## Amendment # 1 to the Houston-Galveston Area Council (H-GAC) Multi-Basin Clean Rivers Program FY 2020/2021 QAPP

Prepared by the H-GAC in Cooperation with the Texas Commission on Environmental Quality (TCEQ)

## Effective: Immediately upon approval by all parties

Questions concerning this QAPP should be directed to: Jean Wright, Houston-Galveston Area Council (H-GAC) CRP Quality Assurance Officer P.O. Box 22777 Houston, Texas 77227-2777 (713) 499-6660 jean.wright@h-gac.com

## Justification

This amendment is needed because there have been some personnel changes within some of the local partner agencies. Several of the A7.1 tables have been changed due to methodology changes or new parameter accreditations within laboratories. Plus, the Eastex Lab Chain of Custody (COC) was converted into an electronic form which all partners are now using. All information on the COC is the same, only the location of the information has changed and COC is only one-sided now.

## **Detail of Changes**

Each proposed change is described in the table below.

| Section/Figure/Table | Page | Change                      | Justification                    |
|----------------------|------|-----------------------------|----------------------------------|
| A4                   | 17   | Added words 'and/or         | Making language more correct.    |
|                      |      | QAO' to end of third        | Those types of activities are    |
|                      |      | sentence in first paragraph | frequently coordinated with H-   |
|                      |      | (under Daisy James).        | GAC's QAO and not H-GAC PM.      |
| A4                   | 17   | Replace Lisa Montemayor     | Nguyen Ly will now be the CRP    |
|                      |      | with Nguyen Ly as the CRP   | QAO.                             |
|                      |      | QAO for HHD.                |                                  |
| A4                   | 17   | Added words '/or' in        | Making language more correct.    |
|                      |      | second sentence of second   | Those types of activities are    |
|                      |      | paragraph (under Nguyen     | frequently coordinated with H-   |
|                      |      | Ly).                        | GAC's QAO and not H-GAC PM.      |
| A4                   | 17   | Replace Lisa Montemayor     | Blanca Hinojosa will now be the  |
|                      |      | with Blanca Hinojosa as     | Data Manager.                    |
|                      |      | the Data Manager for        |                                  |
|                      |      | HHD.                        |                                  |
| A4                   | 18   | Replace Shubha Thakur       | Shubha Thakur was promoted       |
|                      |      | with Narendra Joshi as the  | to Lab Director and they hired a |
|                      |      | new Lab QA Manager, CRP     | new person to take her           |
|                      |      | QAO, and Lab Data           | previous responsibilities. He is |
|                      |      | Manager. Remove the         | not 'Acting' but has taken on    |
|                      |      | word 'Acting'.              | full responsibilities.           |
| A4                   | 20   | Replace Kaitlen Gary with   | Ashley Morgan-Olvera is the      |
|                      |      | Ashley Morgan-Olvera as     | new TRIES CRP QAO, Field         |
|                      |      | CRP QAO, CRP Field          | Supervisor, and Data Manager.    |
|                      |      | Supervisor and CRP Data     | Per request and review of job    |
|                      |      | Manager.                    | description, the word 'Field'    |
|                      |      |                             | was removed from 'CRP Field      |
|                      |      |                             | QAO'.                            |
| Figure A4.1c         | 24   | Replace Lisa Montemayor     | Nguyen Ly is now the CRP QAO     |
|                      |      | with Nguyen Ly in two       | & Field Supervisor.              |
|                      |      | places in the               |                                  |
|                      |      | Organizational Chart for    |                                  |
|                      |      | HHD.                        |                                  |

