Appendix K to the Houston-Galveston Area Council Clean Rivers Program FY 2018/2019 Multi-Basin QAPP

Biological Monitoring at a Selected Location in the H-GAC Region

Prepared by the Houston-Galveston Area Council (H-GAC) in cooperation with the Texas Commission on Environmental Quality (TCEQ)

Effective: Immediately upon approval by all parties

Questions concerning this QAPP should be directed to: Jean Wright (H-GAC Representative) CRP Quality Assurance Officer P.O. Box 22777 Houston, Texas 77227-2777 (713) 499-6660 jean.wright@h-gac.com

SS-A1 Approval Page

Texas Commission on Environmental Quality

Water Quality Planning Division

Sarah Eagle: Work Leader Clean Rivers Program

Kelfy Rodibaugh [CRP Project Quality Assurance Specialist

Cathy Anderson, Team Leader Data Management and Analysis

Date

7

Kelly Rodibaugh Project Manager, CRP

Date

Monitoring Division

2019 strma

Sharon Coleman Date Acting Lead CRP Quality Assurance Specialist Laboratory and Quality Assurance Section

Houston-Galveston Area Council (H-GAC)

Todd Running H-GAC Project Manager

H-GAC Quality Assurance Officer

Date

Jean Wright Date

The H-GAC will secure written documentation from each sub-tier project participant (e.g., subcontractors, other units of government) stating the organization's awareness of and commitment to requirements contained in this quality assurance project plan and any amendments or added appendices of this plan. Alternatively, additional signature blocks for primary sub-tier participants have been added to section A1. Signatures in section A1 will eliminate the need to adherence letters to be maintained. The H-GAC will maintain this documentation as part of the project's quality assurance records and will ensure the documentation is available for review.

ENVIRONMENTAL INSTITUTE OF HOUSTON – UNIVERSITY OF HOUSTON CLEAR LAKE (EIH)

Dr. George Guillen EIH CRP Project Manager

Date

3-27-19

3-27-19

Date

Jenny Oakley EIH Field Quality Assurance Officer

Houston-Galveston Area Council QAPP FY 18-19 Appendix K Page 4 Amendment 3, March 26, 2019

Scanned with CamScanner

Eastex Environmental Laboratory

3

Daniel Bowen Eastex Laboratory Manager

Date

3-0 der Date

Natalia Bondar Eastex Laboratory Quality Assurance Officer (QAO)

SS-A2 Table of Contents

SS-A1	Approval Page	2
SS-A2	Table of Contents	6
List of Ac	ronyms	7
SS-A3	Distribution List	8
SS-A4	Project/Task Organization	. 9
SS-A5	Problem Definition/Background	. 9
SS-A6	Project/Task Description	11
SS-A7	Quality Objectives and Criteria	12
SS-A8	Special Training/Certification	14
SS-A9	Documents and Records	14
Tab	le SS-A9.1. Project Documents and Records	15
SS-B1	Sampling Process Design	16
Tabl	e SS-B1.1 Sample Design and Schedule	16
Figu	re SS-B1a. Sampling Site Map	17
Figu	re SS-B1b. Sampling Site Map	18
Figu	re SS-B1c. Sampling Site Map1	79
SS-B2	Sampling Methods	20
Tabl	e SS-B2. Sample Storage, Preservation, and Handling Requirements	21
SS-B3	Sample Handling and Custody	22
SS-B4	Analytical Methods	22
SS-B5	Quality Control	23
SS-B6	Instrument/Equipment Testing, Inspection, and Maintenance	23
SS-B7	Instrument Calibration and Frequency	23
SS-B8	Inspection/Acceptance of Supplies and Consumables	23
SS-B9	Acquired Data	23
SS-B10	Data Management	23
SS-C1	Assessments and Response Actions	25
SS-C2	Reports to Management	25
SS-D1	Data Review, Verification, and Validation	26
SS-D2	Verification and Validation Methods	26
SS-D3	Reconciliation with User Requirements	26

Appendix SS-A	Tables SS-A7.1a-i – Measurement Performance Specifications
Appendix SS-B	Field Sheets for Aquatic Life Monitoring

List of Acronyms

As described in Section A2 of the multi-basin QAPP plus a few additions found only in this Appendix.

7Q2	Minimum 7-day, 2-year discharge
ADV	Acoustic Doppler Velocimeter
BLOBs	Binary Large Objects
DOC	Demonstration of Capability
DQO	Data Quality Objective
NELAC	National Environmental Lab Accreditation Conference
RBP	Rapid Bioassessment Protocol
RWA	Receiving Water Assessment
SS	Special Study
SWQMIS	Surface Water Quality Monitoring Information System
USGS	United State Geological Survey

SS-A3 Distribution List

Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Kelly Rodibaugh, Project Manager Clean Rivers Program MC-234 (512) 239-1739

Sharon Coleman Acting Lead CRP Quality Assurance Specialist MC-165 (512) 239-6340

Cathy Anderson Team Leader, Data Management and Analysis Team MC-234 (512) 239-1805

Houston-Galveston Area Council 3555 Timmons Lane, Suite 120 Houston, Texas 77027

Todd Running, Project Manager (713) 993-4549

Jean Wright, Quality Assurance Officer (713) 499-6660

The Houston-Galveston Area Council will provide copies of this project plan and any amendments or appendices of this plan to each person on this list and to each sub-tier project participant, e.g., subcontractors, other units of government. H-GAC will document distribution of the plan and any amendments and appendices, maintain this documentation as part of the project's quality assurance records, and will ensure the documentation is available for review.

Sub-Tier Participating Organizations to receive copies of the Appendix include: The Environmental Institute of Houston and Eastex Environmental Laboratory

SS-A4 PROJECT/TASK ORGANIZATION

Description of Responsibilities

<u>TCEQ</u>

Sarah Eagle CRP Work Leader As described in the FY2018-2019 multi-basin QAPP, Section A4.

Kelly Rodibaugh CRP Project Manager & Project Quality Assurance Specialist As described in the FY2018-2019 multi-basin QAPP, Amendment #1.

Sharon R. Coleman Acting CRP Lead Quality Assurance Specialist As described in the FY2018-2019 multi-basin QAPP, Section A4.

Cathy Anderson Team Leader, Data Management and Analysis (DM&A) Team As described in the FY2018-2019 multi-basin QAPP, Section A4.

Peter Bohls CRP Data Manager, DM&A Team As described in the FY2018-2019 multi-basin QAPP, Section A4.

Houston-Galveston Area Council (H-GAC)

Todd Running H-GAC Project Manager As described in the FY2018-2019 multi-basin QAPP, Section A4.

Jean Wright H-GAC Quality Assurance Officer As described in the FY2018-2019 multi-basin QAPP, Section A4.

Bill Hoffman H-GAC Data Manager As described in the FY2018-2019 multi-basin QAPP, Section A4.

Environmental Institute of Houston (EIH) University of Houston Clear Lake (UHCL)

Dr. George Guillen EIH CRP Project Manager As described in the FY2018-2019 multi-basin QAPP, Section A4.

Jenny Oakley CRP Data Manager, Field Supervisor & Quality Assurance Officer As described in the FY2018-2019 multi-basin QAPP, Section A4.

Eastex Environmental Laboratory

Daniel Bowen Laboratory Director - Eastex Environmental Laboratory (Contract Lab) As described in the FY2018-2019 multi-basin QAPP, Section A4.

Natalia Bondar

Eastex Lab QAO

As described in the FY2018-2019 multi-basin QAPP, Section A4.

SS-A5 Problem Definition/Background

The primary goal of the H-GAC Clean Rivers Program is to provide the appropriate quality assured data to allow continuing assessment and management of water quality in the San Jacinto River Basin as well as four other basins located in the region. Objectives of this monitoring program include local participation in the collection and submittal of quality-assured data to assist the TCEQ in attaining reliable information concerning water quality conditions within the basin. Impairments and/or concerns are frequently carried forward due to the lack of current data sufficient enough to reassess a waterbody. To this end, H-GAC, in partnership with the Environmental Institute of Houston, University of Houston – Clear Lake (EIH), will be conducting biological monitoring and habitat assessments on one stream segment that had concerns carried forward in the *2014 Texas Integrated Report* approved by EPA in November 2015.

Assessment Unit (AU) 1009_02, is a perennial stream flowing from the US 290 to SH 249. This assessment unit has a high aquatic life use (ALU) designation but a concern for impaired microbenthic community in the 2014 Texas Integrated Report.

The purpose of this Special Study QAPP Appendix is to define the quality assurance processes with respect to this project. Data describing the physical, chemical, and biological characteristics of each waterbody will be collected.

This Special Study QAPP Appendix will be reviewed and approved by the TCEQ to ensure that data generated for the purposes described are scientifically valid and legally defensible. This review and approval process will also ensure that all project data submitted to SWQMIS have been collected, analyzed, and handled in ways that are consistent with existing protocol to ensure data quality compatibility.

SS-A6 Project/Task Description

EIH will conduct Aquatic Life Monitoring at one location in the San Jacinto River Basin (Basin 10). The selected site is located on Cypress Creek (Segment 1009). This site was selected because TCEQ's 2014 Integrated Report identified this site as being on the Water Bodies with Concerns for Use Attainment and Screening Levels. More data is needed to evaluate its current status. All sampling associated with this project will be completed between March 15, 2019, and June 30, 2019.

