Houston-Galveston-Brazoria (HGB)

PM$_{2.5}$ Advance

Path Forward Update

PREPARED IN PARTNERSHIP WITH MEMBERS OF THE
H-GAC REGIONAL AIR QUALITY PLANNING ADVISORY COMMITTEE

2020 UPDATE
Green Power Program ... 25
Solar Power Purchase ... 25
EVolve Houston ... 26
Reinventing Cities .. 26
Property Assessed Clean Energy Program .. 26
Residential Energy Efficiency Program (REEP) .. 26
Energy Efficiency .. 27
Green Buildings and Energy Efficiency .. 27
Smart City Streetlight Initiative .. 27
EPA Green Power Partner of the Year .. 27
Texas Southern University Autonomous Shuttle .. 27
Parking Guidance System ... 28
LED Lighting Conversion Program ... 28
“Smart Fleet” Municipal Fleet Air Quality Monitoring Project ... 28
Green Fleet Study ... 28
Green Fleets ... 29
Sustainable Fleet ... 29
Anti-Idling Policies .. 29
Concrete Batch Plants .. 30
Energy Efficiency at the Airports ... 30
Houston Airport System Emissions Reductions .. 31
Bike Share Program .. 32
Safe Passage Ordinance and Complete Streets Policy ... 32
FCC Recycling Facility .. 33
Metal Recyclers Task Force (MAPPs) .. 33
Bayou Greenways 2020 .. 33
Voluntary Environmental Compliance Agreements .. 33
Harris County .. 33
Community Air Monitoring Program ... 33
Concrete Batch Plant Initiative ... 34
Electric Vehicle Fleet .. 34
Harris County Engineering Department Green Vehicle Pilot Study .. 34
Harris County Toll Road Authority (HCTRA) .. 35
Houston BCycle Expansion Program ... 35
Metropolitan Transit Authority of Harris County ... 35
Light Rail Expansion & New Bus Network ... 35
Bus Fleet ... 35
METRO Bikes on Buses .. 36
METRO STAR Vanpool Program .. 36
Port Houston .. 36
Bayport Expansion and Increased Efficiency ... 36
Cleaner, More-Efficiently Operating Cranes ... 36
Lynx and Container Tracking Mobile App ... 37
Bayport Terminal Operational Improvements ... 37
Gate Automation .. 37
Truck Pre-Advise Program ... 37
Partnerships .. 37
Broadway Double Track Project ... 38
Electrification of Fleet .. 38
ACKNOWLEDGEMENTS

RAQPAC Members & Alternate Members
1. Aaron Dunn, Harris County / Aresha Davwa (Local Government)
2. Andrew Mao, Texas Department of Transportation / Charles Airiohuodion (Local Government)
3. Bakeyah Nelson, Air Alliance Houston / Harrison Humphreys (Citizen/Environmental)
4. Dale Kornegay, Associated General Contractors / Marc Anderson (Business/Industry)
5. Edmund Petry, METRO / Vincent Sanders (Local Government)
6. Gary Scoggin, Regional / Jose Boix (Citizen/Environmental)
7. Grace Tee Lee, Environmental Defense Fund / Ken Adler (Citizen/Environmental)
8. Kristen Lee, Harris County Precinct 2 / Jeffrey Parsons (Local Government)
9. Jeff Goebel, Montgomery County / Tim Weems (Local Government)
10. Joe Ripple, Brazoria Region / Christina Moore (Citizen/Environmental)
11. Joel Patterson, Fort Bend County / Joe Carte (Local Government)
12. Kaitlyn Murphy, Greater Houston Partnership / Steven Will (Business/Industry)
13. Kristen Gauthier, City of La Porte (Local Government)
14. Kathryn Campbell, League of Women Voters of the Houston Area (Citizen/Environmental)
15. Latrice Babin, Harris County Pollution Control / Stuart Mueller (Local Government)
16. Loren Hopkins, City of Houston / Nguyen Ly (Local Government)
17. Mustapha Beydoun, Houston Advanced Research Center / Ebrahim Eslami (Citizen/Environmental)
18. Luis LaRotta, City of Houston / Don Richner (Local Government)
19. Paulette Wolfson, American Lung Association (Citizen/Environmental)
20. Richard Brown, Liberty County / Sandra Pickett (Local Government)
22. Sherman Hampton, ExxonMobil Baytown / Kelly Coppola (Business/Industry)
23. Siddharth Rajmohan, Waller County (Local Government)
24. Trae Camble, Port Houston / Ken Gathright (Business/Industry)
25. Will Nipper, Dow Chemical Company / Liane M. Platt (Business/Industry)
26. Win Colbert, City of Houston / Lara Cottingham (Local Government)

EPA Staff
Carl Young
Laura Bunte

H-GAC Staff
Charles Wemple
Patrick Mandapaka
Sandra Holliday
Andrew DeCandis

TCEQ Staff
Allison Stokes
Donna Huff
Graham Bates
Melanie Rousseau
Walker Williamson
EXECUTIVE SUMMARY

H-GAC has developed the following Path Forward update in partnership with the Regional Air Quality Planning Advisory Committee (RAQPAC) and other regional stakeholders, as part of our involvement in the voluntary EPA Particulate Matter (PM) Advance Program. Participation in this program is a result of significant collaboration between local governments, key citizen/environmental groups, industry representatives, and other regional stakeholders to assist our region in continuing to meet the PM$_{2.5}$ air quality standard.

On January 12, 2015, the EPA designated the Houston-Galveston-Brazoria (HGB) region as “unclassifiable/attainment” for the 2012 primary PM$_{2.5}$ annual NAAQS. According to the federal reference methodology monitors within the HGB region, this area remains below the National Ambient Air Quality Standard for fine particle pollution. There are, however, indications that increased PM$_{2.5}$ concentrations may exist within the HGB region and beyond the existing monitoring network. More work will be needed to confirm these indications. This concern was brought to light as a consequence of discussions related to the creation of this report.

Additionally, it is anticipated that by leveraging this existing regional collaboration on voluntary projects, our region hopes to better understand these existing issues and motivate efforts to continue to reduce PM$_{2.5}$ concentrations and position the region to avoid a nonattainment designation under the current standard as well as remaining prepared for potentially more stringent future standards.

This Path Forward Update provides information about a variety of voluntary regional air quality improvement efforts. These projects range from the replacement of older heavy-duty truck and marine engines with newer, cleaner models, to funding electric vehicle charging equipment, to voluntary industry and local government air quality initiatives. H-GAC programs alone have resulted in PM$_{2.5}$ reductions in our region and it is anticipated that these H-GAC and partner-sponsored programs and projects will continue to help the region achieve reductions.
INTRODUCTION

OVERALL PROGRAM OBJECTIVE

The Particulate Matter (PM) Advance Program is a voluntary, collaborative effort between governments and key regional stakeholders within PM$_{2.5}$ attainment regions to organize and report on local efforts to continue to meet the National Ambient Air Quality Standard (NAAQS) health-based standards for PM as well as to foster an understanding of local air quality issues and promote the implementation of near-term initiatives to maintain and improve PM levels. The Houston-Galveston-Brazoria (HGB) region is currently in non-attainment for ground-level ozone but attains the standard for all other criteria pollutants. The current PM$_{2.5}$ standard, which consists of a 12.0 μg/m3 annual standard and a 35 μg/m3 24-hour standard, became effective on December 14, 2012.

MISSION OF THE ADVANCE PROGRAM

The mission of the PM Advance Program is to promote, identify, expand, and improve voluntary PM reduction efforts (both existing and potential future opportunities) within the areas where compliance with the current PM$_{2.5}$ NAAQS standard may be at risk. The HGB region is one of those at-risk areas. The Program also serves as a catalyst to encourage expanded and accelerated implementation of voluntary clean air strategies as well as to build interest and develop additional participation in PM reduction efforts in near-nonattainment areas. Participation in the PM Advance program also provides an opportunity for stakeholders to promote their own PM reduction efforts and take advantage of funding opportunities that may be available to assist with additional reduction activities.

VOLUNTARY PROGRAM SCOPE

Participation in the PM Advance program has allowed the region to maintain an ongoing collaborative platform to help identify existing PM reduction efforts and encourage the development of new efforts. Regional stakeholders have worked together annually on a voluntary basis to help develop this Path Forward in order to help meet the program’s stated mission. Program participation does not create or remove any statutory or regulatory requirements but can serve as an early action framework to maintain compliance with air quality standards. Additionally, due to the continued risk of future PM$_{2.5}$ nonattainment for the Houston-Galveston-Brazoria Region, this document hopes to focus the conversation towards the development and implementation of sustainable PM$_{2.5}$ reduction efforts. Please note: this Path Forward update remains a living document. This is the seventh iteration of this report. It is anticipated that annual re-evaluation of existing and new local measures will continue to be updated and reflected in future versions of this report.

PROGRAM DEVELOPMENT PROCESS

The H-GAC Regional Air Quality Planning Advisory Committee (RAQPAC), representing local governments, citizen/environmental groups, and business/industry stakeholders, has examined potential voluntary actions that are anticipated to reduce levels of fine particulate matter in the form of PM$_{2.5}$ within the HGB region. To this end, the H-GAC Board of Directors has authorized H-GAC staff to work with regional stakeholders to develop voluntary strategies to reduce fine particulate matter as recommended by RAQPAC and the PM$_{2.5}$ Task Force.
The RAQPAC PM$_{2.5}$ Task Force convened to collaborate on the development of the original PM Advance Path Forward. Task Force efforts included meetings to discuss and review of past, present, and potential future PM reduction projects within the eight-county HGB ozone nonattainment area amongst RAQPAC members, stakeholders, and the interested public. Efforts also included presentations on PM$_{2.5}$ composition in Houston by TCEQ and others. This Task Force was reconvened in June of 2020 to assess the current state of fine particle pollution within the H-GAC region and begin work on this most recent update of this report. Following this meeting, H-GAC staff and Task Force members began the task of updating this document to include the most up-to-date information on regional PM$_{2.5}$ reduction efforts.

THE REGION

HOUSTON-GALVESTON AREA COUNCIL

The Houston-Galveston Area Council (H-GAC) is the region-wide voluntary association of local governments for the 13-county Gulf Coast Planning region of Texas. H-GAC is also the Metropolitan Planning Organization (MPO) for the eight-county Houston-Galveston-Brazoria (HGB) area. This area includes Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery and Waller Counties. The scope of this report focuses on this eight-county HGB area and is illustrated by the map to the right.

POPULATION & EMPLOYMENT

The HGB region has experienced dramatic changes in its population size and composition over the recent decades, and these trends are expected to continue. The region is projecting a significant increase in population and employment over the next 25 years. There are currently over 7 million residents and almost 3.1 million jobs within the HGB region. By 2045, the regional population is expected to reach 10.7 million residents (an increase of 4 million people). Similarly, the region is expected to create an additional 1.6 million jobs for a total of more than 4.8 million and see a more than 60% increase in vehicular travel and a doubling of the movement of freight. Projected population growth will also result in economic changes stemming from increased purchasing power and tax revenue.

TRANSPORTATION SYSTEM

Every day, more than 199 million miles are traveled on the system’s roadways. Within our region, there are approximately 26,000 centerline miles of locally-owned roads and almost 4,000 centerline miles of state-owned facilities. In addition, the region currently has more than 190 miles of High Occupancy Vehicle (HOV)/High Occupancy Toll (HOT) lanes in operation. Regional transit includes bus routes, the

1 H-GAC, 2019: 2045 Regional Transportation Plan: 2045rtp.com
2 H-GAC 2019 Annual Mobility Report
3 TxDOT Standard Reports 2012
4 H-GAC 2015 Regional Mobility Report
The HGB region's transportation system also includes bikeways, freight rail, ports, airports, and pipelines.

Congestion remains a major challenge facing the HGB region. While the region has seen a significant decrease in congestion in 2020 as a result of the COVID-19 pandemic, it is anticipated that congestion will return in the aftermath and that the number of morning and evening peak hours will continue to increase as the number of commuters travelling to and from work increase once again. Overall, it is anticipated that congestion in our region will continue to grow given the projected population, employment, and economic growth facing our region.

AIR QUALITY BACKGROUND: AIR POLLUTION

Air pollution occurs when the air contains gases, particles, fumes, or odors that could be harmful to the health or comfort of humans and animals or which could cause damage to plants and materials. These particulate pollutants may result from naturally occurring sources such as windblown dust, wildfires, or volcanic eruptions as well as stationary sources such as factories, power plants, or other industrial sites or mobile sources such as cars, trucks, construction equipment, or airplanes.

The U.S. Environmental Protection Agency (EPA) has set both primary and secondary standards under the National Ambient Air Quality Standard (NAAQS) for six “criteria” pollutants. These pollutants include: carbon monoxide, lead, nitrogen dioxide, 10 micrometer particulate matter (PM₁₀), 2.5 micrometer particulate matter (PM₂.₅), ground-level ozone, and sulfur dioxide. The region has historically been most troubled by high concentrations of ground-level ozone, however within the last decade there have been additional concerns about elevated concentrations of PM₂.₅. It is the elevated concentrations of fine particulates and continued concern that instigated the regional participation in the PM Advance program. Through this program, as well as through other EPA-led programs, H-GAC and its partners continue to work to reduce air pollution and help the region meet federal air quality standards. These efforts have helped the region make considerable progress towards reducing both ground-level ozone and particulate matter emissions over the last decade.