| Section/Figure/Table | Page | Change                                                                                                                             | Justification                                                                        |
|----------------------|------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Figure A4.1c         | 24   | Replace Lisa Leija with                                                                                                            | Blanca Hinojosa is now the CRP                                                       |
|                      |      | place in the Organizational                                                                                                        |                                                                                      |
|                      |      | Chart for HHD.                                                                                                                     |                                                                                      |
| Figure A4.1d         | 25   | Replace Shubha Thakur<br>with Narendra Joshi in in<br>the Organizational Chart                                                     | Narendra Joshi is now the Lab<br>QA Manager and the CRP Lab<br>Data Manager for DWO. |
|                      |      | for DWO. Remove 'Acting' from the same boxes.                                                                                      |                                                                                      |
| Figure A4.1e         | 26   | Replace Shubha Thakur<br>with Narendra Joshi in in<br>the Organizational Chart<br>for DWO. Remove 'Acting'<br>from the same boxes. | Narendra Joshi is now the Lab<br>QA Manager and the CRP Lab<br>Data Manager for DWO. |
| Figure A4.1g         | 28   | Replace Kaitlen Gary with                                                                                                          | Ashley Morgan-Olvera is the                                                          |
|                      |      | Organizational Chart for<br>TRIES.                                                                                                 | Supervisor, and Data Manager.                                                        |
| A6                   | 31   | Remove statements about                                                                                                            | SJRA has decided to stop                                                             |
|                      |      | Total Copper and                                                                                                                   | collecting metals with The                                                           |
| A6                   | 32   | Insert 'and/or OAO' to                                                                                                             | Retter described the H-GAC                                                           |
|                      | 52   | three paragraphs on this                                                                                                           | process of creating                                                                  |
|                      |      | page.                                                                                                                              | amendments and planning                                                              |
|                      |      |                                                                                                                                    | special projects.                                                                    |
| Table A8.1           | 34   | Replace Kaitlen Gary with                                                                                                          | Ashley Morgan-Olvera is the                                                          |
|                      |      | Ashley Morgan-Olvera as                                                                                                            | new TRIES CRP QAO, Field                                                             |
|                      |      | Trainer for TRIES.                                                                                                                 | Supervisor, and Data Manager.                                                        |
| Table A9.2           | 40   | Replace ACCESS with                                                                                                                | Updated process.                                                                     |
|                      |      | EXCEL as the software                                                                                                              |                                                                                      |
|                      |      | used by HCPCS to submit                                                                                                            |                                                                                      |
| Table D2 1a          | 41   | data to H-GAC                                                                                                                      | Eastay chacked with EDA and                                                          |
| Sample Storage       | 41   | method for total                                                                                                                   | learned that HNO3 is the                                                             |
| Preservation and     |      | phosphorus from 'H2SO4                                                                                                             | correct acid to use when                                                             |
| Handling             |      | to pH <2' to 'Acidified at                                                                                                         | running method 200.7 on the                                                          |
| Requirements of      |      | lab.'                                                                                                                              | IC.                                                                                  |
| H-GAC                |      |                                                                                                                                    |                                                                                      |
| Table B2.1a          | 41   | Change "Four or five" to                                                                                                           | Eastex requested that sample                                                         |
| Sample Storage,      |      | "Three" tests in footnote 3                                                                                                        | collectors change which bottle                                                       |
| Preservation and     |      | for table B2.1a.                                                                                                                   | the lotal phosphorus sample is                                                       |