All monitoring will be conducted in accordance with TCEQ's Surface Water Quality Monitoring Procedures Manual, Volume 1: Physical and chemical Monitoring Methods (RG-415, Revised August 2012) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014) plus the applicable updates to Volume 1 & Volume 2. One sampling event will be conducted at the selected location. The one sampling event will be conducted during the non-critical index period between March 15, 2019, and June 30, 2019, as defined by TCEQ. The one sampling event will be completed when stream conditions reflect normal flow conditions. Data to be collected during the one sampling event will include field multi-probe parameters, diel (24hour) measurements, routine water chemistry samples, flow measurements and observations, a fish survey, a benthic macroinvertebrate survey, and a stream physical habitat survey. Additionally, the following items will be submitted to the TCEQ with all data submittals: copies of field notes and forms, latitude/longitude coordinates of each reach, color photographs, and the required biological data documentation as described in the Surface Water Quality Monitoring Data Management Reference Guide (DMRG) (most recent version). All data and files submitted will conform to the requirements set forth in the DMRG. Biological data requirements are specifically addressed in chapter 12 of the DMRG which include the submission of Binary Large Object (BLOB) files. The data will be analyzed using the regional approach as outlined in the Regionalization of the Index of Biotic Integrity for Texas Streams currently used by the TCEQ. All new data will be submitted to TCEQ using this approved regional metrics format.

Amendments to the Appendix

Amendments to the Special Study Appendix may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the H-GAC Project Manager to the CRP Project Manager electronically. Amendments are effective immediately upon approval by the H-GAC Project Manager, the H-GAC QAO, the CRP Project Manager, the CRP Lead QA Specialist and/or the TCEQ QA Manager (or designee), the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved

Special Study Appendix or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of the multi-basin QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP should be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation. Amendments will be incorporated into this Appendix by way of attachment and distributed to personnel on the distribution list by the H-GAC Project Manager.

SS-A7 Quality Objectives and Criteria

The overall goal of this project is for EIH to collect environmental data describing the physical, chemical, and biological characteristics of this one waterbody. TCEQ may use this data to compare against the assigned water quality standards for the stream segment and aquatic life use designations/dissolved oxygen (DO) criteria. The data will be provided to the TCEQ and may be used in future water quality assessments and/or to make water quality management decisions for this waterway.

During the one sampling event, EIH will collect field parameters, flow, and water samples to analyze for water quality parameters and bacteria. A sonde will be deployed to collect 24-hour data for the basic field parameters – temperature, conductivity, dissolved oxygen, and pH. Multi-parameter sondes will be deployed in accordance with the requirements outlined in *TCEQ's Surface Water Quality Monitoring (SWQM) Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012)*. Additionally, EIH will collect habitat data, freshwater macrobenthic data per the rapid bio-assessment protocol (RBP), and freshwater nekton data according to procedures outlined in the most current *SWQM Procedures Manual, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014)*.

The one sampling event is to occur during the non-critical index period of March 15, 2019, through June 30, 2019 (as defined in the SWQM Procedures, Volume 2). Conditions during the sampling event should include stable, unscoured flow conditions, ideally when the flow is at or just above, the 7Q2 for the particular stream. If flow conditions are not stable or do not reflect baseline conditions, the sampling will be rescheduled. If an extreme weather event occurs, such as significant drought or heavy rains, or if the stream has been dry, the sampling event will be delayed for an appropriate amount of time as determined by the SWQM Procedures, Volume 2. Data will be assigned a "BS" monitoring type code, representing biased-season monitoring, when submitted to TCEQ.

EIH will perform biological monitoring complete with vouchering of individual, representative fish species collected during seining and shocking efforts. Fish data collected by seining will be reported separately from fish data collected by shocking. Collected aquatic invertebrates will be preserved and stored. Habitat assessment and diel data along with field parameters and observations, water chemistry and bacteriological samples and flow will be collected when biological monitoring is performed. All biological monitoring will be performed per TCEQ's *Surface Water Quality Monitoring Procedures, Volume 1: Physical and chemical Monitoring Methods (RG-415, Revised August 2012)* and

Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014) plus the applicable updates to Volume 1 & Volume 2.

- Fish collection methods will include both seining and electrofishing. All fish data will be collected and submitted by collection type (seining or shocking). If unable to employ multiple gear types, effort will be increased accordingly using the available gear. To obtain information on the composition and integrity of the fish community, all collected fish will be identified and enumerated to promote an accurate representation of the fish community.
- Benthic macroinvertebrates will be collected using the rapid bioassessment protocols (RBPs) approved by TCEQ. The qualitative collection methods employed will include 5-minute kicknets and snag sampling. At least one representative of each benthic macroinvertebrate taxon collected will be preserved and retained as a voucher specimen. There are no plans to sample depositional habitats such as pools.
- Habitat assessments will be conducted by completing the 3 TCEQ assessment forms:
 - Stream Physical Characteristics Worksheet Part I;
 - Summary of Physical Characteristics of Water Body Part II; and
 - Habitat Quality Index (HQI) Part III.

The measurement performance specifications (MPS) to support the project purpose for a minimum data set are specified in the tables found in SS–Appendix A. The MPS tables have been modified to reflect actual parameters, methods, etc. employed by EIH and the contract lab. Procedures for laboratory analysis are in accordance with the most recently published edition of Standard Methods for the Examination of Water and Wastewater and 40 CFR 136.

Ambient Water Reporting Limits (AWRLs)

As described in Section A7 of the multi-basin QAPP

Precision

As described in Section A7 of the multi-basin QAPP

Bias

As described in Section A7 of the multi-basin QAPP.

Representativeness

Per the TCEQ *Surface Water Quality Monitoring Procedures Manual, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014),* biological organisms should be collected and identified in a manner that accurately reflects the biological community composition at the time of sampling. Bioassessment data should be collected during the index period with one event conducted during critical conditions; the prevailing theory being that if the standards attainment criteria are met during the most stressful conditions, it is expected that these criteria would be met during other seasons as well. One sampling event was conducted at this location in August 2017, the second sampling event at this location will be collected during the non-critical index period between March 15, 2019, and June 30, 2019. This monitoring site was chosen for this special study because of concerns carried forward from past Integrated Reports. The site represents conditions commonly found along the entire length of the waterway. The site is located in the middle of the segment and accessible with some effort. Investigators should find a good variety of microhabitats to sample while avoiding major tributaries and contaminant sources.

Comparability

As described in Section A7 of the multi-basin QAPP.

Completeness

As described in Section A7 of the multi-basin QAPP.

SS-A8 Special Training/Certification

As described in section A7 of the multi-basin QAPP. Additionally, EIH personnel have attended TCEQ's Biological Monitoring Training Course. EIH's field QAO (or their designee) evaluates and documents each employee's demonstration of capabilities for their personnel files. These records are shared with H-GAC and made available during the routine monitoring systems audits.

SS-A9 Documents and Records

As described in Section A9 of the multi-basin QAPP. Plus, EIH shall complete documentation required by Chapter 12 of the DMRG, in BLOB format. All data, including biological, will be entered into SWQMIS. Data and biological attachments will be submitted in the formats required by the DMRG (most recent version).

Document/Record for PL	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	TCEQ/H-GAC/EIH	7	Paper
Field SOPs	H-GAC/EIH	7	Paper
Laboratory QA Manuals	Eastex Lab	7	Current version – electronic & paper; prior versions paper only
Laboratory SOPs	Eastex Lab	7	Current version – electronic & paper; prior versions paper only
Laboratory Staff Training Records	Eastex Lab	7	Paper
QAPP distribution documentation	EIH	7	Paper
Field staff training records	H-GAC	7	Paper
Field equipment calibration/maintenance logs	EIH	7	Paper
Field instrument printouts	EIH	7	Paper
Field notebooks or data sheets	H-GAC/EIH	7	Paper
Data Summary Packets	H-GAC/EIH	7	Paper
Chain of custody records	H-GAC/EIH & Eastex Lab	7	Paper
Laboratory calibration records	Eastex Lab	7	Paper
Laboratory instrument printouts	Eastex Lab	7	Paper
Laboratory data reports/results	Eastex Lab	7	Paper
Laboratory equipment maintenance logs	Eastex Lab	7	Paper
Corrective Action Documentation	H-GAC/EIH &/or Eastex Lab	7	Paper

Table SS-A9.1. Project Documents and Records: Environmental Institute of Houston (EIH)

SS-B1 Sampling Process Design

The data collection design is summarized in Table SS-B1.1 (Sample Design and Schedule) and Figures SS-B1a-c (Sample Site Maps). See Table SS-A7.1a-i for a list of all parameters being collected under each category.

Sample Design Rationale and Site Selection Criteria

Biological sampling will be conducted once during the non-critical Index Period of FY 2019 (March 15, 2019 through June 30, 2019) at one monitoring site located on Segment 1009. This segment has been identified as needing additional or more current information to reassess in a future Integrated Report. The station selected will have field, flow, bacteria, and conventional lab parameters collected. Diel monitoring will be conducted along with habitat, microbenthic community and fish community assessments.