PARTICULATE MATTER (PM)

Particle pollution is a complex mixture of extremely small particles originating from natural or man-made sources. This type of pollution is generally referred to as particulate matter or PM. Components of PM include particles of solids or liquids that can include: dust, fly ash, soot, smoke, aerosols, fumes, and mists as well as condensed vapors that have been suspended in the air. EPA groups particle pollution into two categories: Inhalable coarse particles (PM₁₀) and fine particles (PM₂.₅). The size of these particles is directly linked to their potential for causing health problems. Particles smaller than 10 micrometers in diameter (PM₁₀ and PM₂.₅) are able to pass through the respiratory system and deep into the lungs where they can cause serious health effects. Fine particulate matter (PM₂.₅) generally consists of soot, which is generally made up of elemental organic carbon from sources including soil and sources of sulfates, nitrates as well as other ionic species formed in the atmosphere.
PAST AND PRESENT STATUS OF PM\textsubscript{2.5} IN HGB

The HGB area has experienced significant improvements in PM\textsubscript{2.5} levels over the past decade. Historically, the region has been designated as “unclassified/attainment” for both the PM\textsubscript{2.5} and PM\textsubscript{10} particulate matter standards. Details of the particulate matter NAAQS standards can be found in the table below. Note that in 2012, EPA lowered the primary annual NAAQS for fine particles (PM\textsubscript{2.5}) to 12.0 μg/m3 to be more protective of public health.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary NAAQS</th>
<th>Averaging Period</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter (PM\textsubscript{10})</td>
<td>150 μg/m3</td>
<td>24-hour</td>
<td>Attainment/Unclassifiable</td>
</tr>
<tr>
<td>Particulate Matter (PM\textsubscript{2.5})</td>
<td>12.0 μg/m3 (2012 standard)</td>
<td>Annual (Arithmetic Mean)</td>
<td>Attainment/Unclassifiable</td>
</tr>
<tr>
<td></td>
<td>15.0 μg/m3 (1997 standard)</td>
<td>Annual (Arithmetic Mean)</td>
<td>Attainment/Unclassifiable</td>
</tr>
<tr>
<td></td>
<td>35 μg/m3</td>
<td>24-hour</td>
<td>Attainment/Unclassifiable</td>
</tr>
</tbody>
</table>

Air monitoring data collected, compiled, and validated by the Texas Commission of Environmental Quality (TCEQ) identifies the certified PM\textsubscript{2.5} annual design value5 for 2010-2012 for the HGB region as 12.1 micrograms per cubic meter (μg/m3). Over the subsequent years, TCEQ closely monitored PM\textsubscript{2.5} concentrations and found a continuing decline in annual PM\textsubscript{2.5} averages in the HGB area (see table below). On January 15, 2015, the EPA published designations for the 2012 primary annual PM\textsubscript{2.5} NAAQS. The HGB region was classified as “unclassifiable/attainment.”

5 A “design value” for an area is a statistic that is compared to the National Ambient Air Quality Standards (NAAQS) to determine the attainment status of the area. An area’s value is calculated using an arithmetic mean of the annual PM\textsubscript{2.5} averages for three consecutive years at each regulatory monitor. If an area has more than one regulatory monitor, the monitor with the highest value sets the design value for the area (EPA, 2014).
EPA most recently promulgated final area designations for the 2012 PM$_{2.5}$ NAAQS on December 18, 2014. Air monitoring data for each of these monitoring locations can be retrieved from the TCEQ Texas Air Monitoring Information System (TAMIS) web: www17.tceq.texas.gov/tamis/.

HGB MONITORING NETWORK

Over time, the monitoring system in the HGB region has expanded significantly. There are presently six sites with regulatory PM$_{2.5}$ monitors located within the region and many more non-regulatory PM$_{2.5}$ monitors operating within the region. The City of Houston, Harris County, University of Houston, Texas Commission on Environmental Quality (TCEQ), and Houston Regional Monitoring Corporation (HRM) as well as others operate these monitors as part of the regional network. Most of these monitoring stations not only measure the concentrations of the criteria pollutants in the air, but also other meteorological parameters such as air temperature and wind velocity, among others. Some of the monitoring stations also measure the levels of an additional set of selected chemicals that includes air toxics, pollen, and mold spores. Additionally, it is anticipated that TCEQ will install an additional PM$_{2.5}$ monitor in western Houston at the existing Westhollow monitor. Additional information about this monitor and the reasons for its installation can be found on Page 18 of this report.

6 All values within this chart are certified. Only the data from these regulatory monitors will be used by EPA for attainment demonstration purposes. Source: TCEQ Source: TCEQ TAMIS Database - http://www17.tceq.texas.gov/tamis/
The following table of monitoring sites lists the six HGB PM$_{2.5}$ monitor sites which are also classified as Federal Reference Method (FRM) monitor sites by the EPA. PM$_{2.5}$ data from the Houston Aldine, Baytown, Clinton, Galveston, Deer Park, and Houston North Loop monitors determine HGB attainment with the PM$_{2.5}$ NAAQS.

These federal reference monitors (FRM) utilize the appropriate sampling and analysis methods as well as quality assurance/quality control (QA/QC) protocols for use in determining attainment demonstration status with the fine particulate matter standard. Monitoring sites with FRM monitors are considered regulatory monitors. There are numerous additional PM$_{2.5}$ monitors within our region that are not considered regulatory monitors, but data from these other monitoring sites is used by TCEQ to help understand air quality data and trends and predict possible alerts.
HGB Region PM$_{2.5}$ Regulatory Monitoring Sites

<table>
<thead>
<tr>
<th>Region</th>
<th>Name</th>
<th>CAMS ID</th>
<th>Address</th>
<th>AQS Number</th>
<th>Sampler Type</th>
<th>Operational Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Baytown</td>
<td>C0148</td>
<td>7210½ Bayway Dr, Baytown</td>
<td>482010058</td>
<td>PM$_{2.5}$ (FRM)</td>
<td>1/6/1999</td>
</tr>
<tr>
<td>12</td>
<td>Clinton</td>
<td>C0403</td>
<td>9525 Clinton Dr, Houston</td>
<td>482011035</td>
<td>PM$_{2.5}$ (FRM & co-located)</td>
<td>1/1/1999 & 4/6/1999</td>
</tr>
<tr>
<td>12</td>
<td>Houston Aldine</td>
<td>C0008</td>
<td>4510½ Aldine Mail Rd, Houston</td>
<td>482010024</td>
<td>PM$_{2.5}$ (FRM)</td>
<td>8/14/2000</td>
</tr>
<tr>
<td>12</td>
<td>Galveston 99th Street</td>
<td>C1034</td>
<td>9511 Avenue V½, Galveston Airport, Galveston</td>
<td>481671034</td>
<td>PM$_{2.5}$ (FRM)</td>
<td>5/1/2013</td>
</tr>
<tr>
<td>12</td>
<td>Houston Deer Park2</td>
<td>C0035</td>
<td>4514½ Durant St, Deer Park</td>
<td>482011039</td>
<td>PM$_{2.5}$ (FRM & FEM)</td>
<td>8/10/2013</td>
</tr>
<tr>
<td>12</td>
<td>Houston North Loop</td>
<td>C1052</td>
<td>822 North Loop, Houston</td>
<td>482011052</td>
<td>PM$_{2.5}$ (FRM)</td>
<td>4/13/2015</td>
</tr>
</tbody>
</table>

To view the data from all continuous TCEQ monitors, please follow this link: www.tceq.texas.gov/airquality/monops/sites/mon_sites.html. Please be aware that the PM$_{2.5}$ monitor at the Houston North Loop site is a non-continuous monitor. Data from this monitor is made available by TCEQ on a quarterly basis after results have been manually collected and analyzed in the laboratory.

HGB PM$_{2.5}$ INVENTORY

The following PM$_{2.5}$ inventory is based on TCEQ's adjusted 2014 National Emissions Inventory (NEI) data. The NEI is a comprehensive, detailed estimate of criteria and hazardous air emissions sources. The NEI is prepared every three years by the EPA based primarily upon emission estimates and emission model inputs provided by State, Local, and Tribal air agencies for sources in their jurisdictions, and supplemented by data developed by EPA. The 2014 NEI was built from emissions data in the Emissions Inventory System (EIS). The 2014 version of the NEI is the most current edition available. Publication of the 2017 inventory is expected in early-2020.
These data are split into four emission categories: point, on-road mobile, non-road mobile and area (non-point) sources. Point sources are individually inventoried and usually located at a fixed, stationary location (heaters, boiler and cooling water towers at large industrial facilities), although portable sources are also included (some rock crushing operations). On-road mobile sources include emissions from vehicles found on roads and highways (cars, trucks, and buses); while non-road mobile sources include mobile sources not found on roads and highways (lawn mowers, construction vehicles, farm machinery, rail, airplanes, and commercial marine vessels). Area (non-point) sources include those sources that are inventoried collectively because they are too small in magnitude or too numerous to inventory as individual point sources, and which can often be estimated more accurately as a single aggregate source (residential heating, leaf blowers, and unpaved roads). The estimated emission values for TCEQ non-point sources in the chart below are taken from the Texas Air Emissions Repository (TexAER).

| TCEQ PM$_{2.5}$ Inventory for HGB (tons per year)\(^8\) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | Point Source | On-Road Mobile | Non-Road Mobile | Area Source |
| Brazoria | 1,262.53 | 72.71 | 133.78 | 4,357.80 |
| Chambers | 336.30 | 65.84 | 25.68 | 1,024.44 |
| Fort Bend | 1,640.62 | 119.80 | 156.64 | 3,222.63 |
| Galveston | 1,057.68 | 62.96 | 298.78 | 1,455.90 |
| Harris | 4,041.63 | 1,230.24 | 1,199.67 | 10,675.29 |
| Liberty | 5.56 | 41.62 | 59.63 | 2,599.84 |
| Montgomery | 85.95 | 146.40 | 124.62 | 6,330.31 |
| Waller | 7.00 | 30.72 | 28.10 | 1,543.45 |
| **Total** | **8,437.27** | **1,770.29** | **2,026.90** | **31,209.66** |

\(^7\) TCEQ’s adjusted 2014 NEI data follows the same quality assurance and quality control process as data in the Reasonable Further Progress (RFP) and Attainment Demonstration (AD) State Implementation Plan (SIP).

\(^8\) TCEQ Data Sources: 2011 rail and locomotive – 2011, 2011 area source v2, 2011 commercial marine vessels, 2011 AERR on road annual criteria, 2011 non-road annual criteria pollutants, 2011 At 2011 Drilling Rigs Controlled, 2011 aviation - if non-road. Point Source PM estimates obtained from TCEQ for 2013. The data is subject to revisions or updates. All data is subject to revisions or updates.
Houston Advanced Research Center (HARC), in partnership with Harris County, spearheaded an effort to further investigate sources of PM$_{2.5}$ within Harris County: the Harris County PM$_{2.5}$ Emissions Inventory project. At the time of the creation of this inventory, ambient air quality monitoring data indicated that the Houston area (and in particular the Clinton Drive PM$_{2.5}$ monitor) measured at near the level of the annual average PM$_{2.5}$ NAAQS.

This project was funded by a Coastal Improvement Assistance Program (CIAP) grant, administered by the U.S. Fish and Wildlife Service through Harris County. The aim of this portion of the grant was to review the PM$_{2.5}$ inventories developed by TCEQ and EPA for Harris County, make adjustments when technically justified, and provide a list of potential controls, including their efficiencies and costs that might be used to reduce PM$_{2.5}$ emissions based on the revised inventory.

This inventory summary is broken down into three categories of emissions: point, mobile and area sources using NEI inventory definitions. This inventory summary identifies unpaved roads as the predominant source of PM$_{2.5}$ within Harris County.

Since the creation of this inventory, PM$_{2.5}$ monitors within the Houston region have shown significant reductions of approximately 25% or more. It is anticipated that future versions of this inventory will show a similar magnitude of reduction.
ELEVATED PM$_{2.5}$ IN WESTERN HOUSTON

According to a recently published study conducted by Harvard University and funded by US EPA, a large plume of PM$_{2.5}$ pollution, exceeding the 12 µg/m3 NAAQS standard has been forming in western Houston. This feature had never previously been identified due to a lack of air quality monitors in that portion of the region. This new study used a combination of satellite imagery and other data to identify the elevated PM$_{2.5}$ concentrations. Based, in part, on this new study, TCEQ has stated in their 2020 Annual Monitoring Plan9 that they plan to install a new FRM PM$_{2.5}$ monitor in western Houston by December 2020.

