parking Spaces

Non-Residential

3.5B SQFT

<u>Residential</u>

390 CINCO RANCHES

NRG Park Parking Lots

WHAT is Green Infrastructure?

Comprehensive Stormwater Management Method

HOW does Green Infrastructure work?

CAPTURES and DISTRIBUTES stormwater runoff throughout the site as close to the SOURCE as possible

WHERE can Green Infrastructure be used?

New Development, Redevelopment, Parking Lots, and Roadways

What does it look like?

What does it look like?

Benefits

Resources Available

DESIGNING FOR IMPACT

Regional Guide for Low Impact Development

LID Overview

Barriers/Solutions

List of Best Practices

Cost/Benefit Analysis: LID v. Conventional

Local Case Studies

Case Studies

Designing for Impact Regional Guide for Green Infrastructure

Barriers

Regulatory

Perceptual

Wide Min. Roadway Widths

Solution: Narrower Roadway Designs

Curb + Gutter Requirements

Solution: More Flexible Standards

Excessive Impervious Cover

• Solution: Efficient Site Design

Lack of Incentives

• Solution: Offer Incentives for LID

Is Cost Prohibitive

Reality: Reduces Costs + Adds Value

Don't Know What it Is

• Solution: Increase Awareness w/ Educ.

Is Too Difficult to Maintain

Reality: Maintenance Not Burdensome

Clay Soils Prevent its use

Reality: FALSE!

Web Page – Local Examples

Ghirardi Watersmart Park

League City, TX

What's Next?

Future Workshops

Efficacy Study

 Project to begin in September 2022

H-GAC's Efforts to Improve the Region's Water Quality

H-GAC Bacteria Targeted Monitoring Project

Jessica Casillas, Planner

August 26, 2021

- Bacteria is the most prevalent pollutant
- ~ 80% of the region's streams fail to meet state water quality standards

PURPOSE

- Identify bacteria sources
- Report findings to appropriate jurisdictions for problem elimination

Phase 1 - Data Analysis

Phase 2 - Monitoring

Phase 3 - Reporting

Geomean Ranking**	AU ID	AU Name	Parameter
30.65	1017 04	Whiteoak Bayou Above Tidal	E. Coli
29.03	1007T 01	Bintliff Ditch	E. Coli
28.63	10071 01	Plum Creek Above Tidal	E. Coli
25.27	1004J 01	White Oak Creek	E. Coli
22.51	1017E_01	Unnamed Tributary of White Oak Bayou	E. Coli
19.53		Unnamed Non-Tidal Tributary of Buffalo Bayou Tidal	E. Coli
17,60	1007K 01	Country Club Bayou Above Tidal	E. Coli
17.47	1007H 01	Pine Gully Above Tidal	E. Coli
17.02	1007F 01	Berry Bayou Above Tidal	E. Coli
16.78		Unnamed Tributary of Greens Bayou	E. Coli
15.85			Enterococci
15.11	1013A_01	Little White Oak Bayou	E. Coli
14.53	1007R 04	Hunting Bayou Above Tidal	E. Coli
13.75	1007U_01	Mimosa Ditch	E. Coli
12.67	1007B_01	Brays Bayou Above Tidal	E. Coli
12.34	0901A_01	Cary Bayou immediately upstream of Raccoon Drive bridge in Baytown	Enterococci
12.24	1007R 01	Hunting Bayou Above Tidal	E. Coli
12.22	10140 01	Spring Branch	E. Coli
11.67	1016C 01	Unnamed Tributary of Greens Bayou	E. Coli
11.57	1014M 01	Newman Branch (Neimans Bayou)	E. Coli
9.86	1017 03	Whiteoak Bayou Above Tidal	E. Coli
9.48	2432A 02	Mustang Bayou	E. Coli
9.44	1101C_01	Cow Bayou	Enterococci
8.29	2424A 05	Highland Bayou	Enterococci
7.91	1007S 01	Poor Farm Ditch	E. Coli
7.86	1017B 02	Cole Creek	E. Coli
7.81	1007E 01	Willow Waterhole Bayou Above Tidal	E. Coli
7.69	1007G 01	Kuhlman Gully Above Tidal	E. Coli
7.61	1007 05	Houston Ship Channel/Buffalo Bayou Tidal	Enterococci
7.58	1007D_03	Sims Bayou Above Tidal	E. Coli
7.10	1017D 01	Unnamed Tributary of Whiteoak Bayou	E. Coli
6.58	10070 01	Unnamed Tributary of Buffalo Bayou	E. Coli
6.57	1009 04	Cypress Creek	E. Coli
6.37	1007D 02	Sims Bayou Above Tidal	E. Coli
6.21	1017A 01	Brickhouse Gully/Bayou	E. Coli
6.18	1006J 01	Unnamed Tributary of Halls Bayou	E. Coli
6.04	1006D 02	Halls Bayou	E. Coli
5.78	1103F_01	Unnamed Tributary of Dickinson Bayou Tidal	Enterococci
5.76	1103C 01	Geisler Bayou	Enterococci
5.70	1006 05	Houston Ship Channel Tidal	Enterococci
5.70	1013 01	Buffalo Bayou Tidal	Enterococci
5.65	1014N 01	Rummel Creek	E. Coli
5.60	1007C 01	Keegans Bayou Above Tidal	E. Coli

Photo credits: Environmental Institute of Houston, University of Houston-Clear Lake.