Table SS-B1.1 Sample Design and Schedule, FY 2019

Site Description	Station ID	Waterbody ID	Region	SE	CE	МТ	24 hr DO	АдНаb	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Conventional Lab	Amb Tox Water	Amb Tox Sed	Bacteria	Flow	Fish Tissue	Field	Comments
																						This special
CYPRESS CREEK AT SH 249																						project is for
(Lat. 29.985556, Long95.570274)	11331	1009	12	HG	UI	BS	1	1	1	1					1			1	1		1	FY2019 only

Figures SS-B1. Sampling Site Maps

Maps of station monitored by the EIH are provided below. The maps were generated using Goggle Maps. These maps are for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning these maps, contact the Jean Wright at 713-499-6660.

Figures SS-B1a. Sampling Station 11331 (Lat. 29.985556, Long. -95.570274) located on Cypress Creek at SH 249 south of Tomball, TX and west of I-45. (Zoomed out)

Figures SS-B1b. Sampling Station 11331 (Lat. 29.985556, Long. -95.570274) located on Cypress Creek at SH 249 south of Louetta Rd., south of Tomball, TX.

Figures SS-B1c. Sampling Station 11331 (Lat. 29.985556, Long. -95.570274) located on Cypress Creek at SH 249 (aerial close-up)

SS-B2 Sampling Methods

Field Sampling Procedures

Field sampling will be conducted using procedures documented in the TCEQ's Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014). Additional aspects outlined in Section B below reflect specific requirements for sampling under the Clean Rivers Program and/or provide additional clarification.

Field Monitoring and Conventional Water Quality Sampling Procedures

As described in Section B2 of the multi-basin QAPP, plus EIH investigators will deploy a multi-probe data sonde for a period of 24 hours to capture the diel variation in temperature, DO, pH, and specific conductance, following the guidance for 24-hour DO measurements in the *SWQM Procedures, Volume 1*.

Hydrologic Monitoring Procedures

Hydrologic monitoring will be conducted using the standard method described in TCEQ's *Surface Water Quality Monitoring Procedures Volume 1: Physical and Chemical Monitoring Methods (RG-415, Revised August 2012).* This data will include an instantaneous discharge measurement that is collected during the sampling event.

Habitat Characterizations and Biological Monitoring Procedures

Habitat characterizations and biological monitoring will be conducted using procedures specified in TCEQ's *Surface Water Quality Monitoring Procedures Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014).* Benthic macroinvertebrate samples will be collected for qualitative analysis using RBP procedures. Macroinvertebrates collected using the standard D-frame kicknet method will be supplemented (and combined) with individuals attached to snags located in riffles and/or runs. Nekton samples will be collected using both seining and electrofishing techniques from all habitats present. Each site's nekton samples will be processed and kept separate so that data from electrofishing and seining will not be combined into one sample. "Time fished over a fixed distance" will be recorded for the site. Habitat characterization will consist of observations and measurements from at least 5 transects at the site. In addition, general qualitative observations about the entire reach where the biotic assessments are conducted will be recorded. Voucher specimens and photographs will be taken during the sampling event.

Sample volume, container types, minimum sampling volume, preservation requirements, and holding time requirements

As described in Section B2 of the multi-basin QAPP.

Table SS-B2. Sample Storage, Preservation, and Handling Requirements

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to 4°C	1 L	7 days
Sulfate	water	Plastic	Cool to 4°C	100 ml ³	28 days
Chloride	water	Plastic	Cool to 4°C	100 mL ³	28 days
<i>E. coli</i> IDEXX Colilert ¹	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours ¹
TKN	water	Plastic	Cool to 4°C H ₂ SO ₄ to pH <2	500 mL ²	28 days
Ammonia-N	water	Plastic	Cool to 4°C H ₂ SO ₄ to pH <2	125 mL ²	28 days
Nitrite + nitrate-N	water	Plastic	Cool to 4°C, H ₂ SO ₄ to pH <2	125 mL ²	28 days
Phosphorus-P, total	water	Plastic	Cool to 4°C H₂SO₄ to pH <2	125 mL ²	28 days
Fish Vouchers	water	Plastic	10% Formalin in field, store in Formalin for at least one week, soak in fresh water each day for three days, transfer to 50% isopropyl alcohol or 75% ethanol for indefinite storage	As needed to submerge samples without crowding	7 days in Formalin, indefinite for isopropyl alcohol or ethanol
Benthic Macroinverte brates	water	Plastic	If processing in the field, 70% ethanol or 40% isopropyl alcohol. If processing in the lab immediately after collection, 95% ethanol. If processing in the lab at least a week after collection, 10% Formalin. Transfer to 70% ethanol or 40% isopropyl alcohol for indefinite storage	As needed to submerge samples without crowding (no more than half full)	7 days in Formalin, indefinite for isopropyl alcohol or ethanol

1 *E.coli* samples analyzed by SM 9223-B should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours. 2 Five tests are analyzed from one 1L plastic bottle.

3 One 500 mL plastic container is used to collect these three samples.

4. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

Sample Containers

As described in Section B2 of the multi-basin QAPP

Processes to Prevent Contamination

As described in Section B2 of the multi-basin QAPP

Documentation of Field Sampling Activities

As described in Section B2 of the multi-basin QAPP. Additional forms for biological field work, identification/ enumeration bench sheets, and tracking logs can be found in Appendix SS-B.

Recording Data

As described in Section B2 of the multi-basin QAPP.

Sampling Method Requirements or Sampling Process Design Deficiencies, and Corrective Action

As described in Section B2 of the multi-basin QAPP

SS-B3 Sample Handling and Custody

Sample Tracking

As described in Section B3 of the multi-basin QAPP.

Sample Labeling

As described in Section B3 of the multi-basin QAPP. Labeling of biological specimens will be completed as described in the TCEQ's *Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014).*

Sample Handling

As described in Section B3 of the multi-basin QAPP plus any special handling of biological samples will be conducted using procedures outlined in TCEQ's *Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416, Revised May 2014).*

Sample Tracking Procedure Deficiencies and Corrective Action

As described in Section B3 of the multi-basin QAPP.

SS-B4 Analytical Methods

The analytical methods, associated matrices, and performing laboratories are listed in Table SS-A7.1 of section SS-A7. The authority for analysis methodologies under CRP is derived from the 30 Tex. Admin. Code Ch. 307, in that data generally are generated for comparison to those standards and/or criteria. The Standards state "Procedures for laboratory analysis must be in accordance with the most recently published edition of the book entitled Standard Methods for the Examination of Water and Wastewater, the TCEQ Surface Water Quality Monitoring Procedures as amended, 40 CFR 136, or other reliable procedures acceptable to the TCEQ, and in accordance with chapter 25 of this title." Laboratory SOPs are consistent with EPA requirements, as specified in the method. Copies of laboratory QMs and SOPs are retained by Eastex Laboratory and are available for review by H-GAC or TCEQ upon request.

Standards Traceability

As described in Section B4 of the multi-basin QAPP.

Analytical Method Deficiencies and Corrective Actions

As described in section B4 of the multi-basin QAPP.

SS-B5 Quality Control

Sampling Quality Control Requirements and Acceptability Criteria

As described in Section B5 of the multi-basin QAPP.

Laboratory Measurement Quality Control Requirements and Acceptability Criteria

As described in Section B5 of the multi-basin QAPP.

Quality Control or Acceptability Requirements Deficiencies and Corrective Actions

As described in Section B5 of the multi-basin QAPP.

SS-B6 Instrument/Equipment Testing, Inspection, and Maintenance

As described in Section B6 of the multi-basin QAPP.

SS-B7 Instrument Calibration and Frequency

As described in Section B7 of the multi-basin QAPP.

SS-B8 Inspection/Acceptance of Supplies and Consumables

As described in Section B8 of the multi-basin QAPP.

SS-B9 Acquired Data

As described in Section B9 of the multi-basin QAPP. Only data collected directly under this QAPP is submitted to the SWQMIS database.

SS-B10 Data Management

As described in Section B10 of the multi-basin QAPP.

Data Dictionary

Terminology and field descriptions are included in the most recent version of the DMRG. A table outlining the entities that will be used when submitting data under this QAPP is included below for the purpose of verifying which entity codes are included in this QAPP.

Name of Entity	Tag Prefix	Submitting Entity	Collecting
			Entity
Environmental Institute of	1	HG	UI
Houston – University of			
Houston Clear Lake			

SS-C1 Assessments and Response Actions

As described in Section C1 of the multi-basin QAPP.

Corrective Action

As described in Section C1 of the multi-basin QAPP.

SS-C2 Reports to Management

Reports to Planning Agency Project Management

As described in Section C2 of the multi-basin QAPP.

Reports to TCEQ Project Management

As described in Section C2 of the multi-basin QAPP.

Reports by TCEQ Project Management

As described in Section C2 of the multi-basin QAPP.

SS-D1 Data Review, Verification, and Validation

As described in Section D1 of the multi-basin QAPP.

SS-D2 Verification and Validation Methods

As described in Section D2 of the multi-basin QAPP.

SS-D3 Reconciliation with User Requirements

As described in Section D2 of the multi-basin QAPP.