In addition to posing a serious health risk to residents, the Harvard study suggests the need for additional research to conduct a speciation/source apportionment study to understand what is causing these increased concentrations, and to develop an action plan to reduce the sources of emissions.

PM$_{2.5}$ CONCENTRATIONS IN WESTERN HOUSTON DATA

The Harvard study10 estimated daily PM$_{2.5}$ concentrations nationwide at a resolution of 1 km x 1 km for 2000 to 2015. The study utilized 3 machine learning algorithms: 1) neural network, 2) random forest and 3) gradient boosting and more than 100 predictor variables including a unique combination of FRM PM$_{2.5}$ monitoring, EPA CMAQ, land-use, satellite, meteorological, and other data. Cross-validation methods were employed to control for overfitting and spatial and temporal autocorrelation were incorporated in modelling to improve performance. A geographically weighted regression model was used to combine results of these three machine learning approaches to obtain high resolution PM$_{2.5}$ estimates for the entire US. The model performed well up to 60 µg/m3 with an R^2 of 0.86 for the daily PM$_{2.5}$ predictions and 0.89 for the annual results.

Using the ensemble data from the Harvard study, the Environmental Defense Fund (EDF) evaluated annual PM$_{2.5}$ concentrations for the eight county Harris, Brazoria and Galveston region. As can be seen in the maps below, the data shows a steady increase in PM$_{2.5}$ concentrations in western Houston from 2013 to 2015 (the most recently available data). The ensemble analysis, including the satellite data, made it possible, for the first time, to identify this air pollution even though there were no FRM monitors located in western Houston.

EDF also evaluated the correlation between predicted ensemble data and measurements from six FRM monitors located in the Houston area. Comparison of daily ensemble and FRM data for 2015 showed a Spearman’s rho of 0.87 to 0.93. On a quarterly basis, the correlation coefficient ranged from 0.80 to 0.95. For the summer months, when PM$_{2.5}$ levels were highest, the correlation between ensemble and FRM data ranged from 0.91 to 0.95. Overall, these results indicate ensemble estimates were highly correlated with measurements from Houston area FRM PM$_{2.5}$ monitors.

The maps on the next page show, the annual average PM$_{2.5}$ concentrations in the Houston area for 2013, 2014 and 2015. As can be seen, the red areas of the map, where annual average PM$_{2.5}$ exceeds 12 µg/m3 increase each year by a substantial amount. The blue dots on the maps are the location of existing FRM PM$_{2.5}$ monitors. There is currently no FRM PM$_{2.5}$ monitor in west Houston.

HEALTH DAMAGES FROM PARTICULATE MATTER POLLUTION

Elevated levels of PM$_{2.5}$ have major health and economic consequences for residents of Houston. A new analysis11 from the Harvard School of Public Health and EDF has found that the 2015 elevated levels of PM$_{2.5}$ in Houston were responsible for over 5,200 premature deaths, and more than 49 billion in economic damages.

Particulate pollution is made up of small toxic airborne particles like dust, soot, and liquid particles, or aerosols. Most particulate pollution in Houston is from the chemical and petroleum industry, power generation, and diesel vehicles and construction equipment.

These toxic particles penetrate deep into the lungs and are linked to heart attacks, lung disease, strokes, asthma, cancer, and can lead to early death. This pollution is particularly dangerous for young people – studies show that PM$_{2.5}$ exposure can impair childhood lung development.

NEW TCEQ PM$_{2.5}$ MONITOR

In response to this new data, TCEQ is planning to install a new PM$_{2.5}$ monitor at the City of Houston’s existing Westhollow monitoring station. In selecting this site, TCEQ is following EPA requirements12 to locate the monitor in "an area of expected maximum concentration" and in areas of higher population density where people live, work and, play. The figure below shows the location of the new PM$_{2.5}$ monitor and the mean 2013 to 2015 PM$_{2.5}$ concentrations.

11 http://blogs.edf.org/health/2020/05/11/pm-standards-houston-analysis/
12 Title 40, Chapter I, Subchapter C, Part 59, Appendix D, Section 4.7.1(b)(1)
The second criteria for determining the location of FRM PM$_{2.5}$ monitors is population density. The map below shows the areas where population density is greater than 5,700 people per square mile.13 While the Westhollow site is not located in a tract where the population density exceeds 5,700 people per square mile, it is located adjacent to these higher density tracts.

NEXT STEPS

As discussed, ensemble modeling suggests that PM$_{2.5}$ concentrations in West Houston may be above the National Ambient Air Quality Standards. While the performance of this modeling has been evaluated using reference grade monitor data from eastern Houston, because no monitor data was available over West Houston, there is a need to further explore these pollution patterns and confirm accuracy of the ensemble data by conducting “ground-truthing” measurements (reference grade measurements in the area being modeled). To do this, EDF has reached out to academic researchers in Texas with expertise in atmospheric measurement campaigns, to propose a monitoring study that will not only specifically target PM$_{2.5}$ in West Houston to confirm ensemble model findings, but the study has been designed to also provide information about sources through PM$_{2.5}$ speciation data.

Because PM$_{2.5}$ is made up of several different types (species) of air pollutants with different types of air pollution sources contributing to each species, by breaking up total PM$_{2.5}$ measurements into the species components, and using wind data to look at flow patterns, the proposed measurement study could not only confirm or disprove the ensemble model, it could start to help the region understand what types of sources are contributing the most to PM$_{2.5}$ in Houston. This is key to developing effective control strategies to reduce air pollution for Houston’s residents and moving forward the efforts associated with the Advance Program.

13 We chose 5,700 people/mi2 based on “natural breaks” in the distribution of the data from ArcGIS.
PAST AND PRESENT INITIATIVES

AIR QUALITY PROGRAMS AT H-GAC

H-GAC has partnered with local and regional government agencies, citizen and environmental groups, business and industry-based organizations and other stakeholders to proactively pursue air quality improvements within our region. Currently, more than 12 major emission reduction programs are underway at H-GAC to help improve to the region’s ozone non-attainment status. These programs have multi-pollutant benefits and, despite their focus on reducing ground-level ozone, have resulted in significant PM$_{2.5}$ reductions in the past.

CLEAN VEHICLES & CLEAN SCHOOL BUS PROGRAMS

Since 1995, the Clean Vehicles Program has provided grant assistance to replace older diesel engines in both public and private fleets within the HGB region. This fuel-neutral program is designed to reduce on-road vehicle emissions by rapid turnover to newer lower emitting engines, retrofit of existing engines with approved devices, or introduce new lower emission technologies. Both of these programs are ongoing and have resulted in the replacement of hundreds of older vehicles with new, cleaner replacements.

The Clean School Bus program serves the following counties: Angelina, Austin, Brazoria, Chambers, Colorado, Fort Bend, Galveston, Hardin, Harris, Houston, Jasper, Jefferson, Liberty, Matagorda, Montgomery, Nacogdoches, Newton, Orange, Polk, Sabine, San Augustine, San Jacinto, Trinity, Tyler, Walker, Waller, and Wharton. The goal of the program is to reduce children’s exposure to diesel exhaust and reduce the amount of air pollution created by diesel school buses.

DRAYAGE LOAN PROGRAM

Since 2010, the H-GAC Drayage Loan Program has offered independent owner operator and/or trucking companies servicing HGB ports the opportunity to apply for financing to support the purchase of cleaner, safer and more fuel-efficient drayage trucks. Almost 900 tons of NO$_x$ reductions and 14 tons of PM emission reductions are anticipated over the life of the program. This program has been a collaborative effort between H-GAC, Environmental Defense Fund, and Port Houston.

CLEAN VESSELS FOR TEXAS WATERS

In 2011, EPA awarded H-GAC almost $1 million to repower 3 high-emitting tug vessels with 8 new, cleaner engines. The repowered vessels mainly operate in the HGB non-attainment area—docking ships and fueling marine vessels. The project has already completed the replacement of 8 engines and reduces approximately half a ton of PM$_{2.5}$ emissions annually.

COMMUTE SOLUTIONS: TELEWORK

The Telework Program helps regional employers and employees by educating them about the benefits of teleworking and offering financial incentives to develop and implement telework as well as alternative work schedule programs.

COMMUTE SOLUTIONS: PILOT PROJECTS
A total of 13 pilot projects have been implemented in the HGB region using a combination of federal funds and local matching funds. The resulting new transit service has resulted in reducing nearly 50 million VMT since these projects began and more than 5.2 million in 2018.

GULF COAST REGIONAL TOW AND GO PROGRAM

The Gulf Coast Regional Tow and Go Program is a quick clearance program that provides no-cost towing for vehicles that break down from mechanical failure while traveling within the City of Houston on freeways. Vehicles that break down while traveling in the program’s service area are cleared, at no cost to the driver, to a safe location off the highway and within one mile. By removing obstructions from regional roadways, this program can help increase average roadway speeds and thereby reduce emissions criteria pollutants as a result of the motor vehicles. This program began in mid-2018 and over the first year provided service to over 31,000 motorists. Since the last edition of this report, this program has been expanded to include all freeways in Harris County, Texas in addition to those already covered within the City of Houston.

ACTIVE TRANSPORTATION PROGRAM

The City of Houston partnered with Harris County Precincts One and Two to jump start implementation of the Houston Bike Plan, adopted in 2017, by committing to build 50 miles of high comfort bike lanes by the Spring of 2019. With the help of additional partners like METRO, the City of Houston now has an additional 43.9 miles of high-comfort on-street bike facilities that were either complete or under construction by the end of April 2019. City staff are working with several communities to finalize plans for an additional 9.5 miles to be implemented through 2020.

The City of Houston offers approximately 270 miles of high-comfort bicycle facilities. The network includes bike lanes, bike routes, signed-shared lanes, and shared-use paths, commonly referred to as 'hike and bike' trails, which includes rails to trails, and other urban multi-use paths. In addition to these bicyclist transportation facilities, there are nearly 130 miles of hike and bike and nature trails found in City of Houston parks. In addition, Harris County and many municipal utility districts have constructed more than 160 miles of bikeways within the City limits. Houston Parks Board completed 12.54 miles of Bayou Greenways Hike and Bike Trails in 2019.

In addition to the planning efforts developed and implemented by the City of Houston, H-GAC supports communities to become more livable through planning programs and funding. Special District Studies and Livable Centers Planning Studies identify local infrastructure projects, programs, and policies that reduce VMT by improving walkway and bikeway networks, connecting community destinations, and creating more dense communities with a higher quality of life. H-GAC has completed 37 of these studies across the region since 2004, with three studies currently underway and eleven more for the next several years.

In 2018, H-GAC also completed a preliminary dataset of all sidewalks in the HGB area. As a result, H-GAC planners and local stakeholders can now make more informed planning choices based on knowledge about existing walkway connectivity.

Walking and bicycling is increasing in our region. H-GAC has four permanent counters that measure people walking and bicycling 24 hours a day, every day. H-GAC installed two of the permanent counters in 2013 and two in 2017. These counters provide baseline data about bicycling and walking. In 2018, more than 685,000 users were counted on all four trails. Usage on all trails has increased since they were installed. The counters have shown a 249% increase in use on the Brays Bayou Greenway Trail counter, a 23%
increase on the Columbia Tap Trail, a 17% increase in usage of the MKT Trail, and a 54% increase on the White Oak Bayou Greenway Trail. As our cities and counties build more infrastructure that is safe for people walking and bicycling, we anticipate that these usage increases will continue, with more people choosing to walk and bicycle for transportation as well as recreational and health purposes.

VOLUNTARY IDLING REDUCTION PROGRAM

In 2012, in partnership with local governments, citizen and environmental groups, business and industry-based organizations and other stakeholders H-GAC developed a voluntary idling reduction program and adopted a voluntary diesel idling reduction policy. This anti-idling policy aims to lower nitrogen oxide (NOx) and other emissions by placing a five-minute idle limit on motor vehicles. Along with promoting this voluntary policy region-wide, H-GAC provides idling reduction bumper stickers and signs within our region free of charge. Port Houston has been a major partner in developing and supporting this program, posting many idle reduction signs at the Turning Basin terminal within the Port.