Phase 1 - DATA ANALYSIS

- Identify assessment units and monitoring stations with the highest bacterial concentrations
- Calculate geometric means
- Categorize catchment areas as urban, suburban, or rural
- Work Group (Dec 10, 2019)

Predominant Land Cover Type	AU ID	AU Name	Relative Bacteria Geomean	AU Length (miles)
Urban	1007T_01	Bintliff Ditch	24.46	3.9
Urban	1017E_01	Unnamed tributary of White Oak Bayou	17.22	1.92
Urban	1007U_01	Mimosa Ditch	15.37	1.9
Urban	1016D_01	Unnamed Tributary of Greens Bayou	15.11	4.49
Suburban	1004J_01	White Oak Creek	26.39	2.96
Suburban	1103G_01	Unnamed Tributary of Gum Bayou	15.26	3.29
Suburban	2432A_02	Mustang Bayou	11.68	5.08
Suburban	1101D_01	Robinson Bayou (tributary of Clear Creek)	6.62	2.7
Rural	1104_01	Dickinson Bayou Above Tidal	14.11	3.43
Rural	1103E_01	Cedar Creek (tributary of Dickinson Bayou)	1.96	1.31

- Four* AUs within City of Houston jurisdiction
 - *Greens Bayou partially within boundary
- Robinson Bayou and Cedar Creek within City of League City
- Gum Bayou within Dickinson
- Mustang Bayou mostly within City of Alvin
- White Oak Creek within City of Conroe jurisdiction

Phase 2 – MONITORING

- Intensive desktop review
- Windshield survey
 - Samples collected at major crossings
- Field Investigation
 - Dry weather monitoring
 - Permitted flows sampled upstream and downstream
 - Unpermitted flows/tributaries sampled at source
- NELAP testing

Photo credits: Environmental Institute of Houston, University of Houston-Clear Lake.

Phase 3 - REPORTING

- Report findings to local authorities
- Recommendations to the Bacteria Implementation Group (BIG)
- Work with appropriate jurisdictions to implement bacteria reduction measures
- Follow-up monitoring and analysis as needed

Progress

- TCEQ Approval on Oct 2020
- Windshield Surveys Conducted Jan March 2021
- Field Investigations Conducted March April 2021
- City of Houston Referrals (Summer 2021)
- City of League City Referrals (Summer 2021)
- Reports submitted to TCEQ (Aug 2021)

White Oak Creek,

Daniel Albanese Program Support Specialist

Kendall Guidroz Planner

Houston-Galveston Area Council (H-GAC) PO Box 22777, Houston, TX 77227-2777 Unnamed Tributary of White Oak Bayou (1017E_01) Bacteria Monitoring Report

I	AU ID	AU Name	Windshield Survey Sample Count	Field Investigation Sample Count	Referral Sites
	1007T_01 Bintliff Ditch		13	76	8
ı	1017E_01	Unnamed tributary of White Oak Bayou	13	26	3*
ı	1007U_01	Mimosa Ditch	7	26	4
ı	1016D_01	Unnamed Tributary of Greens Bayou	11	47	5
ľ	1004J_01	White Oak Creek	9	29	3*
ı	1103G_01	Unnamed Tributary of Gum Bayou	8	22	4
	2432A_02	Mustang Bayou	16	39	10
	1101D_01	Robinson Bayou (tributary of Clear Creek)	10	53	9
	1104_01	Dickinson Bayou Above Tidal	4	13	5
	1103E_01	Cedar Creek (tributary of Dickinson Bayou)	1	12	1

AU Name

AU ID

Referral site: MUS-FI-17

Referral site: BIN-FI-65

This site is located at along the urbutary to Binthiff Dirch. The culvert was located on the right bank in a residential area, just downstream of where the irbutary runs belonground under Memorial Hermann Southwest Hospital. One sample was collected from this large concrete culvert. The sample collected had a bacteria value of 1,120 MPN/100ML. The water exciting fits culvert had a very only surface. A specific source for the oil and bacteria was not identified. Photo shows large culvert on the right bank.

Mustang Bayou Bacteria Monitoring Repo

This site is located on the right bank in a residential area. The pipe associated with this site is metal with an inner diameter of 60 inches. There was 1 inch of water in the pipe with a consistent flow. The downsteam snaple collected bacteria value of 24,000 MPN/100ML while the upstream sample was 754 MPN/100ML, giving a difference of 23.400 MPN/100ML residence of 10.400 MPN/100ML flow flow flow of the pipe smelled of effluent. Further investigation is recommended. Photo taken shows size and amount of outflow.

7.0.13	no name	Count	Sites	Samples > State Standard
1007T_01	Bintliff Ditch	76	8	93%
1017E_01	Unnamed tributary of White Oak Bayou	26	3*	70%
1007U_01	Mimosa Ditch	26	4	23%
1016D_01	Unnamed Tributary of Greens Bayou	47	5	85%
1004J_01	White Oak Creek	29	3*	89%
1103G_01	Unnamed Tributary of Gum Bayou	22	4	52%
2432A_02	Mustang Bayou	39	10	79%
1101D_01	Robinson Bayou (tributary of Clear Creek)	53	9	43%
1104_01	Dickinson Bayou Above Tidal	13	5	69%
1103E_01	Cedar Creek (tributary of Dickinson Bayou)	12	1	100%

Field Investigation Sample

Referral

Percent of

QUESTIONS?

Jessie Casillas

Planner

Houston-Galveston Area Council

3555 Timmons Lane, Suite 120 Houston, TX 77027

Jessica.Casillas@h-gac.com

Direct | 713-993-4594

Project funded by TCEQ Clean Rivers Program.

Photo credits: Environmental Institute of Houston, University of Houston-Clear Lake.

Breakout Sessions Will Begin Now

Discussions will begin after a 5-minute break