SS-APPENDIX A – Measurement Performance Specifications

TABLE SS-A7.1a Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Field Par	ameters				
Parameter	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)	s.u	water	EPA 150.1 and TCEQ SOP V1	00400	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)***	meters	other	TCEQ SOP V2	89864	Field
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)***	meters	other	TCEQ SOP V2	89865	Field
POOL LENGTH, METERS***	meters	other	TCEQ SOP V2	89869	Field
% POOL COVERAGE IN 500 METER REACH***	%	other	TCEQ SOP V2	89870	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field

*** To be routinely reported when collecting data from perennial pools.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE SS-A7.1b Measurement Performance Specifications for Environmental Institute of Houston (EIH) University of Houston - Clear Lake

Flow Paramete	ers				
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
STREAM FLOW ESTIMATE (CFS)	cfs	Water	TCEQ SOP V1	74069	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416). Table SS-A7.1c Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

	Conventional Parameters in Water													
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	LOQ	LOQ Check Sample %Rec	Precision (RPD of LCS/LCSD)	Bias %Rec. of LCS	Lab				
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	Eastex				
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500 NH3 G	00610	0.1	0.1	70-130	20	80-120	Eastex				
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70-130	20	80-120	Eastex				
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70-130	20	80-120	Eastex				
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	SM 4500-N _{org} B or C and SM 4500-NH3 C	00625	0.2	0.2	70-130	20	80-120	Eastex				
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500 - NO3 F	00630	0.05	0.04	70-130	20	80-120	Eastex				
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	SM 4500 P E	00665	0.06	0.06	70-130	20	80-120	Eastex				
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70-130	20	80-120	Eastex				
SULFATE (MG/LAS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70-130	20	80-120	Eastex				

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE SS-A7.1d Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Bacteriological Parameters in Water													
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	LOQ	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab			
E. COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	Eastex			
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex			

* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

** E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the

Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE SS-A7.1e Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

24-Hour Parame	ters in Water				
Parameter	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG	DEG C	Water	TCEQ SOP V1	00209	field
WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX	DEG C	Water	TCEQ SOP V1	00210	field
TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN	DEG C	Water	TCEQ SOP V1	00211	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG	uS/cm	Water	TCEQ SOP V1	00212	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX	uS/cm	Water	TCEQ SOP V1	00213	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN	uS/cm	Water	TCEQ SOP V1	00214	field
PH, S.U., 24HR MAXIMUM VALUE	std. units	Water	TCEQ SOP V1	00215	field
PH, S.U., 24HR, MINIMUM VALUE	std. units	Water	TCEQ SOP V1	00216	field
WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00221	field
SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00222	field
pH, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00223	field
DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89855	field
DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89856	field
DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89857	field
DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	89858	field

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416). TABLE SS-A7.1f Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Biological - Habitat										
Parameter	Units	Matrix	Method	Parameter Code	Lab					
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	Water	TCEQ SOP V2	00061	Field/EIH					
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	Field/EIH					
STREAM TYPE; 1=PERENNIAL 2=INTERMITTENT S/PERENNIAL POOLS 3=INTERMITTENT 4=UNKNOWN	NU	Water	NA/Calculation	89821	Field/EIH					
STREAMBED SLOPE (M/KM)	М/КМ	Other	NA/Calculation	72051	Field/EIH					
AVERAGE PERCENTAGE INSTREAM COVER	%	Other	TCEQ SOP V2	84159	Field/EIH					
STREAM ORDER	NU	Water	TCEQ SOP V2	84161	Field/EIH					
NUMBER OF LATERAL TRANSECTS MADE	NU	Other	TCEQ SOP V2	89832	Field/EIH					
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	Other	TCEQ SOP V2	89835	Field/EIH					
TOTAL NUMBER OF STREAM BENDS	NU	Other	TCEQ SOP V2	89839	Field/EIH					
NUMBER OF WELL DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89840	Field/EIH					
NUMBER OF MODERATELY DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89841	Field/EIH					
NUMBER OF POORLY DEFINED STREAM BENDS	NU	Other	TCEQ SOP V2	89842	Field/EIH					
TOTAL NUMBER OF RIFFLES	NU	Other	TCEQ SOP V2	89843	Field/EIH					
DOMINANT SUBSTRATE TYPE(1=CLAY,2=SILT,3=SAND,4=GRAVEL,5=COBBLE,6=BOULDER,7=B EDROCK,8=OTHER)		Sediment	TCEQ SOP V2	89844	Field/EIH					
AVERAGE PERCENT OF SUBSTRATE GRAVEL SIZE OR LARGER	%	Other	TCEQ SOP V2	89845	Field/EIH					
AVERAGE STREAM BANK EROSION (%)	%	Other	TCEQ SOP V2	89846	Field/EIH					
AVERAGE STREAM BANK SLOPE (DEGREES)	deg	Other	TCEQ SOP V2	89847	Field/EIH					
HABITAT FLOW STATUS, 1=NO FLOW, 2=LOW,3=MOD,4=HIGH	NU	Other	TCEQ SOP V2	89848	Field/EIH					
AVERAGE PERCENT TREES AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89849	Field/EIH					
AVERAGE PERCENT SHRUBS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89850	Field/EIH					
AVERAGE PERCENT GRASS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89851	Field/EIH					
AVERAGE PERCENT CULTIVATED FIELDS AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89852	Field/EIH					
AVERAGE PERCENT OTHER AS RIPARIAN VEGETATION	%	Other	TCEQ SOP V2	89853	Field/EIH					
AVERAGE PERCENTAGE OF TREE CANOPY COVERAGE	%	Other	TCEQ SOP V2	89854	Field/EIH					
DRAINAGE AREA ABOVE MOST DOWNSTREAM TRANSECT*	km2	Other	TCEQ SOP V2	89859	Field/EIH					
REACH LENGTH OF STREAM EVALUATED (M)	m	Other	NA/Calculation	89884	Field/EIH					
AVERAGE STREAM WIDTH (METERS)	М	Other	TCEQ SOP V2	89861	Field/EIH					
AVERAGE STREAM DEPTH (METERS)	М	Other	TCEQ SOP V2	89862	Field/EIH					

TABLE SS-A7.1f Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Biological - Habitat									
Parameter	Units	Matrix	Method	Parameter Code	Lab				
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)	M	Other	TCEQ SOP V2	89864	Field/EIH				
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)	М	Other	TCEQ SOP V2	89865	Field/EIH				
AVERAGE WIDTH OF NATURAL RIPARIAN VEGETATION (M)	М	Other	TCEQ SOP V2	89866	Field/EIH				
AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON LEFT BANK (M)	М	Other	NA/Calculation	89872	Field/EIH				
AVERAGE WIDTH OF NATURAL RIPARIAN BUFFER ON RIGHT BANK (M)	m	Other	NA/Calculation	89873	Field/EIH				
AESTHETICS OF REACH(1=WILD 2=NAT. 3=COMM. 4=OFF.)	NU	Other	TCEQ SOP V2	89867	Field/EIH				
NUMBER OF STREAM COVER TYPES	NU	Other	TCEQ SOP V2	89929	Field/EIH				
LAND DEVELOP IMPACT (1=UNIMP,2=LOW,3=MOD,4=HIGH)	NU	Other	TCEQ SOP V2	89962	Field/EIH				
RIPARIAN VEGETATION %; LEFT BANK - TREES	%	Other	NA/Calculation	89822	Field/EIH				
RIPARIAN VEGETATION %; RIGHT BANK - TREES	%	Other	NA/Calculation	89823	Field/EIH				
RIPARIAN VEGETATION %; LEFT BANK SHRUBS	%	Other	NA/Calculation	89824	Field/EIH				
RIPARIAN VEGETATION %; RIGHT BANK - SHRUBS	%	Other	NA/Calculation	89825	Field/EIH				
RIPARIAN VEGETATION %: LEFT BANK - GRASSES OR FORBS	%	Other	NA/Calculation	89826	Field/EIH				
RIPARIAN VEGETATION %; RIGHT BANK - GRASSES OR FORBS	%	Other NA/Calculation		89827	Field/EIH				
RIPARIAN VEGETATION %: LEFT BANK - CULTIVATED FIELDS	%	Other	NA/Calculation	89828	Field/EIH				
RIPARIAN VEGETATION %: RIGHT BANK - CULTIVATED FIELDS	%	Other	NA/Calculation	89829	Field/EIH				
RIPARIAN VEGETATION %: LEFT BANK - OTHER	%	Other	NA/Calculation	89830	Field/EIH				
RIPARIAN VEGETATION %: RIGHT BANK - OTHER	%	Other	NA/Calculation	89871	Field/EIH				
AVAILABLE INSTREAM COVER HQI SCORE: 4=ABUNDANT 3=COMMON 2=RARE 1=ABSENT	NU	Other	NA/Calculation	89874	Field/EIH				
BOTTOM SUBSTRATE STABILITY HQI SCORE: 4=STABLE 3=MODERATELY STABLE 2=MODERATELY UNSTABLE 1=UNSTABLE	NU	Other	NA/Calculation	89875	Field/EIH				
NUMBER OF RIFFLES HQI SCORE: 4=ABUNDANT 3=COMMON 2=RARE 1=ABSENT	NS	Other	NA/Calculation	89876	Field/EIH				
DIMENSIONS OF LARGEST POOL HQI SCORE: 4=LARGE 3=MODERATE 2=SMALL 1=ABSENT	NU	Other	NA/Calculation	89877	Field/EIH				
CHANNEL FLOW STATUS HQI SCORE: 3=HIGH 2=MODERATE 1=LOW 0=NO FLOW	NU	Other	NA/Calculation	89878	Field/EIH				
BANK STABILITY HQI SCORE: 3=STABLE 2=MODERATELY STABLE 1=MODERATELY UNSTABLE 0=UNSTABLE	NU	Other	NA/Calculation	89879	Field/EIH				
CHANNEL SINUOSITY HQI SCORE: 3=HIGH 2=MODERATE 1=LOW 0=NONE	NU	Other	NA/Calculation	89880	Field/EIH				