The following organizations within the 8-county nonattainment region have anti-idling policies in place:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alain Garcia Independent Trucking</td>
<td>Davenport Transportation & Rigging</td>
<td>Liberty ISD</td>
</tr>
<tr>
<td>Alief ISD</td>
<td>Dickinson ISD</td>
<td>Museum Park Super Neighborhood</td>
</tr>
<tr>
<td>Alvin ISD</td>
<td>Fast Trac Transportation</td>
<td>North Forest ISD</td>
</tr>
<tr>
<td>Angleton ISD</td>
<td>Fort Bend ISD</td>
<td>Our Lady Queen of Peace</td>
</tr>
<tr>
<td>AT&T</td>
<td>Friendswood ISD</td>
<td>Catholic School</td>
</tr>
<tr>
<td>Barbers Hill ISD</td>
<td>Galveston ISD</td>
<td>Pasadena ISD</td>
</tr>
<tr>
<td>Brazosport ISD</td>
<td>Transportation Services</td>
<td>Pearland ISD</td>
</tr>
<tr>
<td></td>
<td>Goose Creek Consolidated ISD</td>
<td>Santa Fe ISD</td>
</tr>
<tr>
<td>City of Galena Park</td>
<td>Harris County</td>
<td>Sheldon ISD</td>
</tr>
<tr>
<td>City of Houston</td>
<td>High Island ISD</td>
<td>Spring ISD</td>
</tr>
<tr>
<td>Clear Creek ISD</td>
<td>Houston Astros</td>
<td>Sweeny ISD</td>
</tr>
<tr>
<td>Columbia-Brazoria ISD</td>
<td>Houston Biodiesel</td>
<td>Texas City ISD</td>
</tr>
<tr>
<td>Conroe ISD Transportation Department</td>
<td>Houston ISD</td>
<td>Tomball ISD</td>
</tr>
<tr>
<td>Cypress-Fairbanks ISD Transportation Department</td>
<td>Huffman ISD</td>
<td>TxDOT</td>
</tr>
<tr>
<td>Damon ISD</td>
<td>Humble ISD</td>
<td>UPS Waller ISD</td>
</tr>
<tr>
<td>Danbury ISD</td>
<td>Jacinto City</td>
<td>Westside High School, HISD</td>
</tr>
<tr>
<td></td>
<td>Jose Alfaro Independent Trucking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Klein ISD Magnolia ISD</td>
<td></td>
</tr>
</tbody>
</table>

TCEQ TEXAS EMISSION REDUCTION PLAN (TERP)

The Texas Commission on Environmental Quality’s (TCEQ) regional Texas Emission Reduction Plan (TERP) program - established by the 77th Texas Legislature in 2001, through enactment of Senate Bill (SB) 5 - has been an important voluntary project in Texas. TCEQ provides TERP funding for emission reduction projects to participants in Texas. These projects include a number of voluntary financial incentive programs (including Emission Reduction and Incentive Grants, Rebate Grants, Third-Party and American Recovery and Reinvestment Act Rebate Grants, as well as other assistance programs), to help improve the air quality in Texas. Between 2008 and 2013 TCEQ regional TERP has funded more than 3,200 vehicle
replacements totaling more than $160 million dollars. During the 84th Session of the Texas Legislature in 2015, the TERP program was extended for an additional two years with a 50% increase in funding. During the most recent 85th session of the Legislature, the method of distributing TERP funding was revised in a way that will likely result in significant increases in the amount of funding available for vehicle replacements. TERP funding These TERP grants are estimated to reduce between 65 and 275 tons of PM emissions per year. Due to the new funding distribution, it is anticipated that funding, as well as expected emissions reduction related to the TERP program may be increase in future years.

CLEAN AIR EDUCATION

AIR QUALITY FORECAST AND PM ACTION DAY E-MAIL ALERT SYSTEM

TCEQ provides free e-mail alerts for the Today’s Texas Air Quality Forecast and PM Action Days for several metropolitan areas throughout Texas, including the Houston area. The TCEQ informs the public typically a day in advance when conditions are forecast to be favorable for high PM levels in any of the participating areas.

DRIVE CLEAN TEXAS

Drive Clean Texas began in 2002 and was the nation’s first statewide public outreach and education campaign designed to raise awareness and change attitudes about air pollution, reduce vehicle emissions within the state of Texas, and help drivers save money. This initiative continues to this day.

AIR QUALITY REFERENCE GUIDE

The Air Quality Reference Guide is developed and distributed by the Regional Air Quality Planning and Advisory Committee (RAQPAC). The guide provides up to date information about air pollution in the Houston-Galveston region. It is updated on a periodic basis to ensure the most up-to-date information is available to stakeholders within the region.

DUST SUPPRESSION PROJECTS IN THE CLINTON DRIVE AREA

TCEQ, EPA Region 6, the City of Houston, Harris County Precinct 2, Port Houston, Port Terminal Railroad Association (PTRA) and local industry have partnered to address PM$_{2.5}$ sources and implement dust suppression strategies to reduce PM$_{2.5}$ emissions near the Clinton Drive area.

TCEQ approved a supplemental environmental project (SEP) to pave the parking lot directly adjacent to the Clinton Drive monitoring station. The paving was completed in Summer 2009.

The City of Houston has installed barriers to keep trucks from driving onto the unpaved shoulder. Additionally, a traffic light was installed at Clinton Drive and Industrial Park East to control traffic. Since implementation, these dust suppression projects have proven PM$_{2.5}$ reduction benefits (not solely PM$_{10}$)
benefits). Speciation data from the Clinton Drive monitor show decreases in dust and soil following the implementation of dust suppression measures.

Port Houston has established a program to regularly apply emulsified asphalt to reduce dust emissions at Industrial Park East (IPE) at the Turning Basin Terminal (since 2007). Port Houston has also paved 18 acres of land and all of the roadway at IPE. Since 2008, Port Houston has sprayed approximately 48 acres with emulsified asphalt. Additionally, DuPont, a previous tenant, no longer stores bulk fluorspar at IPE. While all the roads at IPE are now paved, the tenants' properties at IPE are still unpaved. Although they are sprayed with emulsified asphalt, standing water after a heavy rain can still cause dirt to be tracked out on the paved roads. To help with this, Port Houston is now improving the IPE storm water drainage infrastructure. Additionally, the areas inside the warehouses at IPE are not paved so Port Houston has started to pave these areas.

In the western part of the Turning Basin Terminal, Port Houston has also reconstructed the High Level Road at Turning Basin, which added capacity from two lanes to four lanes from the main entry gate off of I-610 to the Port Coordination Center. Before the reconstruction of High Level Road, trucks would pass other trucks that were stopped to make a turn by traveling in the dirt shoulder which would create dust. The widening of the road to 2 lanes each direction eliminates this practice and has reduced dust created from shoulders. Furthermore, the Port operates sweepers (about 1,600 hours a year) on High Level Road and have been working on an ongoing basis with the port's tenants to eliminate the dirt that is tracked out from their leased yards onto High Level Road.

In addition, industry has undertaken dust suppression efforts near the Port. The PTRA has relocated steel loading activities from a dirt area to the south of the Clinton Drive monitor to another location in order to reduce dust. Valero Asphalt paved its large land leases located across Clinton Drive to the southeast of the Clinton monitor.

CITY OF HOUSTON

RENEWABLE ENERGY

The City of Houston is the largest municipal purchaser of green power in the nation with more than 89% of the City's energy supply coming from either wind or solar sources. In 2017, the City expanded its portfolio with the addition of a 50 MW solar power purchase agreement which allows 100% solar power to be used at City facilities such as the Houston Zoo, the Bob Lanier Public Works Building, passenger terminals at IAH, and wastewater treatment plants.

CLIMATE ACTION PLAN

In conjunction with the Houston Advanced Research Center (HARC), the City has been developing its first community-wide Climate Action Plan (CAP). On April 22, 2020 – the 50th anniversary of Earth Day – the City launched the science-based, community-driven Houston Climate Action Plan to reduce greenhouse gas (GHG) emissions, meet the Paris Agreement goal of carbon neutrality by 2050, and lead the global energy transition. This plan will act as a roadmap for the City, businesses, residents, and communities to reduce their greenhouse gas (GHG) emissions and meet the goals of the Paris Agreement to be carbon-neutral by
2050. The CAP will analyze current emission sources and calculate the health, safety, and economic benefits of various development and policy options that could bring Houston closer to a carbon neutral future. As sustainability and resiliency go hand in hand, the plan is also a critical component of the City’s overall recovery efforts after Hurricane Harvey.

Development of the CAP was achieved through numerous public stakeholder meetings, working group meetings, and numerous individual discussions. Four working groups have proposed initial recommendations on goals and strategies to reduce emissions across Houston’s four largest categories of emissions – transportation, buildings, decarbonization, and waste. These recommendations are currently under review by City of Houston departments and the Mayor’s Office.

GHG REDUCTION GOAL

The City of Houston has set a strong example of how to combat climate change and lower emissions in the Energy Capital of the World. Since 2005, the City has reduced municipal emissions by 37%, through building efficiency upgrades, investing in renewable energy, and converting to hybrid, electric, and alternate fuel vehicles. As co-chair of Climate Mayors, Mayor Turner and the City of Houston helped garner over 412 U.S. Mayors to commit to upholding the Paris Agreement.

GREEN POWER PROGRAM

As the 4th largest city in the United States, the City of Houston uses large amounts of power. The goal of the City’s Green Power Program is to demonstrate that if a city the size of Houston can one day reach 100% green power, then other cities can as well. Houston has been the number one municipal user of renewable energy by the EPA and today powers 92% of municipal facilities with renewable energy. In FY 2019, the City of Houston used nearly one billion kilowatt-hours (kWh) of green power including solar and wind energy.

As a result, for the 5th year in a row, Houston was named the #1 municipal user of green energy in the nation by the United States Environmental Protection Agency (EPA). Houston is also ranked #15 on the EPA’s overall Top 100 green power users. By investing in green power, the City strives to drive further investment and development in the renewables market and make green power even more affordable and accessible for everyone.

In April 2020, Mayor Sylvester Turner announced that the City of Houston has committed to purchasing 100% renewable energy through a renewed partnership with NRG Energy as the City’s retail electric provider.

SOLAR POWER PURCHASE

On Earth Day 2017, the City launched its first power purchase agreement (PPA) for a 50 MW solar facility in Alpine, TX. This represents just over 10% of the City’s power consumption and provides buildings such as the Houston Zoo, the passenger terminals at Intercontinental Airport, 611 Walker, and some of Houston’s wastewater treatment facilities with clean solar energy. In exchange for increasing the PPA from 30 to 50 MW, the overall contract price was reduced by 8%, resulting in an estimated $40 million of savings over the 20-year term of the PPA.
EVOLVE HOUSTON

Formed as a realization of the City’s Climate Action Plan, EVolve Houston is a coalition of civic and business leaders who are sustainability-minded and aim to accelerate clean transportation and zero-emission goods transportation through electrification. EVolve Houston aims to improve regional air quality and reduce greenhouse gas emissions by motivating the transition to electric vehicles across sectors in the Greater Houston Area.

Mayor Turner has stated that “EVolve Houston and its members are key to implementing the ambitious goals outlined in the City of Houston’s Climate Action Plan and Resilience Strategy.”

Potential actions include (but are not limited to) entering into partnerships that boost awareness, affordability, and availability of electric vehicle models; install charging infrastructure; electrify both public and private vehicle fleets; and deploy medium- and heavy-duty electric vehicle pilots. The coalition is currently working to support several electrification projects around the City, including the deployment of electric buses in the Houston First Corporation’s downtown fleet and at the George Bush Intercontinental/Houston Airport. In June 2019, Houston First Corporation submitted its application for Volkswagen settlement funding to replace a diesel shuttle bus with an electric shuttle bus and charging station.

REINVENTING CITIES

The Reinventing Cities Challenge works towards encouraging renewable and zero-carbon projects in Houston. The goal of Reinventing Cities is to take under-used city property and challenge the best and brightest minds to redesign, reimagine, and reinvent how they can be used in a sustainable way. In 2019, Mayor Sylvester Turner announced that Sunnyside Energy won a competition to repurpose a 240-acre former landfill in the Sunnyside neighborhood of Houston. Subject to meeting certain terms and conditions, the team will construct one of the largest urban solar farms in Texas.

PROPERTY ASSESSED CLEAN ENERGY PROGRAM

Initially created in 2016, the City of Houston’s municipal Property Assessed Clean Energy Program (PACE) provides an additional tool for Houston property owners to finance energy efficiency, renewable energy, and water conservation projects. In 2017, the City announced Houston’s first PACE project which, at just over $2 million, was the largest PACE project in Texas at that time. Thus far, PACE projects have invested $3.6M into the Houston economy, created 24 jobs, reduced 1,729 ton/year of CO2, saved 9.6 gallons of water/year, and saved 3.3M kWh/year of electricity.

RESIDENTIAL ENERGY EFFICIENCY PROGRAM (REEP)

In conjunction with CenterPoint Energy, the City’s Sustainability Office is providing up to $5 million/year in targeted energy efficiency improvements to low-income, multi-family housing complexes being redeveloped following Hurricane Harvey. Houston Housing and Community Development is currently reviewing project candidates. Additional complexes will be added to the program each year, in conjunction with the City’s $315 million housing development program.
ENERGY EFFICIENCY

Since 2004, the City has required all new buildings to be LEED Certified. The City currently has 37 LEED buildings with plans to add more through 2020. To date, the City has invested $70 million in energy efficiency retrofits: 6 million square feet of retrofitted City facilities are expected to achieve guaranteed energy use reductions of 30%, saving over 22 million kWh of electricity every year. The City’s most recent retrofitting projects were in the Parks and Recreation Department and in the Library Department where 18 libraries were retrofitted.