TABLE SS-A7.1f Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Biological - Habitat										
Parameter	Units	Matrix	Method	Parameter Code	Lab					
RIPARIAN BUFFER VEGETATION HQI SCORE: 3=EXTENSIVE 2=WIDE 1=MODERATE 0=NARROW	NU	Other	NA/Calculation	89881	Field/EIH					
AESTHETICS OF REACH HQI SCORE: 3=WILDERNESS 2=NATURAL AREA 1=COMMON SETTING 0=OFFENSIVE	NU	Other	NA/Calculation	89882	Field/EIH					
HQI TOTAL SCORE	NU	Other	NA/Calculation	89883	Field/EIH					
LENGTH OF STREAM EVALUATED (KM)	КМ	Other	NA/Calculation	89860	Field/EIH					
STREAMBED SLOPE (FT/FT)	FT/FT	Other	NA/Calculation	72052	Field/EIH					
NO FLOW ISOLATED POOL: LARGEST POOL MAX WIDTH (M	М	Other	NA/Calculation	89908	Field/EIH					
NO FLOW ISOLATED POOL: LARGEST POOL MAX LENGTH (М	Other	NA/Calculation	89909	Field/EIH					
NO FLOW ISOLATED POOL: LARGEST POOL MAX DEPTH (M	М	Other	NA/Calculation	89910	Field/EIH					
NO FLOW ISOLATED POOL: SMALLEST POOL MAX DEPTH (М	Other	NA/Calculation	89911	Field/EIH					
NO FLOW ISOLATED POOL: SMALLEST POOL MAX WIDTH (М	Other	NA/Calculation	89912	Field/EIH					
NO FLOW ISOLATED POOL: SMALLEST POOL MAX LENGTH	М	Other	NA/Calculation	89913	Field/EIH					
NO FLOW ISOLATED POOLS: NUMBER OF POOLS EVALUATED	NU	Other	NA/Calculation	89914	Field/EIH					

* From USGS map.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE SS-A7.1g Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

Biological - Benthics (Quantitative)									
Parameter	Units	Matrix	Method	Parame ter Code	Lab				
STREAM ORDER	NU	Water	TCEQ SOP V1	84161	Field/EIH				
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	Field/EIH				
QUANTITATIVE PROTOCOLS REGIONAL BENTHIC MACROINVERTEBRATE IBI SCORE	NS	Other	NA/Calculation	90085	Field/EIH				
BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUALS IN SUB-SAMPLE, 2=NUMBER OF INDIVIDUALS/FT2, 3=NUMBER OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS IN SAMPLE)	NU	Other	TCEQ SOP V2	89899	Field/EIH				
UNDERCUT BANK AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89921	Field/EIH				
OVERHANGING BRUSH AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89922	Field/EIH				
GRAVEL BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89923	Field/EIH				
SAND BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89924	Field/EIH				
SOFT BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89925	Field/EIH				
MACROPHYTE BED AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89926	Field/EIH				
SNAGS AND BRUSH AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89927	Field/EIH				
BEDROCK STREAMBED AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89928	Field/EIH				
MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM)	cm	Other	TCEQ SOP V2	89946	Field/EIH				
BENTHIC SAMPLE COLLECTION METHOD (1=SURBER, 2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY, 6=SNAG, 7=HESS)	NU	Other	TCEQ SOP V2	89950	Field/EIH				
ECOREGION LEVEL III (TEXAS ECOREGION CODE)	NU	Other	TCEQ SOP V1	89961	Field/EIH				
AREA OF SNAG SURFACE SAMPLED (SQ.MT)	m2	Other	TCEQ SOP V2	89975	Field/EIH				
BENTHOS ORGANISMS -NONE PRESENT (0=NONE PRESENT)	NS	Other	TCEQ SOP V2	90005	Field/EIH				
BENTHIC GATHERERS, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90025	Field/EIH				
TOTAL TAXA RICHNESS, BENTHOS	NU	Other	TCEQ SOP V2	90055	Field/EIH				
TOTAL NUMBER OF INTOLERANT TAXA, BENTHOS	NU	Other	TCEQ SOP V2	90058	Field/EIH				
CHIRONOMIDAE, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90062	Field/EIH				
TOLERANT BENTHOS, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90066	Field/EIH				

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

 TABLE SS-A7.1h
 Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of

 Houston - Clear Lake
 Image: Clear Lake

Biological - Benthics (Qualitative)										
Parameter	Units	Matrix	Method	Paramet er Code	Lab					
STREAM ORDER	NU	Water	TCEQ SOP, V1	84161	Field/EIH					
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	Field/EIH					
RAPID BIOASSESSMENT PROTOCOLS BENTHIC MACROINVERTEBRATE IBI SCORE	NS	Other	NA/Calculation	90081	Field/EIH					
BENTHIC DATA REPORTING UNITS (1=NUMBER OF INDIVIDUALS IN SUB-SAMPLE, 2=NUMBER OF INDIVIDUALS/FT2, 3=NUMBER OF INDIVIDUALS/M2, 4=TOTAL NUMBER OF INDIVIDUALS IN SAMPLE)		Other	TCEQ SOP V2	89899	Field/EIH					
KICKNET EFFORT,AREA KICKED (SQ.METER)	m2	Other	TCEQ SOP V2	89903	Field/EIH					
KICKNET EFFORT, MINUTES KICKED (MIN.)	min.	Other	TCEQ SOP V2	89904	Field/EIH					
DEBRIS/SHORELINE SAMPLING EFFORT, MINUTES	min.	Other	TCEQ SOP V2	89905	Field/EIH					
NUMBER OF INDIVIDUALS IN BENTHIC SAMPLE	NU	Other	TCEQ SOP V2	89906	Field/EIH					
UNDERCUT BANK AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89921	Field/EIH					
OVERHANGING BRUSH AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89922	Field/EIH					
GRAVEL BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89923	Field/EIH					
SAND BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89924	Field/EIH					
SOFT BOTTOM AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89925	Field/EIH					
MACROPHYTE BED AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89926	Field/EIH					
SNAGS AND BRUSH AT COLLECTION POINT (%)	%	Other	TCEQ SOP V2	89927	Field/EIH					
BEDROCK STREAMBED AT COLLECTION POINT (%)	%	Sediment	TCEQ SOP V2	89928	Field/EIH					
MESH SIZE, ANY NET OR SIEVE, AVERAGE BAR (CM)	cm	Other	TCEQ SOP V2	89946	Field/EIH					
BENTHIC SAMPLE COLLECTION METHOD (1=SURBER, 2=EKMAN, 3=KICKNET, 4=PETERSON, 5=HESTER DENDY, 6=SNAG, 7=HESS)	NU	Other	TCEQ SOP V2	89950	Field/EIH					
ECOREGION LEVEL III (TEXAS ECOREGION CODE)	NU	Other	TCEQ SOP V1	89961	Field/EIH					
BENTHOS ORGANISMS -NONE PRESENT (0=NONE PRESENT)	NS	Other	TCEQ SOP V2	90005	Field/EIH					
HILSENHOFF BIOTIC INDEX (HBI)	NU	Other	TCEQ SOP V2	90007	Field/EIH					
NUMBER OF EPT INDEX	NU	Other	TCEQ SOP V2	90008	Field/EIH					
DOMINANT BENTHIC FUNCTIONAL FEEDING GRP, % OF INDIVIDUALS	%	Other	TCEQ SOP V2	90010	Field/EIH					
BENTHIC GATHERERS, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90025	Field/EIH					
BENTHIC PREDATORS, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90036	Field/EIH					
DOMINANT TAXON, BENTHOS PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90042	Field/EIH					

TABLE SS-A7.1h Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake

RATIO OF INTOLERANT TO TOLERANT TAXA, BENTHOS	NU	Other	TCEQ SOP V2	90050	Field/EIH
NUMBER OF NON-INSECT TAXA	NU	Other	TCEQ SOP V2	90052	Field/EIH
ELMIDAE, PERCENT OF INDIVIDUALS	%	Other	TCEQ SOP V2	90054	Field/EIH
TOTAL TAXA RICHNESS, BENTHOS		Other	TCEQ SOP V2	90055	Field/EIH
CHIRONOMIDAE, PERCENT OF INDIVIDUALS		Other	TCEQ SOP V2	90062	Field/EIH
PERCENT OF TOTAL TRICHOPTERA INDIVIDUALS AS HYDROPSYCHIDAE		Other	TCEQ SOP V2	90069	Field/EIH

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods

for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE SS-A7.1i Measurement Performance Specifications for Environmental Institute of Houston (EIH) - University of Houston - Clear Lake									
Biological	- Nekton								
Parameter	Units	Matrix	Method	Parameter Code	Lab				
STREAM ORDER	NU	Water	TCEQ SOP V1	84161	Field/EIH				
NEKTON TEXAS REGIONAL IBI SCORE	NS	Other	NA/Calculation	98123	Field/EIH				
BIOLOGICAL DATA	NS	Other	NA/Calculation	89888	Field/EIH				
SEINE, MINIMUM MESH SIZE, AVERAGE BAR, NEKTON,IN	IN	Other	TCEQ SOP V2	89930	Field/EIH				
SEINE, MAXIMUM MESH SIZE, AVG BAR, NEKTON,INCH	IN	Other	TCEQ SOP V2	89931	Field/EIH				
NET LENGTH (METERS)	М	Other	TCEQ SOP V2	89941	Field/EIH				
ELECTROFISHING METHOD 1=BOAT 2=BACKPACK 3=TOTEBARGE	NU	Other	TCEQ SOP V2	89943	Field/EIH				
ELECTROFISH EFFORT, DURATION OF SHOCKING (SEC)	SEC	Other	TCEQ SOP V2	89944	Field/EIH				
SEINING EFFORT (# OF SEINE HAULS)	NU	Other	TCEQ SOP V2	89947	Field/EIH				
COMBINED LENGTH OF SEINE HAULS (METERS)	М	Other	TCEQ SOP V2	89948	Field/EIH				
SEINING EFFORT, DURATION (MINUTES)	MIN	Other	TCEQ SOP V2	89949	Field/EIH				
ECOREGION LEVEL III (TEXAS ECOREGION CODE)	NU	Other	TCEQ SOP V1	89961	Field/EIH				
AREA SEINED (SQ METERS)	M2	Other	TCEQ SOP V2	89976	Field/EIH				
NUMBER OF SPECIES, FISH	NU	Other	TCEQ SOP V2	98003	Field/EIH				
NEKTON ORGANISMS-NONE PRESENT (0=NONE PRESENT)	NS	Other	TCEQ SOP V2	98005	Field/EIH				
TOTAL NUMBER OF SUNFISH SPECIES	NU	Other	TCEQ SOP V2	98008	Field/EIH				
TOTAL NUMBER OF INTOLERANT SPECIES, FISH	NU	Other	TCEQ SOP V2	98010	Field/EIH				
PERCENT OF INDIVIDUALS AS OMNIVORES, FISH	%	Other	TCEQ SOP V2	98017	Field/EIH				
PERCENT OF INDIVIDUALS AS INVERTIVORES, FISH	%	Other	TCEQ SOP V2	98021	Field/EIH				
PERCENT OF INDIVIDUALS AS PISCIVORES, FISH	%	Other	TCEQ SOP V2	98022	Field/EIH				
PERCENT OF INDIVIDUALS WITH DISEASE OR ANOMALY	%	Other	TCEQ SOP V2	98030	Field/EIH				
TOTAL NUMBER OF NATIVE CYPRINID SPECIES	NU	Other	TCEQ SOP V2	98032	Field/EIH				
PERCENT INDIVIDUALS AS NON-NATIVE FISH SPECIES (% OF COMMUNITY)	%	Other	TCEQ SOP V2	98033	Field/EIH				
TOTAL NUMBER OF INDIVIDUALS SEINING	NU	Other	TCEQ SOP V2	98039	Field/EIH				
TOTAL NUMBER OF INDIVIDUALS ELECTROFISHING	NU	Other	TCEQ SOP V2	98040	Field/EIH				
TOTAL NUMBER OF BENTHIC INVERTIVORE SPECIES	NU	Other	TCEQ SOP V2	98052	Field/EIH				
NUMBER OF INDIVIDUALS PER SEINE HAUL	NU	Other	TCEQ SOP V2	98062	Field/EIH				
NUMBER OF INDIVIDUALS PER MINUTE ELECTROFISHING	NU	Other	TCEQ SOP V2	98069	Field/EIH				
PERCENT INDIVIDUALS AS TOLERANT FISH SPECIES (EXCLUDING WESTERN MOSQUITOFISH)		Other	TCEQ SOP V2	98070	Field/EIH				
TOTAL NUMBER OF INDIVIDUALS IN SAMPLE, FISH	NU	Other	TCEQ SOP V2	98023	Field/EIH				
PERCENT OF INDIVIDUALS AS TOLERANTS, FISH	%	Other	TCEQ SOP V2	98016	Field/EIH				

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.)

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

SS-APPENDIX B – Field and Bench Sheets for Aquatic Life Monitoring and Habitat Assessments

Environmental Institute of Houston, University of Houston-Clear Lake Field Datasheets for Aquatic Life Monitoring and Habitat Assessments

Environmental Institute of Houston - University of Houston Clear Lake

Clean Rivers Program Field Datasheet

Station ID:							Sample T	ime:
Location:				Lat:		L	.ong:	
Collected By:								
FIELD M	EASUREMENTS	(If < 1.5m deep - record @ 0.3m from	n surface; If ≥ 1	.5m deep - perform	n profile @ 0.3	Im from bottom	n, @ middle, and	@ 0.3m from surface)
	1	2		3			4	5
Temp (C)								
Conductivity (uS)								
Salinity (psu)								
DO (%sat)								
DO mg/L								
рН								
Depth (m)								
			FIELD OBSI	ERVATIONS				
	TOTAL DEPTH (m)			PRESENT	WEATHER	1-clear 2-partly 4-rain 5-other	cloudy 3-cloudy
	WATER ODOR	1-sewage 2-oily/chemical 3-rotten egg 4-musky 5-fishy 6-none 7-other			FLOW SEV	ERITY	1-no flow 2-low 4-flood 5-high 6	r 3-normal ∂-dry
	WATER SURFACE	1-calm 2-ripples 3-waves 4-whitecap		FLOW (cfs)				
	WIND INTENSITY	1-calm 2-slight 3-moderate 4-strong			FLOW MET	HOD	ric 3-mechanical doppler	
	WATER COLOR	1-brownish 2-reddish 3-greenish 4-blackish 5-clear 6-other		SECCHI DI	SK appear (m))		
NA	TIDE STAGE	1-low 2-falling 3-slack 4-rising 5-high			SECCHI DI	SK disappear ((m)	
	DAYS SINCE LAST	SIG. RAINFALL			RECREATIONAL USE 1=1° observed, 2=2° observed, 3=non-contact observed, 4=1° evidence, 5=2° evidence, 6=nor contact evidence. 7=no evidence			ed, 2=2° observed, 3=non-contact 1° evidence, 5=2° evidence, 6=non- ct evidence, 7=no evidence
			WATER S	AMPLES				
	FRESH	🗆 E. coli			MARINE			Enterococcus
	(Non-Tidal)				(Tidal)			
Conta	ainer	Preservative	Analysis	Requested			Commer	its
1L Pla	astic	Ice						
500mL I	Plastic	Ice + 2mL H ₂ SO ₄		TKN				
500mL I	Plastic	Ice	C	I, SO ₄				
100mL I	Plastic Plastic	Ice + N ₂ S ₂ O ₃ tablet	Bacter	ria (<i>E. coli</i>)				
		ADDITIO	NAL INFORI	ATION & REA	IARKS			
* If site is drv o	r intermittent.	determine if there is any a	ool with 5	00m reach.	If pool(s)	exists (>	10 m in ler	ngth and 0.4m deep)

* If site is dry or intermittent, determine if there is any pool with 500m reach, If pool(s) exists (> 10 m in length and 0.4m deep) record: Lat ______ Long_____ of largest pool in reach. Maximum pool width_____(m), Maximum pool depth ______(m), Pool length ______(m), and percent pool coverage in 500m reach _____%.

Stream:				Date:	
Station:	Task				
Description:					
Time Begin:	Time End	1:	Meter Type:		
Observers:		Stream Wi	dth:	_ Section Width (W):
Observations:					
Section Midnaint	Section Depth	Observational	Veloci	ty (V)	Flow (Q)
(ft) (m)	(ft) (m) (cm)	Depth**	At Point	Average	(m³/s) (ft³/s)
(11) (11)	(D)	(ft)(m)	(ft/s)(m/s)	(ft/s)(m/s)	Q = (W)(D)(V)
				1	
				<u> </u>	
				- 1	
				1	
				-	
				-	
				4	
				<u>}</u>	
				╂────┼	
				1	
				1	
				4 T	
				1	
				<u>}</u>	
				┼───┼	
				1	
m3/s x 35.3 =ft3/s			Total Flow (Dis	scharge) (Σ Q)	
*See attached Di	scharge Summ	ary	Field Disch	arge (Σ Q)	

Stream Flow (Discharge) Measurement Form

Environmental Institute of Houston – University of Houston Clear Lake

Benthic Macroinvertebrate Collection Data

Stream Name:	Date:	Time:						
Location of Site:					TCEQ ID:			
Latitude:	Longitude:				County:			
Collectors:								
Sampling Method: (1) Surber (2) Ekman (3) Kicknet (4) F	: Riffle Run/Glide	Snag Pool						
Snags/Shoreline Effort (min. picke	od:							
Mesh Size (cm): Total Area Kicked (n			Sample Duration (min):					
COMPOSITION OF SAMPLE ARE	A MICRO	HABITAT	СОМРО	SITIC	ON OF KICKED SA	MPLE AREA		
Undercut bank (%):					Number of microhabitats sampled			
Overhanging brush (%):	Debris/Snag	S						
Gravel substrate (%):	Vegetation S	Stands						
Sand substrate (%):	Rootwads							
Soft bottom (%):	Detritus/Lea	fpacks						
Macrophytes (%):	Other							
Snags and brush (%):	Comments:		•					
Bedrock (%):								