GREEN BUILDINGS AND ENERGY EFFICIENCY

For City buildings, there is an aggressive program in place to improve energy efficiency. So far, 6 million square feet of city facilities have been retrofitted and are reducing energy usage by 30% each year. By 2020, the City has also committed to improving energy efficiency by 20% at an additional 30 million square feet of facilities. The City has also adopted an aggressive stance on the creation of LEED certified buildings targeting Silver certification for all new construction. So far, this has resulted in the completion of 31 LEED certified projects with another two currently being planned.

SMART CITY STREETLIGHT INITIATIVE

In September 2019, the City will deploy a small proof-of-concept pilot to install five LED streetlights as its first ever complete City-installed and -owned streetlighting system. The installation is planned along the Tierwester Road realignment project. Streetlights will be equipped with sensors and advanced lighting controls that will be programmed to allow lighting levels to be dimmed for energy savings and increased for pedestrian safety crossing. A unique capability of the controls will be the ability to expand existing Wi-Fi coverage. The controls will also provide the City with an advanced streetlight asset management system. Aluminum poles will be used for their sustainability.

An air quality monitoring system to gather real-time air quality data will also be installed on one of the streetlights. Among the key data collected will be ozone, particulate matter, nitrogen dioxide and humidity. There are several stake holders who will benefit from this information including air quality professionals, community groups, educators, health and safety managers and researchers. This environmental data will be available to analyze and will showcase the attractiveness of living, working and investing in Houston.

EPA GREEN POWER PARTNER OF THE YEAR

The City of Houston was the recipient of the 2017 Green Power Leadership Award from the U.S. Environmental Protection Agency (EPA). EPA’s annual Green Power Leadership Awards recognize America’s leading green power users for their commitment and contribution to helping advance the development of the nation’s voluntary green power market. Houston has received the award previously in 2008 and 2014.

TEXAS SOUTHERN UNIVERSITY AUTONOMOUS SHUTTLE
In June 2019, Texas Southern University began piloting an autonomous vehicle (AV) electric shuttle bus in partnership with METRO, the City of Houston, and the Houston-Galveston Area Council. In the first phase of the pilot, METRO will operate the bus on a one-mile roundtrip route connecting East and West campus with three stops. The pilot will assess the physical and operational characteristics of the bus, as well as conduct surveys to evaluate stakeholder and community engagement. The second and third phases of the pilot, likely to being in 2020, will extend the shuttle’s route. The project aims to test and support AV technology that can provide reliable “first-mile/last-mile” links to local transit.

PARKING GUIDANCE SYSTEM

In 2016, ParkHouston was awarded $3.2 million in Congestion Mitigation and Air Quality program funding for a parking guidance system. This system will provide real-time on- and off-street parking information to guide the traveling public to available parking spaces quickly and efficiently. The project will provide directions from main access roads through dynamic and fixed messages signs, a website, and/or a mobile application. The project aims to reduce traffic congestion, saving energy and vehicle pollution, while also improving mobility and the parking customer experience.

LED LIGHTING CONVERSION PROGRAM

In 2014, at the City’s request, CenterPoint Energy began converting ~175,000 streetlights to LED technology. This project is intended to reduce the City’s streetlight energy usage by approximately 50%, while reducing the City’s greenhouse gas emissions by 5%. Although the project was supposed to take several years, thanks to overwhelming support from residents asking for lighting to be installed in their neighborhoods and a push to light up the city in time for the Super Bowl, CenterPoint Energy is ahead of schedule.

The Public Works Department also finished replacing the incandescent bulbs at all 2,450 signalized intersections with LEDs and the City is now realizing over $3.6 million a year in savings.

“SMART FLEET” MUNICIPAL FLEET AIR QUALITY MONITORING PROJECT

In partnership with the Houston Health Department (HHD), the Environmental Defense Fund (EDF) implemented a “smart fleet” pilot to test a cost-effective, scalable model for mapping air pollution using municipal vehicles. An analysis of over one million connected vehicles, published by EDF & Geotab, indicates that just 10 vehicles could map over 50% of a city without altering their normal routes. Prior to this pilot, air pollution mapping using vehicle-mounted sensors has required expensive equipment, special-purpose vehicles, time-consuming hands-on instrument management, and special-purpose routes. In contrast, the Houston Smart Fleet pilot used rugged, low-cost instruments mounted on municipal vehicles. HHD vehicles collected and transmitted data in real time, demonstrating a new model for cities to actively monitor air quality using existing assets. EDF is now working with Rice University to analyze data from the pilot, and EDF and the City are building on this data collection model to develop a “Control Chart” tool that the city could use to identify air pollution patterns of interest for enforcement of existing pollution policies and design of new ones.

GREEN FLEET STUDY
The City was awarded a $75k grant from Rice University/Kinder Foundation for a green fleet study with the Houston Solutions Lab, to be completed in Fall 2019. This study will help the Fleet Department determine when to replace COH fleet vehicles and what type of fuel would be most emissions and cost efficient. The goal of the study is to create a pathway to a 100% electric fleet for all non-emergency passenger vehicles.

GREEN FLEETS

Through the City’s Houston Drives Electric program, Houston has become a leader in government electric vehicle (EV) fleets. Through this program, the City has recently added 27 Nissan Leafs to its vehicle fleet for a total of 3742 electric and plug-in hybrid fleet vehicles and 526 conventional hybrid vehicles. In addition to the purchase of these more efficient vehicles, the City has created the Houston Fleet Share program to serve as a central, shared motor pool. This has resulted in a 50% increase in vehicle utilization with more needs met using fewer vehicles. As a result, 44 older and less efficient vehicles have been sold and 84 others have been reassigned.

Participation in Department of Energy’s (DOE) EV Project, with partner Ecotality, added 77 additional Blink charging stations in Houston, including 24 at the airports and 29 in downtown Houston. Through this program participants, including the City of Houston and other businesses, received charging stations at no cost and an additional credit to install the charging station. In addition, the City has offers 24-hour permitting for residential charging stations and is working on additional incentives to spur the adoption of EV technology.

SUSTAINABLE FLEET

Prior to Hurricane Harvey, Houston had the 4th largest municipal hybrid fleet in the nation. Approximately 50% of the City’s non-specialty, light-duty fleet have been replaced with hybrid vehicles to reduce current and future maintenance costs, increase vehicle reliability, and decrease emissions. Overall, about 11.5% of the City’s fleet is green and the City plans to use funding from the VW settlement to add more alternate fuel and electric vehicles to the City’s fleet.

Unfortunately, due to severe flooding within the parking garages under City Hall, nearly all of the City's Electric Vehicle fleet were destroyed. However, thanks to the support of Nissan, the City plans to add 29 EVs back in the City’s fleet. As one of the 11 cities selected under the Electrify America program, the City of Houston is working with local businesses and neighborhoods to expand public EV infrastructure throughout Houston.

ANTI-IDLING POLICIES

As a result of Houston’s efforts during 2018-2019 to reduce air emissions via Houston’s anti-idling ordinance involving outreach and enforcement the HHD Bureau of Pollution control and Prevention (BPCP) received 50 Idling Complaints.

In addition, during the months of June – July 2018, members of the BPCP Engineering Department visited more than 40 truck maintenance yards on the north part of the City and issued four Notice of Violations (NOV’s) for trucks idling for more than 5 minutes. As a result of one of the NOV’s issued to one of the Truck
Maintenance Sites, the facility Installed a Billboard sign on their fence outside their business to enforce the Idling Ordinance in their property.

CONCRETE BATCH PLANTS

There are approximately 180 concrete batch plants (CBP’s) in the Houston area – twice as many as Dallas and the most of any area in Texas. A concrete batch plant is a facility that produces concrete. These facilities mix cement, sand, and water to make concrete and load it into trucks for delivery. If not properly controlled, these operations can expose residents to large amounts of particulate matter (fine dust). Particulate matter is a dangerous and widespread air pollutant that is associated with causing cardiovascular and respiratory harm, cancer, and premature death.\(^{15}\) Particulate matter produced during concrete batch plant operations may contain crystalline silica and metals.\(^{16}\) The City of Houston conducted inspections and investigations at concrete batch plants that identified violations of air quality and nuisance standards including but not limited to, the lack of use of adequate dust controls and visible emissions leaving property lines among the most frequent. Given the increasing number of concrete batch plants in our region, efforts should be made to collaborate with the cement industry to ensure best practices are implemented to protect the public health of communities.

CBP’s emit particulate matter pollution within the city limits, often in close proximity to residences, schools, parks and other public places. These sources are a concern for the community and result in numerous 311 complaints. The BPCP has been seeking stronger permitting requirements thru numerous permit comments submitted to the Texas Commission of Environmental Quality (TCEQ) to reduce particulate matter emissions and restrict locations. The City continues to conduct site inspections of concrete batch plants, which may include deployment of a mobile laboratory, and continues to develop training programs to help citizens recognize compliance problems created by CBP’s facilities including those that may fail to meet the current permit by rule compliance criteria. In addition, the BPCP has supported City of Houston citizens in CBP’s Public Meetings and Hearings.

ENERGY EFFICIENCY AT THE AIRPORTS

Improving air quality through the use of alternative technologies is a priority of the Houston Airport System. The Houston Airport System is working to upgrade and renovate outdated infrastructure and equipment at the William P. Hobby and George Bush Intercontinental Airports. The projects include installing four new chillers, improving building operations, and installing a solar array on new shading canopies. The implemented projects will reduce annual energy consumption by more than 24 million kWh and utility costs by more than $1.3 million. This will also help the Houston Airport System to reach its “net-zero” energy goal for George Bush Intercontinental Airport.

The Texas A&M Engineering Experiment Station Energy Systems Laboratory will manage project design and construction. The majority of funding will come from the LoanSTAR Program; which is administered by the State Energy Conservation Office of the Texas Comptroller’s Office.

Houston Airport System has initiated a variety of efforts at both George Bush Intercontinental Airport (IAH) and William P. Hobby Airport (HOU) in order to mitigate particulate matter emissions. Some of these strategies include conversion of power sources from diesel to compressed natural gas or electricity, methods for reducing fuel consumption, and improved routes to combat vehicle idling and traffic congestion, among others.

Ground support equipment (GSE), including luggage loaders and aircraft tugs, at IAH and HOU have been converted from diesel-powered to run on electricity, reducing the use of conventional fuels. EcoPark Parking Shuttles operating between airport terminals and long-term parking facilities at IAH that were formerly running on diesel are now being powered by Compressed Natural Gas (CNG). An above-ground automated people-mover (skyway) has been installed at IAH, which has eliminated the need for diesel-powered buses operating between airport terminals, thereby reducing fuel consumption and travel time. Additionally, an aircraft hydrant fuel system (HFS) that utilizes passenger gates has been installed, eliminating the need for diesel-powered fueling trucks that travel between aircraft at the terminal and the fuel storage facility, further diminishing fuel consumption.

The staging and routes for limousines in the terminal areas of IAH, as well as the Ground Transportation Center for taxis, Super Shuttles, Cruise Line Buses, and Passenger Arrivals and Cell Phone Lot, have all been improved in order reduce idling and travel times. The use of the Consolidated Rental Car Facility (CRCF) has significantly reduced the annual vehicle miles traveled by car rental shuttle buses simply by reducing the travel routes to the CRCF. The large number of diverse buses previously operated by the car rental firms have been replaced by a small number of clean diesel buses. Parking garages at HOU, and eventually IAH as well, now have guidance systems that display available parking space and signage LEDs to guide the driver to the nearest empty spot to improve traffic flow, and reduce congestion, and drive time looking for a parking spot.

Auxiliary power units (APUs) are small on-board turbines or gate-side diesel generators that are operated to provide electrical power and air conditioning to an aircraft when it is parked at a gate and its main engines are shut down. Preconditioned air and centralized 400 Hz power hookups have been installed at all gates at IAH and HOU to replace APU usage when aircraft are parked. These systems rely on grid power provided by electric utilities. While aircraft are hooked up to these external connections, the APUs are not operated, eliminating PM emissions during these times. Furthermore, the Houston Airport System adopted the Leadership in Energy and Environmental Design (LEED) certification standards for new construction of city-owned facilities.

In addition, the Houston Airport System is in the process of initiating multiple other actions which will result in PM emission reduction. For example, central utility plant improvements at IAH include: state-of-the-art emissions controls, a new hot water heating system to reduce fuel consumption and the corresponding emissions, additional electric chillers to reduce the use of steam chillers, solar photovoltaic array supporting the Control Room and Administration Building, implementation of energy conservation initiatives, and optimization of the HVAC thermal and distribution systems. HOU will also undergo similar central utility plant improvements, including implementation of energy conservation initiatives, emission reduction strategies, and upgrades to chillers and the chill water system.

There are a variety of other efforts planned by the Houston Airport System that will work towards PM emission reduction. The lighting at IAH and HOU will be retrofitted with LED bulbs that will lower energy
costs and reduce energy usage. Furthermore, the Houston Airport System will focus on returning HVAC equipment at IAH terminals to optimal performance, reducing excessive run-times and optimizing use. Updates to building controls will allow for better management of terminal-level equipment and improve ability to troubleshoot and prevent failures. Coils in Air Handling Units at IAH will be replaced with Variable Air Volume systems which will balance out ventilation, and a solar photovoltaic array is planned at HOU’s Red Garage - both efforts that will reduce air emissions. Lastly, the Houston Airport System will introduce native landscaping at Ellington Airport, HOU, and IAH.

BIKE SHARE PROGRAM

In 2015 the City of Houston was awarded a federal grant to expand Houston BCycle. This funding allowed BCycle to more than triple the size of bike share in Houston. Currently, BCycle has 92 stations, 635 bikes and 2 transport vehicles in their existing bike share network. The network has expanded to include stations in Midtown, Downtown, Montrose, Texas Medical Center, Rice University, University of Houston, Texas Southern University, Greater Heights, Woodland Heights, Memorial Park, Third Ward, Second Ward, East Downtown, Washington Avenue, Buffalo Bayou Park, Museum District, Memorial City, and Near Northside. Implementation of the project began in early 2017 and is still ongoing.

The program is reaching new heights in ridership--with more than 260,000 trips projected by the end of 2019 and more to come as expansion continues. This projected total would be more than a 60% increase from 2018’s record-breaking number. Commuter trips (one-way) now comprise more than 55% of all trips taken.

SAFE PASSAGE ORDINANCE AND COMPLETE STREETS POLICY

The City approved a Safe Passage ordinance in May 2013 to keep bicyclists and pedestrians safer on city streets and encourage more outdoor activity. In November 2013, Mayor Parker signed the Complete Streets Executive Order, which unveiled a transformative new policy for Houston streets to accommodate the needs of all users, not just those behind the wheel. The Complete Streets and Transportation Plan is meant to provide safe, accessible and convenient use by motorists, public transit riders, pedestrians, bicyclists, and people of all ages and abilities. In 2014, the City and BikeHouston created a bike safety campaign, Goal Zero, to enforce and educate motorists and cyclists about the Safe Passage Ordinance. Houston City Council adopted the Houston Bike Plan in March 2017. A key goal of the Bike Plan is to provide a safer bicycle network for people of all ages and abilities through improved facilities, education, and enforcement. In March 2018, an innovative partnership between Harris County and the City of Houston allotted $30 million to improve seven streets in the City of Houston near the University of Houston and the Texas Southern University Corridor. This funding will help to improve and build additional sidewalks, repair drainage, and help reduce street flooding. Moreover, it will add additional bike lanes to the Third Ward area and provide students with mobility options to get around by either walking, biking or driving. The Complete Streets program compliments Mayor Sylvester Turner’s Complete Communities initiative, which was announced on April 12, 2017 and improves neighborhoods so that all of Houston’s residents and business owners can have access to quality services and amenities. Additionally, in 2018, Mayor Turner announced a safety initiative to research the top 10 most dangerous street intersections in Houston. A total of 12 intersections were researched by the City of Houston, in partnership with the Federal Highway Administration (FHWA). Upon completion of the study, the FHWA recommended both long and short-term safety improvements; many of the short-term recommendations have already been implemented.
FCC RECYCLING FACILITY

FCC, an environmental services and infrastructure firm, opened a new, state-of-the-art Material Recycling Facility in northeast Houston that will process around 65,000 ton/year of recyclable materials – including glass, aluminum, plastics, and metals. The facility has a total capacity of 145,000 ton/year and will operate for at least the next 15 years.

METAL RECYCLERS TASK FORCE (MAPPS)

The City continues to collaborate with researchers from the University of Texas Health Science Center at Houston School of Public Health (who are in the lead) and Rice University, area metal recycling facilities, community members, and Air Alliance Houston in a project to study and address potential health risks associated with air emissions from metal recycling facilities in Houston.

This is a three-phase project. Phase 1 of the project consists of collaborators working to conduct outdoor air monitoring, determine health risks and describe residents' environmental health concerns. Phase 2 of the project consists of development and application of a Public Health Action Plan to recommend best emissions-mitigating-practices and educate the community, metal recyclers and policy makers about environmental health. Phase 3 of the project consists of follow up activities to evaluate the effectiveness of the Public Health Action Plan. Phase 2 is currently being completed.

BAYOU GREENWAYS 2020

The Houston Parks Board launched an initiative to create 150 miles of trails and bridges that will connect Houston’s major bayous by 2020, such that 1.5 million Houstonians will live within 1.5 miles of the Bayou Greenways. $100 million in funding, plus $170 million in additional private and nonprofit support, has been set aside for this project.

VOLUNTARY ENVIRONMENTAL COMPLIANCE AGREEMENTS

The City and industrial businesses have voluntarily implemented environmental compliance agreements that help reduce emissions. By these agreements, businesses have modified operational controls minimizing particulate and visible emissions, such as from painting and abrasive blasting operations in the ship channel area.

HARRIS COUNTY

COMMUNITY AIR MONITORING PROGRAM

In September 2019 Harris County Commissioners Court approved funding for the Harris County Pollution Control Services Department (HCPCS) to establish a community air monitoring program (CAMP). This program is designed to collect ambient air data throughout Harris County and provide that data in near real-time on PCS website to augment the existing Particulate Matter (PM) and Volatile Organic Compounds (VOC) monitors with additional sampling sites. The ultimate goals of the program are to:

- Provide ambient monitoring in areas currently lacking data
- Identify areas to focus on for source identification
- Identify non-compliance issues
- Reduce both VOC and PM pollution

To complement CAMP, HCPCS has deployed two portable PM monitors and will soon have mobile monitoring capabilities, allowing for improved monitoring capabilities in times of emergency or disaster.

CONCRETE BATCH PLANT INITIATIVE

There are approximately 135 concrete batch plants (CBP) in Harris County. CBPs are known to produce fine particulate, airborne waste that generates a significant amount of citizen concerns and/or complaints. In early 2020 HCPCS implemented an initiative to regularly inspect batch plants operating within Harris County’s jurisdiction in order to increase the amount of air and stormwater quality inspections conducted on concrete batch plants to better ensure compliance with air and stormwater quality permits and dedicated two full-time investigators to the project. Through mid-September 2020, 56 CBP investigations were conducted resulting in the issuance of 46 violation notices (82% non-compliance). In addition to CBP inspections, HCPCS submitted comment letters to the Texas Commission of Environmental Quality (permitting authority) requesting stronger permitting language and additional controls for CBP operators in the effort to reduce PM emissions and hold violators accountable.

Additionally, in March 2020, Commissioner Rodney Ellis requested that HCPCS work to enhance community engagement efforts in neighborhoods with high concentrations of concrete batch plants to inform residents about the associated health risks, as well as how to recognize and report potential violations.

ELECTRIC VEHICLE FLEET

HCPCS is in the process of further reducing Harris County’s environmental footprint by acquiring a fleet of electric vehicles (EVs). A total of 12 EVs will be in use by the end of 2020, replacing the current investigator’s personal vehicle usage. PCS investigators travel approximately 65,000 miles a year while conducting investigations and rechecks in conventional fuel burning vehicles. The utilization of the fleet will reduce PCS’ NOx, CO, PM and VOC footprint and save on fuel costs.

Additionally, Harris County Universal Services (US) have started evaluating alternative fuel vehicles as replacements for a portion of its vehicle fleet. In collaboration with Harris County Pollution Control, US will be evaluating Battery Electric Vehicles (BEV) to replace its pooled vehicles. As part of this evaluation, charging stations will be implemented in a few select locations to learn about logistics and use of battery electric vehicles. Fleet Services plan to implement charging stations at its main service center, which will allow other county owned BEVs to charge when visiting fleet. In addition to BEVs, Universal Services is looking into replacing other light duty vehicles with Hybrids to lower emissions and improve efficiencies.

HARRIS COUNTY ENGINEERING DEPARTMENT GREEN VEHICLE PILOT STUDY

In 2019, Harris County Engineering Department committed to moving towards a “greener fleet” whenever vehicles were replaced or new vehicles were acquired. As result of adding 22 more efficient vehicles to the Fleet in calendar year 2019, HCED has realized a fleet-wide average 25% increase in the EPA Estimated City MPG, 14% increase in Highway MPG, and 17% increase in the Combined MPG. As department staff drove an average of 2.5 million miles/year over the last two years, the increases in fuel
efficiency have surely led to a decrease in local air pollution impact. The Engineering Department intends to continue looking for opportunities to continue to green the county's fleet as vehicles are replaced in upcoming years.

HARRIS COUNTY TOLL ROAD AUTHORITY (HCTRA)

On July 28, 2020, Commissioners Court authorized the Harris County Toll Road Authority (HCTRA) to accelerate planning and development for conversion of toll road operations to an All Electronic Tolling (AET) system. The timing of this transition was originally envisioned to occur prior to calendar year 2026, however, a more truncated timeline is now recommended as cash collection on HCTRA roadways has been suspended as a safety precaution due to the COVID-19 pandemic. Engineering consultants have been engaged to develop preliminary plans for the transition, including an updated timeline and the eventual removal of the six toll plazas designed for cash collection. The conversion to an AET system aims to not only increase safety, but to decrease congestion and reduce idling and emissions by eliminating chokepoints at the toll plazas.

HOUSTON BCYCLE EXPANSION PROGRAM

The Houston Bike Share program received a $276,293 LIP grant and used matching funds in the amount of $276,293 for a total project budget of $552,586. The grant was used to expand the BCycle program by 39 stations and additional 325 bikes. The grant was awarded in February 2017 and closed in December 2018.

The program is very popular. In 2019 the City of Houston provided additional funds to expand the program to over 100 stations and 700 bikes. In April 2020 Commissioners Court authorized $842,700 to build an additional 30 stations and provide 320 Electric Bikes.

METROPOLITAN TRANSIT AUTHORITY OF HARRIS COUNTY

LIGHT RAIL EXPANSION & NEW BUS NETWORK

The Metropolitan Transit Authority of Harris County (METRO) operates three light rail lines, 85 local bus routes (including two free downtown circulators), and 31 Park & Ride commuter bus routes as part of its fixed-route system. The original 7.5-mile Red Line light rail opened in January 2004. The recent additions of the North Line light rail extension in December of 2013 and the opening of the Green and Purple Lines in May 2015 have increased the light rail system's total mileage to 22.5 miles. These openings contributed to an increase in annual boardings on METRORail by 68% from FY2013 to FY2018. Additionally, METRO implemented a complete overhaul of the local bus network (termed "New Bus Network") in August 2015 to curtail declining ridership and improve service by moving to a frequency-based network. By the close of FY2018, local bus ridership had increased by 1% over FY2016.

BUS FLEET

As of September 30, 2019, METRO operated a fleet of 1,254 buses devoted to fixed-route service, which handled 67.7 million boardings in Fiscal Year 2019.\(^\text{17}\) The fleet includes 437 clean running, diesel-electric

\(^{17}\) METRO's Fiscal Year 2016 is October 1, 2018 through September 30, 2019
hybrid technology buses (35% of the fleet) and an additional 50 compressed natural gas (CNG) buses (4% of the fleet), both of which contribute to PM reductions for the HGB region.

METRO BIKES ON BUSES

There are a growing number of bicycle and pedestrian paths and walkways and a concentrated effort to connect these walkways with activity centers and transit nodes. All METRO buses are equipped with bike racks, with the exception of park and ride buses (which have cargo areas for bike storage). METRO’s annual bike boardings have decreased 2% from FY 2018 through FY2019. In METRO’s FY2013, there were 167,421 bike boardings that were recorded and in FY2014 that number increased by 50% to 251,072 and by another 4.6% in FY2016, totaling 262,649 bike boardings. In FY2018, the bike boardings totaled 283,019, a 1% increase from the previous fiscal year, FY2017, which was unadjusted for impacts from Hurricane Harvey.

METRO STAR VANPOOL PROGRAM

STAR, the regional vanpool and rideshare program provided by METRO is one of the largest programs of its kind in the nation. The program provides a 7-15-seat passenger vans for use by groups of 5 to 15 riders along with insurance, maintenance, roadside assistance and administrative coordination. Average daily fares range from four to eight dollars, and the average round-trip is 58 miles. Additionally, program participants benefit from a capital subsidy (the average for 2017 was $429 per van per month) toward the cost of the vehicle to help offset vanpool costs. Volunteers within the vanpool groups do the driving. For the last fiscal year of 2017, there was an average of 592 vanpools in operation with more than 6,042 riders in the region. This program reduced nearly 52 million VMT in 2017.

PORT HOUSTON

BAYPORT EXPANSION AND INCREASED EFFICIENCY

Port Houston was awarded a $10 million Transportation Investment Generating Economic Recovery (TIGER) grant in 2013 to be used toward the expansion of the berth at its Bayport Container Terminal. The grant is funding the extension of Bayport’s wharf and the purchase of three new all-electric, rail-mounted gantry cranes to handle the increase in container throughput. The project will allow Bayport to handle more than 2 million 20-foot-equivalent units (TEUs), doubling its present capacity, and will help support international trade with more than 1,000 ports in more than 200 countries. Increased productivity as a result of the expansion is projected to reduce truck waiting and idling times by an estimated 7.6 minutes on average.