Observations / Comments:

Habitat order preference: (1) riffle, (2) run or glide, (3) snag, (4) pool Microhabitat preference: cobble/gravel, debris (snags), emergent vegetation, rootwads, sand, bedrock Snags/Shoreline effort: snags are only to be sampled after riffle & run habitats are eliminated (i.e. only if 5min duration not met during riffle/run effort)

Environmental Institute of Houston – University of Houston Clear Lake

Fish Collection Data

		Scientific	Collect	ion Perr	nit No						
Stream Name:							Date: Time:				
Location of Site:							TCEQ ID:				
Collectors:							County:				
				SAMF	LING METHO	D					
Electrofisher Type	Ra	nge: 🗆 Lo	w 🗆 H	High		Mo	ode: 🗆 DC				
Boat Backpack Backpack Backpack	□ Boat □ Backpack ■ Backpack				Pu	ulses per Sec					
□ Tote barge	Volts: Freque		ency:	ncy: Amps:			Pulse Width:				
Seine	Le	ngth (m):		1	Mesh Size (in.)	:		Duratio	on (min):		
Gill Net	Le	ngth (m):			Mesh Size (in.)	:		Duratio	on (min):		
Trawl	Wi	dth (m):			No. Hauls:			Duratio	on (min):		
Cast Net	Dia	ameter (ft):			No. Casts:			Duratio	on (min):		
Other											
SAMPLING RESULTS											
Sample Method	nck)	Sample	Hab	itat	Sample Duration	Sample Duration Se			Comments		
		Event NO.	YF		(0 = 1111, 20 = 300)		Length (m)				

*Habitat type: Riffle, Run/Glide, Pool

Page <u>1</u> of ____

Environmental Institute of Houston – University of Houston Clear Lake

Fish Photo Voucher Report

Stream Name:			Date:		Time:				
Collectors:			Sci. Collect. Permit No.:						
Sample Method (S = seine, ES = electroshock)	Sample Event No.	Common Name Scientific Nam	e or Std. Length (mm)		Photo Infor	Mortality (Y/N)			
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No	Dhata #			
					Yes	Photo #			
					NO	Photo #			
					res No	1 11010 #			
					Vos	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No	Dhoto #			
					Yes	Photo #			
					NO	Photo #			
					No	1 11010 #			
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
					No				
					Yes	Photo #			
		1			No				

Stream Physical Characteristics Worksheet (overall characteristics)

								Page 1 of			
Observers:	Date:			Time Time	Time start: Time end:						
Current Weather Conditions:											
Stream Name:			TCEQ Segment:								
Location of Site/TCEC	Q Site #:	Read	h Length (k	m):	Ν	lumber	of Tran	sects:			
Observed Stream Use	es:										
Stream Type (circle one): Perennial Intermittent w/ perennial pools											
Total Stream Bends	# Well- defined	# i de	moderately- efined			# poo define	# poorly- defined				
Overall Aesthetics (cir	cle one): (1) Wild	erness	(2) Natu	ral	(3) Con	nmon	(4) Off	ensive			
Channel Obstructions	or Modifications (des	cribe):					🗆 Flo	w recorded			
Overall Channel Flow	Status (circle one):	High	Moderate	Low No Flow Total no. riffles							
Land Development Im (1) Un-impacted (2) L	pact: ow (3) Moderate (4) I	High	Max. Poo Max. Poo	ol Depth (m): ol Width (m):							
			Pools cov	'er	%	of the to	otal read	ch.			
Notes				5	Stream SI	ope Alon	ig Evaluate	ed Reach			
				U/S, [Circle D/S or exti	ra Ro	eading	Slope			
Site Map	P D/S	Point A U/S Extr	a								
				P	oint B						
				D/S	U/S Extr	a					
				Р	oint C						
				D/S	U/S Extr	a					

IT IS RECOMMENDED THAT YOU WALK THE LENGTH OF THE STREAM BANK AND MARK OUT TRANSECTS AND 6M BOXES USING FLAGS. START HABITAT ASSESSMENT AT DOWNSTREAM-MOST TRANSECT (TRANSECT 1) AND WORK YOUR WAY BACK UP STREAM. THIS FORM SHOULD BE FILLED OUT DURING AND AFTER COMPLETION OF STREAM ASSESSMENT.

*Reach Length = 40x average stream width (min. = 150m; max. = 500m)

*Number of transects: 150-300m reach = 5 (no greater than 75m apart); 301-500m = 6 (no greater than 100m apart)

To determine distance between transects: (Total reach length) / (# transects - 1) = X meters

*Stream type: see quick reference guide

*Stream bends: see quick reference guide (counted while performing assessment)

*Overall aesthetics: see quick reference guide

^{*}Channel obstructions or modifications: fencing, log jams, culverts, low water bridges, channelization, levees, and concrete/rip-rap

^{*}Channel flow status: see quick reference guide, NOT TO BE CONFUSED WITH FLOW SEVERITY

^{*}Total number of riffle: cumulative total of riffles within entire sample reach (counted while performing assessment)

^{*}Land development impact: see quick reference guide (completed after performing assessment)

^{*}Maximum pool depth and width: see quick reference guide for definition of pool (measured while performing assessment)

Quick Reference Guide and Definitions

Transect layout:

Stream type:

Stream bends:

Perennial: consistent flow throughout the year, though velocity and water level may change depending on season Intermittent with perennial pools: may be dry at times of the year but pools persist throughout length of reach

Overall aesthetics:	Wilderness: landscape pristine; usually wooded/un-pastured; no evidence of human alteration (i.e. mowing, cutting, etc.) Natural: trees/native veg. common; some alteration may be evident but minimal (i.e. field/pasture, buildings, etc.) Common: fairly altered by man but not offensive (i.e. park, mowing/cutting, etc.); water clarity usually colored or turbid Offensive: stream does not enhance aesthetics of landscape (littered, highly developed, etc.); water colored or very turbio							
Channel flow status:	High: water reaches base at both banks (<5% of substrate exposed) Moderate: water fills >75% of available channel (<25% of substrate exposed) Low: water fills 25-75% of channel and riffle substrates are mostly exposed No flow: very little water in channel, mostly present as standing pools or stream is dry							
Bank Slope:	Place one end of survey rod at water's edge and lay it on the ground perpendicular to the stream channel; place clinometer on top of survey rod and record angle reading. If bank has many large irregularities, measure and determine average. If bank has many small irregularities, take one overall bank angle reading.							
	Gently sloping bank (angle <90°): can be Vertical bank (angle = 90°): If vertical por vertical portion as well as angle at the Undercut bank (angle >90°): place surve	e read directly off clinometer ortion ≥3.0m, record vertical me le top and average readings ey rod flush against roof, invert	asuremen clinomete	t; if vertical portion ≤0.3m, measure er for reading; subtract value from 180°				
Reach Slope:	Using surveyor's level (SL) and stadia r and one at downstream-most portion. I you have to move the SL at any point, r there. To obtain overall slope: subtract	od collect a minimum of 2 obse f there are lots of bends to the r e-shoot most recently recorded the upstream reading from the	rvations: c each, you point from downstrea	one at upstream-most portion or reach I may have to take multiple readings. If n new SL location and continue from am reading.				
	Example 1: Point A (D/S) reading = 4.65	55m; Point B (U/S) reading = 4.	455m:	4.655m - 4.455m = 0.20m				
	Example 2: Point A (D/S) = 4.655m; Po	int B (extra) = 4.505m; Point C	(U/S) = 4.4	445m				
	Point A – Point B = $4.655m$ – Point B – Point C = $4.505m$ –	4.505m = 0.15m 4.455m = 0.05m	Stream B	ed Slope Over Evaluated Reach: 0.15m + 0.05m = 0.20m				
Habitat type:	Riffle: shallow portion of stream charact Run: relatively shallow portion of stream Glide: characterized by slow-moving, la Pool: water velocity is slow, depth great	erized by rapidly moving, turbu n characterized by fast-moving, minar flow; velocity is slow but er than riffle, run, or glide (ofter	lent water non-turbu uniform ac n contain e	consistently flowing downstream ilent flow consistently flowing downstream cross channel w/o eddies eddies with varying directions of flow)				
Dominant substrate type:	Clay/Silt = <0.06mm Sand = 0.06-2.00mm Gravel = 2.01-60mm Cobble = 6.0-25.0cm	Boulders = 25.1-45cm Large Boulders = >45cm Bedrock = exposed bedrock (f	typically u	nbroken, large sections)				

Stream Physical Characteristics – Transect 1 (bottom of reach)

			Date:			TCE	EQ Site #:									
Location (at cen	on of Transe ter of transec	ect: N ct) W						Distan	ce from to	op of reach	ו (m)					
Channel Flow Status (circle one): High Moderate Low No Flow Stream Width (m)																
RB Slo	ope (°)		RB Erosio	n Potenti	al (%)		LB Slope ((°) LB Erosion Potential (%)								
	S	Stream De	pths (at poir	its acros	s transect)	(m) [T	halweg (m):] Avg							
Habita R G	t Type (circl iffle Ru ilide Po	e one) In Dol	Dominant Substrate Type (circle one) Substrate gravel or larger (%) Clay Silt Sand Gravel Cobble Boulder Bedrock Other (Description:))								el					
Macro	phytes (circ	le one) A	Abundant Co	ommon F	Rare Abse	nt	Algae (ciro	cle one)	Abundant	Common	Rare At	osent				
V	Vidth of Natu Buffer (m)	ural)	Ripa	rian Vege	etation Typ	es – RI	B (%)	Riparian Vegetation Types – LB (%)								
RB			Trees	Sh	rubs	Gra	SS	Trees	S	hrubs	Grass					
LB			Cultivated Fields		Other			Cultivated Fields	k	Other						
# Instr	# Instream Cover Types Instream Cover (%) Tree Canopy Cover (%)															
Photog	graphs 🛛	Data shee	sheet 🗆 U/S 🗆 LB 🗆 D/S 🗆 RB 🛛 RB 🛛 CR CL LB Tota								Total					
Notes																

TRANSECT 1 IS AT BOTTOM OF SAMPLE REACH (FARTHEST AWAY FROM LOCATION OF WATER QUALITY SAMPLES) AND TRANSECT LINES SHOULD BE PERPENDICULAR TO STREAM FLOW. LEFT/RIGHT BANK DETERMINED BY STREAM FLOW (LOOKING DOWNSTREAM).

*Definitions

Channel flow status: see quick reference guide

Stream width: measure only wetted width of channel (water's edge to water's edge)

Slope: see quick reference guide

Erosion potential: measured along and 3m adjacent to either side of transect; 100% = totally bare, 0% = covered by thick vegetation/hard rock **Stream depth:** measured at 11 equally spaced locations along transect (beginning and ending at water's edge)

Habitat type: see quick reference guide

Dominant substrate type: see quick reference guide

Substrate gravel or larger: estimated percentage of substrate along and 3m adjacent to either side of transect

Macrophytes and algae: determine presence along and 3m adjacent to either side of transect; estimate abundance

Width of natural buffer: distance from water to edge of natural vegetation, road, mowed grass, etc.; record up to 20m (if more, record as >20m)

Instream cover types: determine number of physical structures which provide shelter for fish and benthic macroinvertebrates

Examples: woody debris, rood wads, leaf packs, gravel or > substrate, artificial cover, undercut banks, vegetation, etc.

Percent instream cover: estimate percentage of instream cover along and 3m adjacent to either side of transect (3-D within water column) Tree canopy cover: hold densitometer 0.3m above water surface; each out of 17; Total % = (RB+CR+CL+LB)/68; 0% = open, 100% complete cover

TAKE PHOTOGRAPHS AT EVERY TRANSECT ALONG THE REACH!

Page ____ of ____

EASTEX ENVIRONMENTAL LAB, INC.

P.O. Box 1089

P.O. Box 631375

Coldspring, TX 77331 Nacogdoches, TX 75963-1375

(936) 653-3249 * (800) 525-0508

(936) 569-8879 * FAX (936) 569-8951

ANALYSIS REQUESTED

Company	: Environmental Institu	ute of Houst	on		Bill to	:			Attn:									O ₄)							
Address:	2700 Bay Area Blvo	l, Box 540			Address: Phone: Email:													H_2S							
	Houston TX 77058	3																۲ ٦							
Attn:	Jenny Oakley				Rema	rks:												1000							
Phone#:	281-283-3947														0 ³)			3 (1							
Fax#:	281-283-3953 Em	ail: oakley@	⊉uhcl.edu												a ₂ S ₂			NC 4	O4)						
P.O. #															Ž	(Tr	_	0 ² .	H_2S						
Sampler's N	ame (print)				Sample	r's Signa	ature								0ml	00m	OmL	04, N	Ľ mĽ						
Project Num	ber	Project Na	me:		I							Cont	ainers	5	oli (1(SO4 (5	(100	, ТРС	I (500						
Sample ID	Spec. Cond (μS)	Date	Time	C or G	DO	рН	Cl ₂	Flow	Temp	Matrix	Tot #	Size	Туре	Pres	ы Ш	CI, S	TSS	NH_3	TKN						
				G						ww															
				G						ww															
				G						ww															
				G						ww															
				G						ww															
				G						14/14/															
				G																					<u> </u>
				G																		\rightarrow	_		
				G																		\dashv			
		_		G																┢━┥		\rightarrow	_	\rightarrow	
Relinquished	By:		Date	G	Time		Received	By:		VV VV				Date			Time							<u> </u>	
Relinquished	By:		Date		Time		Received	By:						Date			Time		R			ed:	VES	/ NC	0
Relinquished	By:		Date		Time		Received By	and/or Che	cked in By:					Date			Time		R	eceiv	red los	ed:	YES	/ N(<u> </u>
LAB USE OF Alternate Che	NLY Sample Condition A eck In:	cceptable: Date	YES ,	/ NO Time	Temp	°C	Logged	In By:						Date			Time							<u>, ne</u>	<u> </u>

Environmental Institute of Houston, University of Houston-Clear Lake Benchtop Datasheets for Aquatic Life Monitoring and Habitat Assessments

Date: Time: Employee name:															
Battery voltage: Sonde Type and Serial No.															
Calibration															
Function		Temp. of Standard	Value of Standard	Init Read	ial ding	Calibrated to	ed to Comments								
Specific conductance ≥ ²	1,000 µS/cm						Z	Zero Check □Pass □Fail; Value =							
Conductivity cell consta	nt						F	Range 5.0 \pm 0.5							
PH calibrated (~7)															
pH mv for pH 7 solution		Range 0 ± 50 mv													
pH slope (~ 4/10)															
pH mv for pH 10 pH mv for pH 4							R R	Range: -130 to -230 m Range: 130 to 230 mv	V						
Dissolved oxygen (%sat	t) *														
Dissolved oxygen charg	e						F	Range 25 to 75							
Dissolved oxygen gain							F	Range 0.7 to 1.4							
Optional Sensors (inclue	de parameter:														
turbidity, etc.)															
		DATA NEE	DED FOR DIS	SOLVE	D OX	YGEN CALIBRA	ATION	1							
Altitude (A) =	feet above r	nsl			Bar	ometric pressur	e	inches	mm						
Barometric	Pressure (BP) Optic	ons				Barometr	ric Pre	essure Formulas							
Barometer			Barometric	pressur	e (inc	hes)	× 25.4	1 = BPmm							
From local source after	correction (CBP)		BP	mm	= CE	8Pmm	- 2.5	(altitude/100)							
Estimated from altitude	only		BP	mm	n= 760) mm - 2.5 (altitu	Ide	/100)							
DO % saturation stand	ard calculation	Denley	DU% sat S				п <u>д</u> //	60 × 100							
Logging interval: SD	I-12 Autosleen enat	Depioyi	2 autosleen er	abled.		warm-up	niy) Batti	erv volts in Sonde	Available memory in						
Yes No Ye	s No	Yes	No	abrear	time	e:	(day	s):	Sonde (days):						
			Post-Ca	librati	on C	heck									
Date: Battery Voltage:		Time:	Employee I Sonde Typ	Name:	erial N	10									
Duttery Voltage.		Temp. of	Value of	Init	ial	Deen Deet Co	12								
Function		Standard	Standard	Read	ding	Pass Post-Ca	11.5	nments							
Specific conductance															
pH calibrated (~7)															
Dissolved oxygen (%sat	t) *														
Optional Sensors (inclue	de parameter:														
turbidity, etc.)															
Location of Deployment	, Routine Run, or S	pecial Study:				Date/Time De	ployed	d: C	Date/Time Retrieved:						
Use(circle or	Use(circle one): 24-hour Continuous Grab														
MAINTENANCE—Refe	MAINTENANCE—Refer to Chapter 8 for maintenance requirements—Perform temperature check along with regular maintenance. The laboratory														
Sensor	Date	Initials	Mainte	nance (Comp	leted									
рН															
DO															
Specific Conductance															
Annual NIST traceable check		La	ab The	ermometer Tem	p:	Correction	Factor:								
Maintenance temperature check	:	La	ab The	ermometer Tem	p:	I									
Factory maintenance/re	pair notes:	1													

Project & Location:_____

TCEQ-20116 (Rev. 03/01/2012)

Method of collection:

Site ID:

Name of identifier:

Location of collection:

Date of collection:

Initials and date sorting completed:

Date identification/enumeration completed:

Scientific Name	Number of Individuals
Total Number of Individuals	

Modified from: TCEQ-20232 (rev. 10/21/2005)

EIH/UHCL Fish Laboratory Bench Sheet

Site ID:								
Location of collection:								
Date of collection:								
Gear Type: of								
Name of identifier:								
Date identification/enumeration completed:								
Scientific Name	Number of Individuals							
Total number of individ	luals							

Modified from: TCEQ-20236 (rev. 10/21/2005)