CLEANER, MORE-EFFICIENTLY OPERATING CRANES

Port Houston replaced ten (10) Tier-2 755-horsepower rubber-tire gantry cranes (RTGs) at Barbours Cut with eight (8) newer Tier-3 665-horsepower RTGs. These RTGs will operate approximately 2,500 hours a year and will be able to handle the same amount of cargo plus additional cargo as the eight retired cranes because the older cranes averaged about 4 moves an hour while the new cranes average about 12 to 15

moves per hour. The increased efficiency associated with these cleaner, faster cranes reduces the truck idling and associated emissions at the Port.

LYNX AND CONTAINER TRACKING MOBILE APP

Port Houston’s online information system that tracks vessel arrivals and container movements at its Barbours Cut and Bayport terminals is called Lynx. The Port has recently expanded access to Lynx to trucking companies and cargo owners so that container availability can be tracked, and the trucking company can be automatically notified when a container is ready for pickup. Additionally, the Port has developed a mobile app that allows drivers to check on the status of a container and its pick up availability. Information on how to access Lynx online and how to access the mobile app can found at: https://porthouston.com/terminal-toolbox/container-terminals/access-to-shipping-information/

The expanded access to Port Houston container status at its container terminals through Lynx and the mobile app reduces unwarranted truck trips to the terminals and therefore results in less criteria pollutant emissions.

BAYPORT TERMINAL OPERATIONAL IMPROVEMENTS

The stop sign at the truck exit at the Bayport Container Terminal has been removed and Port Road has been restriped to allow two lanes of truck traffic to exit without stopping. This eliminates idling for all trucks exiting Bayport plus eliminates a source of congestion during peak times.

GATE AUTOMATION

Port Houston has implemented an automated gate system with optical character recognition (OCR) portal to automate equipment identification, traffic processing and damage inspection imaging at the entry gate of the Barbours Cut and Bayport container terminals. The system automatically identifies containers, chassis, and license plates associated with the equipment. Since implementation, gate OCR installation enabled Port Houston to process trucks twice as fast and reduced idling time by 48%, dramatically reducing emissions.

TRUCK PRE-ADVISE PROGRAM

Port Houston is phasing in a Truck Pre-Advise program with the initial phase consisting of a few of the drayage trucking companies that visit the container terminals the most. It will then be expanded to additional drayage trucking companies as the first phase proves to be successful. The Pre-Advise program works by gathering the truck’s transaction information in advance (instead of at the gate). The trucking companies can send their information (Truck License Plate, Chassis Number, Container Number, Booking details, etc.) through Lynx or electronically. Port Houston holds the information and will match it to the truck when it arrives at the terminal. This program will help reduce emissions because there will be a reduction in the time the drivers sit idle at the terminal gates.

PARTNERSHIPS

As part of Port Houston’s efforts to exchange older engines with cleaner burning technologies, the Port-created public/private partnerships with tenants and stakeholders to implement emission reduction strategies and policies. Port Houston has established a proven track-record in securing state and federal grants for emission reduction benefits for Port and Port tenant and stakeholder engines and equipment.
Through the 2009 American Recovery and Reinvestment Act (ARRA)/Diesel Emission Reduction Act (DERA), the Port and six tenant/stakeholder partners used $2.8 million in grant funds for the replacement, repower and retrofit of 115 diesel engines used in port activity which will result in lifetime reduction 6 tons of PM$_{2.5}$. Furthermore, the Port provided $50,000 in matching dollars as leverage for a $9 million EPA SmartWay grant to fund the revolving Drayage Loan Program.

In 2010 the Port was also awarded a DERA grant of $1.5 million to cover the incremental costs associated with fuel switching activities for all Maersk vessels calling at the Port’s container terminals prior to the EPA’s mandated North America Emission Control Area implementation in 2012. The fleet of 26 vessels performed 163 vessel calls and fuel switches which resulted in a decrease in emissions of 32 tons of PM$_{2.5}$.

In early 2015, the Port was awarded almost $1.8 million dollars for two different DERA grants that will be used to replace older drayage trucks. The funds from one grant were passed through to H-GAC to fund an expansion to its Houston-Galveston Drayage Truck Program. This grant helped to replace 15 older on-road drayage trucks with newer 2010 model year compliant drayage trucks and is expected to reduce 10.2 tons of PM$_{2.5}$ over the lifetime of the trucks. The funds from the second grant were passed through to two (2) of Port Houston’s tenants and helped replace 23 older drayage trucks (12 on-road trucks used only on Port Houston turning basin terminal and 11 on-road terminal tractors used to pick up containers at the Bayport and Barbours Cut terminals) with newer on-road terminal tractors with 2010 model year compliant on-road engines. This grant is expected to reduce 13.8 tons of PM$_{2.5}$ over the life of the trucks.

Regional partners, including the Port, planned to apply for additional DERA funding during the 2016 funding opportunity however were unable to finalize a submitting during this year. However, the Port has applied for, and received, DERA funding in 2017 for Port owned work trucks and buses. It is expected that these projects will result in further 0.43 tons of PM$_{2.5}$ reductions within the region.

BROADWAY DOUBLE TRACK PROJECT

Access to the entire rail network serving the south side of the Houston Ship Channel (HSC) was constrained by a short, but critical bottleneck segment of single track. Port Houston owns the track segment, which is operated by Port Terminal Railroad Association (PTRA). All trains serving the industrial and port facilities on the south side of the HSC had to operate over this 0.28-mile segment of single track, which includes a single-track bridge over Broadway Street. The single-track segment was operating above its original design capacity which was causing 2 1/2 hours of train delay per day. Adding a second track was needed because the additional capacity provided by the second track will be sufficient to handle anticipated volume growth for the next thirty years.

Port Houston was successful in getting this project into the H-GAC Transportation Improvement Program (TIP) and was completed in July 2019. Having two main tracks on this segment will reduce delays to trains awaiting clearance to enter onto the single track, improving the flow of cargoes to and from industrial and port facilities and reducing emissions.

ELECTRIFICATION OF FLEET

Port Houston has expanded the use of battery electric hybrid rubber-tire gantry cranes (RTGs), purchased five battery electric light-duty vehicles, and an electric terminal tractor (also known as a “yard mule”).
RTGs that have been used by Port Houston are powered by diesel engines in the 600 to 700 horsepower range and can operate around 3,000 hours a year. Recently, Port Houston has started to purchase hybrid RTGs that are powered by smaller diesel engines (around 120 horsepower) and batteries. The batteries will allow an RTG to operate around 50 to 60% of the time without the diesel engine running. Currently, there are 13 hybrid RTGs at the Barbours Cut Container Terminal. For the Bayport Container Terminal, nine hybrid RTGs will be delivered by the end of 2020 and nine more will be delivered by the end of 2021.

Port Houston purchased five Chevrolet Bolts at the end of 2019 and were delivered in early 2020. Three of the Bolts are assigned to different Port Houston departments while the remaining two are available for any Port employee to use.

Port Houston has also used TCEQ TERP funds to purchase a battery electric terminal tractor that will be delivered by the end of November 2020 to the Bayport Container terminal. This electric terminal tractor will be used alongside the current fleet of diesel-powered terminal tractors to determine if it meets the operational needs of Port Houston.

TEXAS DEPARTMENT OF TRANSPORTATION

CONNECTSMART PROGRAM – ADVANCED TRANSPORTATION TECHNOLOGY DEPLOYMENT

TxDOT’s Houston ConnectSmart is a multi-year program with overarching goal to reduce congestion by introducing and deploying advanced transportation technologies through a total mobility platform (including a mobile application). The ConnectSmart platform will enable Houston regional users to discover multimodal mobility options, plan and pay for their trip, and use the app’s navigation to reach their destination. The app users are provided with relevant and real-time mobility information and incentives related to their trip. In addition, the app encourages travel behavior changes aimed at reducing single-occupancy vehicle (SOV) miles traveled (VMT) and traffic congestion impacts; overall helping improve air quality, safety, efficiency, and system performance within the Houston region. Such travel behavior changes would include making a trip at a less congested time by leaving earlier or later (reducing congestion impacts), taking an alternate route, sharing a ride (reducing VMT), and utilizing alternative modes of travel like public transit, carpooling, vanpooling, and biking.

In addition, the ConnectSmart program will integrate multi-modal mobility services with Transportation Systems Management and Operations (TSMO) and Active Demand Management (ADM) to provide smarter and more connected transportation systems. Most important, transportation agencies will be provided with multi-sourced data analytics to better enable transportation agencies to manage demand and increase access to essential services and destinations.

The Houston ConnectSmart program is built on a strong public-private-professor partnership (P4) with local transportation agencies (e.g., H-GAC, Houston METRO, TranStar, among others) that provide the foundation for a long-term and financially sustainable program.

OPERATIONAL EFFORTS TO REDUCE EMISSIONS

The Texas Department of Transportation (TxDOT) has been working to reduce both NOx and PM2.5 through a variety of different strategies. TxDOT has encouraged contractors in both construction and maintenance
to limit work hours to times which would have the least impact on air quality. For construction contractors in high-volume corridors, this includes limiting construction to nighttime and other off-peak periods. For maintenance contractors, this focuses on curtailing work during ozone action days. In addition, for TxDOT staff is encouraged to limit idling of agency vehicles when possible.

CLEAN AIR PLAN

TxDOT’s Clean Air Plan (CAP) is the Department’s effort to set an example in the field of air quality. In March 2002, TxDOT partnered with the Texas Commission on Environmental Quality to create the Drive Clean Texas campaign (DCT), the first state-sponsored public awareness program aimed at motivating individuals to change driving habits. DCT asks the public to drive less, to maintain their vehicles so that they pollute less, to avoid unnecessary idling, to buy a vehicle that pollutes less, and to pollute less by driving the speed limit.

The CAP is TxDOT’s internal effort to take the same kind of actions that DCT asks of the public. The CAP is far more ambitious, however, including all the measures of DCT and many more. The CAP program asks TxDOT employees voluntarily to participate by logging in their clean air activities during the period from May 1st to September 31st (the ozone season). In return, employees can earn between two to eight hours leave: http://crossroads/org/env/CAP/CAPsite/Incentives.htm

ALTERNATIVE FUEL CORRIDOR SIGNAGE

In compliance with the Federal Highway Administration’s (FHWA) Alternative Fuel Corridor, TxDOT is working to install supporting signage along approved alternative fuel corridors. This process is ongoing.

ELECTRIC VEHICLE PILOT

In addition to these efforts, TxDOT has also undertaken a multi-year project to expand the use of alternative fueled vehicles for areas within the so-called TERP Triangle. A roughly triangular region with vertices in Houston, San Antonio, And Dallas-Fort Worth that includes most of the major metropolitan areas in the State of Texas. This program will work to replace older gasoline and diesel vehicles with new, alternative fueled models, including all-electric ones. The first phase of this project is ongoing and will focus on the HGB area and will take place in the biennium that includes 2018 and 2019.

RAILROAD PROJECTS

ANTI-IDLING ENGINE CONTROLS

Approximately 75% of Union Pacific (UP) switcher engines operating in the HGB area have anti-idling controls, which reduce PM emissions. This is an improvement over 60% as reported in the 2016 version of this report.
REFURBISHED SWITCHER AND LOW EMISSION ENGINES

The Port Terminal Railroad Association (PTRA) and UP are operating newly refurbished switcher engines on the Clinton line. UP currently has 51 new low-emission genset engines in the Houston area. In addition, UP has 13 Tier 2 locomotives funded by Texas Emissions Reduction Plan (TERP). At present, there are no Tier 4 locomotives assigned to the Houston region, however it is likely that a number of the vehicles are operating within the Houston region at a given time.

REGULATORY PROJECTS

A number of regulatory projects have reduced fine particulate matter emissions in the HGB region. Some of these initiatives are outlined below.

EPA'S CONTROL OF EMISSIONS FROM SHIPS

In March 2010, the International Marine Organization (IMO) officially designated waters off North American coasts as an Emission Control Area (ECA) with stringent international emission standards for ships. The first-phase fuel sulfur standard began in 2012, which required that all marine diesel fuels used by ships in the North American ECA be limited to a maximum fuel sulfur content of 10,000 ppm (1%). In January 2015, a more stringent maximum of 1,000 ppm (0.1 percent) came into force for all ships in the North American ECA. It is anticipated that the implementation of the ECA will reduce PM$_{2.5}$ shipping emissions in the Gulf Coast region by 86%.

FEDERAL MOTOR VEHICLE CONTROL PROGRAM

The Federal Motor Vehicle Control Program has significantly reduced exhaust emissions from both light duty and heavy-duty vehicles in the HGB area.

INDUSTRY PROJECTS

As of January 2011, approximately 90% of the nation’s refinery capacity is under lodged or entered ‘global’ settlements to reduce SO$_2$ emissions at both refineries and sulfuric acid plants.

An East Harris County company reduced particulate emissions by an estimated 24 tons per year during 2005 to 2007 with several projects including boiler shutdown, process changes and cooling tower equipment upgrades. Another company upgraded cooling tower equipment and decreased particulate emissions (quantity not estimated).

Shell Deer Park made several equipment upgrades that reduced particulate and/or sulfur dioxide emissions, including the 2003 installation of a wet gas scrubber on refinery’s cat cracker, resulting in the

19 Genset locomotives are powered by ultra-low-emission diesel engines that are connected to electric generators, thus the name "Generator-Set," or "Genset" switcher. http://www.tceq.texas.gov/assets/public/implementation/air/sip/hgb/hgb_mveb_2012/12002SIP_ado_complete.pdf

reduction of 61 tpy of PM and 4,674 tpy of SO$_2$\(^{21}\). Shell also installed a flare gas recovery compressor system on the Deer Park Refinery’s East Property Flare at end of 2012—resulting in the reduction of 2475 tons of SO$_2$\(^{22}\) annually.

Valero Refining has implemented control measures to reduce SO$_2$ emissions by 3,500 tpy. The Rhodia sulfuric acid plant was projected to decrease its SO$_2$ emissions by 8,984 tons per year from 2005 to 2012.

The Dow Chemical Company completed several shutdowns and upgrades to facilities at Freeport and Deer Park that reduced PM emissions by 192.97 tpy. These projects include: a shutdown of the Acetylene plant (Deer Park), 2008; Latex plant shutdown (Freeport), 2009; Upgrades to the Dow Pyridine derivatives facility and cooling tower (Freeport), 2009; Power 3, Power 6 and Poly 2 facilities shutdown (Freeport), 2010; EDC VCM facility shutdown (Freeport), 2011; Styrene 1, 2, EBA and distribution facilities shutdown (Freeport), 2012; and improvements to HT cooling Tower in Deer Park, including drift eliminators, 2013.

ENERGY EFFICIENCY IN THE HOUSTON-GALVESTON-BRAZORIA REGION

In 1999, the Public Utility Commission of Texas (PUCT) adopted rules for the state’s Renewable Energy Mandate, establishing a renewable portfolio standard (RPS), a renewable-energy credit (REC) trading program, and renewable-energy purchase requirements for competitive retailers in Texas\(^{23}\).

The State has established the Texas Energy Efficiency resource goal of 20% incremental load growth in 2011, which is equivalent to approximately 0.10% annual savings, with 25% in 2012, 30% in 2013 and onward\(^{24}\).

In Fort Bend County, NRG Energy added a 75-megawatt natural gas generating unit to its W.A. Parish power plant. This natural gas unit has higher energy efficiency and less PM$_{2.5}$ emissions than a conventional power plant.

Port Houston also increased its renewable energy purchases from 25% to 30%.

POTENTIAL AND FUTURE PROJECTS

These ideas are NOT commitments of future action. They are merely ideas, and their implementation would be contingent on funding availability, and an affirmative commitment from the proposing agency. All ideas are voluntary and would result in PM benefits.

H-GAC CLEAN VEHICLES & CLEAN SCHOOL BUS PROGRAMS

The Clean Vehicles Program will continue to provide significant emission reductions within our region. This program has funded replacements of school buses, private fleets, drayage trucks, transit vehicles and more. Since its start, the program has provided more than $78 million in financial aid, replaced more than

\(^{21}\) Based on comparison of 2002/2003 emissions to 2004/2005 emissions
\(^{22}\) Based on comparison of 2011 emissions versus 2013 preliminary-AEI emissions
\(^{23}\) http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=TX03R&re=1&ee=1
\(^{24}\) http://www.aceee.org/sector/state-policy/texas
2,700 engines and developed several alternative fueling stations. In the future, the Clean Vehicles Program will target heavy-duty fleet replacements which will continue to result in both PM and NOx emission reductions for the region.

In 2015, EPA awarded a total of $240,000 to three school districts in Texas to replace older diesel school buses with new buses that emit 90 percent cleaner emissions\(^\text{25}\). The Aldine Independent, Lone Star Public School and Spring Branch Independent School Districts will receive rebates through EPA’s Diesel Emissions Reduction Act to replace 12 of their existing diesel school buses. Since 2008, the DERA program has funded more than 600 clean diesel projects across the country. These projects have reduced emissions for more than 60,000 engines. Over 500 school bus fleets applied to EPA’s Rebate Program, requesting more than $32 million in funding.

DEPARTMENT OF ENERGY ZERO-EMISSION DELIVERY VEHICLE DEMONSTRATION PROJECT

The goal of H-GAC’s Zero Emission Truck project is to demonstrate the effectiveness of all-electric delivery vehicles in the Houston region. H-GAC received more than $2 million from the U.S. Department of Energy for this project. H-GAC has partnered with United Parcel Service (UPS) and Workhorse to develop, assemble, and deploy all-electric delivery vehicles along with an electric vehicle charging station (EVSE) for each vehicle at facilities within the HGB region. This has resulted in the deployment of 18 of these all-electric vehicles on regional roads. These vehicles will be tested over two years to measure emission reductions and evaluate vehicle performance. It is anticipated that an additional 12 vehicles will be deployed with local fleets before completion of the project. By deploying zero emission trucks, the project will reduce petroleum consumption and emissions of harmful air pollutants, including PM.

REGIONAL TEXAS EMISSION REDUCTION PROGRAM

H-GAC received $3 million from TCEQ to establish the second Regional Texas Emission Reduction Program (TERP). The Regional TERP provided grants to local governments for the replacement of non-road equipment and on-road vehicles powered by heavy duty diesel engines, and aids in the replacement of drayage trucks associated with the Drayage Loan Program. Regional TERP grant amounts are based upon the NOx reduction created by the equipment and vehicle replacement. These replacements will also result in PM\(_{2.5}\) reductions in the HGB area.

EXPANSION OF MASS EMISSIONS CAP AND TRADE PROGRAM

In Texas, the Mass Emissions Cap and Trade Program (MECT) is a market-based cap and trade program that implements an annual NOx emissions cap for major source facilities within the Houston-Galveston-Brazoria ozone nonattainment area. H-GAC and other local stakeholders including ExxonMobil, Environmental Defense Fund, and others have been working with TCEQ to expand the existing MECT program to allow the inclusion of exhaust capture systems and emissions treatment systems for oceangoing vessels and locomotives as eligible candidates for the cap and trade program. At present, these facilities are not eligible to participate in the program. It is anticipated that, should they become part of the program, that they will help to encourage the introduction and expansion of these control measures within the region.

\(^{25}\) http://www.epa.gov/cleandiesel/dera-rebate-schoolbus.htm
H-GAC has been working to ensure that the HGB region is included in all aspects of the recent settlement between Volkswagen and EPA. Actions taken using Settlement funds are earmarked to remediate increased concentrations of NOx resulting from fraudulent diesel emissions controls, however any resulting air quality improvements should also result in reduced PM2.5 concentrations. To this end, H-GAC has worked with Electrify America to implement the zero-emissions vehicle investment portion of the Settlement as well as justify the deployment of electric vehicle charging equipment within the region. As a result, the HGB region was chosen as one of the focus areas for the first Electrify America investment cycle. H-GAC has also been working with TCEQ, the state beneficiary for the Settlement, to offer recommendations regarding the most efficient and cost-effective methods for capturing emission reductions using Settlement funds.

HOUSTON INDEPENDENT SCHOOL DISTRICT ELECTRIC SCHOOL BUS DEMONSTRATION PROJECT

This potential future project is being led by National Strategies LLC as part of a commitment made under the Clinton Global Initiative (CGI), with the support of Houston Independent School District (HISD), TransPower and NRG and others. The demonstration project being considered includes the repower of 4 conventional type-C HISD school buses to all-electric, battery powered vehicles (EV) with vehicle-to-grid (V2G) technology and vehicle-to-building (V2B) capability. The project duration is anticipated to be 2.5 to 3 years, including a 9-month bus operation cycle in summer and winter seasons with a total cost of approximately $2 million. The overall objectives of the project are to demonstrate the economic viability and air quality benefits of EV V2G school buses in order to speed the adoption of zero-emission school buses and associated emission reductions across the U.S.

CITY OF HOUSTON RENEWABLE ENERGY

In 2014, EPA recognized the City of Houston for its use of green power practices and technologies. Houston signed a two-year agreement to purchase more than 620 million kilowatt-hours of certified renewable energy certificates from wind projects. This purchase accounts for half of the city’s municipal power needs and make Houston the largest municipal purchaser of renewable power in the Green Power Partnership. The City is planning to continue to expand this renewable energy portfolio through the construction of 30 MW of solar power which will be used to power City facilities.

PORT HOUSTON FUTURE DUST SUPPRESSION PROJECTS

Fugitive road dust entrainment rates, whether from parking lots or on the transit network, depend upon the dust loading, vehicle speed and number of vehicles. Dust loading has been controlled by paving unpaved surfaces and regular pavement cleaning or watering or other treatment of unpaved surfaces. The benefits of these programs are proportional to the activity on those surfaces. Analysis of these projects is relatively straightforward given the level of activity and understanding of the dust loading of those areas.

Port Houston is planning dust suppression projects in future years. Approximately 30 acres will continue to have emulsified asphalt sprayed following this initial effort.

PORT HOUSTON AUTHORITY BARBOURS CUT TERMINAL GATE REDESIGN AND EXPANSION

26 http://www.epa.gov/greenpower/awards/winners.htm
Port Houston plans to redesign and expand the truck entrance and exit gates at the Barbours Cut Terminal. The new design and expansion will increase gate capacity which will handle the anticipated future throughput. This project will also look state-of-the-art gate processes, operating systems, practices, and technology, which have changed significantly since the gate was constructed in the late 1990’s

OVERWEIGHT CONTAINER ROUTE BETWEEN HGB REGION PORTS

An overweight or dedicated truck route can improve emissions by reducing stop-and-go emissions and reducing the number of truck trips. During the most recent rulemaking session, the Texas legislature passed a rule that allows shipping companies to purchase permits that allow overweight trucks on regional roads. These rules may allow more cargo to be shipped with fewer trucks as well as help to smooth traffic flow around Port areas which can result in improved emissions. In other transportation measures, such as traffic signal improvements, traffic flow improvements have been shown to reduce emissions rates by five (5) to ten (10) percent for regional fleets. The relative benefit may be higher with heavy-duty trucks than for light-duty vehicles because braking, idling, and acceleration are high-emissions modes for trucks.

Overall emission reductions will also depend on the dedicated truck routes and the expected usage of routes. Other considerations include whether infrastructure costs are incurred to allow overweight trucks, create grade separation, or overcome obstacles to allow such trucks routes to be constructed.

REPLACEMENT OF RAILROAD SWITCHER ENGINES

In the Houston area, there has been discussion regarding a potential future railroad demonstration project involving the replacement of traditional switcher engines with natural-gas-powered engines. Powering long-haul locomotives with LNG would result in PM reduction benefits for the HGB region.

TIER-3 MOTOR VEHICLE FUEL AND EMISSION STANDARDS

The Tier-3 emission standards include a lower PM emission standard for light-duty gasoline vehicles beginning in 2017 and phasing in through 2025. This means that in addition to the 2007 PM standards for heavy-duty diesel that is reducing PM emissions in the near term, as the fleet turns over, on-road vehicle PM emissions will continue to decrease in the future. The table below shows the effect of Tier-3 emission standards in years 2018 and 2030.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>National Inventory Reduction</th>
<th>Air Quality Inventory Reduction</th>
<th>National Inventory Reduction</th>
<th>Air Quality Inventory Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>-0.1%</td>
<td>-0.4%</td>
<td>-10.0%</td>
<td>-10.4%</td>
</tr>
<tr>
<td>NO$_x$</td>
<td>-9.6%</td>
<td>-9.9%</td>
<td>-24.6%</td>
<td>-25.5%</td>
</tr>
<tr>
<td>VOC</td>
<td>-2.8%</td>
<td>-2.4%</td>
<td>-15.5%</td>
<td>-14.4%</td>
</tr>
<tr>
<td>CO</td>
<td>-1.6%</td>
<td>-1.6%</td>
<td>-23.4%</td>
<td>-25.3%</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>-56.3%</td>
<td>-55.9%</td>
<td>-55.7%</td>
<td>-55.0%</td>
</tr>
</tbody>
</table>

CONCLUSION

H-GAC’s participation in PM Advance has been, and continues to be, a successful example of voluntary collaboration between local government, business, industry, citizens, and environmental groups in our region. In the past, the HGB region has faced potential nonattainment designations for PM. Since that time, our region has made significant improvements and successfully avoided nonattainment status in 2015.

This Path Forward document continues a framework for the region to continue to meet air quality standards and achieve the Program mission to encourage voluntary accelerated implementation of current clean air strategies and programs. Our region needs to continue to collectively work together to better understand PM. Future growth will inevitably impact particulate matter emissions in our region—whether due to population, industry or economic growth. Through this program, we will continue to work together to understand regional PM emissions and meet our air quality and attainment goals.