| Section/Figure/Table | Page  | Change                          | Justification                    |
|----------------------|-------|---------------------------------|----------------------------------|
| Handling             |       |                                 | taken from.                      |
| Requirements of      |       |                                 |                                  |
| H-GAC                |       |                                 |                                  |
| Table B2.1a          | 41    | Add footnote 6 below            | Eastex checked with EPA and      |
| Sample Storage,      |       | table B2.1a                     | learned that HNO3 is the         |
| Preservation and     |       |                                 | correct acid to use when         |
| Handling             |       |                                 | running method 200.7 on the      |
| Requirements of      |       |                                 | IC. Also, after the words "in a  |
| H-GAC                |       |                                 | separate bottle', added 'to a pH |
| Table D2 1a          | 42    | Add no vo motor (Nitrito' to    | OT <2.                           |
| Table B2.10          | 42    | Add parameter Nitrite to        | HHD received accreditation for   |
| Broconvotion and     |       | table B2.1C.                    | this parameter on 1/28/2020.     |
| Handling             |       |                                 |                                  |
| Requirements of      |       |                                 |                                  |
| HHD                  |       |                                 |                                  |
| Table B2.1d          | 43    | Remove parameter                | DWO was accredited for Nitrite   |
| Sample Storage,      |       | 'Nitrate-Nitrite' from the      | by method EPA 300.0 on           |
| Preservation and     |       | table. Add 'Nitrite-N' to       | 1/1/2020.                        |
| Handling             |       | the table.                      |                                  |
| Requirements of      |       |                                 |                                  |
| DWO                  |       |                                 |                                  |
| Table B2.1e          | 43/44 | Replace the holding time        | This was a typographical error   |
| Sample Storage,      |       | for 'Nitrate-N' from 28         | that was not caught in the       |
| Preservation and     |       | days to 48 hours                | original Multi-Basin QAPP.       |
| Handling             |       |                                 | Changed footnote 3 to read       |
| Requirements for     |       |                                 | "collected, specified volumes    |
| SJRA Samples         |       |                                 | withdrawn for analysis."         |
| Collected from Lake  |       |                                 |                                  |
|                      |       |                                 |                                  |
| Laboratory           |       |                                 |                                  |
| Table B2 1f          | 44    | Change preservation             | Fastex checked with FPA and      |
| Sample Storage       |       | method for total                | learned that $HNO_2$ is the      |
| Preservation and     |       | phosphorus from 'H <sub>2</sub> | correct acid to use to acidify   |
| Handling             |       | $SO_4$ to pH <2' to 'Acidified  | the sample to $pH < 2$ when      |
| Requirements for     |       | at lab.'                        | running method 200.7 on the      |
| SJRA Samples         |       |                                 | IC.                              |
| Collected from The   |       |                                 |                                  |
| Woodlands and        |       |                                 |                                  |
| Analyzed by Eastex   |       |                                 |                                  |
| Environmental        |       |                                 |                                  |
| Laboratory           |       |                                 |                                  |
| Table B2.1f          | 44    | Remove 'Copper, Total'          | SJRA dropped metals              |

| Section/Figure/Table | Page | Change                             | Justification                        |
|----------------------|------|------------------------------------|--------------------------------------|
| Sample Storage,      |      | and 'Selenium, Total' from         | monitoring.                          |
| Preservation and     |      | table B2.1f. and associated        |                                      |
| Handling             |      | original footnote #4.              |                                      |
| Requirements for     |      |                                    |                                      |
| SJRA Samples         |      |                                    |                                      |
| Collected from The   |      |                                    |                                      |
| Woodlands and        |      |                                    |                                      |
| Analyzed by Eastex   |      |                                    |                                      |
| Laboratory           |      |                                    |                                      |
| Laboratory           |      |                                    |                                      |
| Table B2.1f          | 44   | Re-numbered footnotes 5            | Original footnote 4 was              |
| Sample Storage,      |      | & 6 to footnotes 4 & 5.            | removed from Table B2.1f.            |
| Preservation and     |      |                                    | Fixed all footnote citations         |
| Handling             |      |                                    | within the table.                    |
| Requirements for     |      |                                    |                                      |
| SJRA Samples         |      |                                    |                                      |
| Collected from The   |      |                                    |                                      |
| Woodlands and        |      |                                    |                                      |
| Analyzed by Eastex   |      |                                    |                                      |
| Environmental        |      |                                    |                                      |
| Laboratory           | 4.4  | "2 One 1 L plastic                 | Descurted the servest surplus        |
| Sample Storage       | 44   | 3. One I L plastic                 | of parameters taken from one         |
| Preservation and     |      | these threefour                    | 1-liter bottle Should have           |
| Handling             |      | narameters "                       | heen four instead of three           |
| Requirements for     |      |                                    | seen four instead of three.          |
| EIH. Samples         |      |                                    |                                      |
| Analyzed by Eastex   |      |                                    |                                      |
| Environmental        |      |                                    |                                      |
| Laboratory           |      |                                    |                                      |
| Table B2.1f          | 44   | Add new footnote but               | Eastex checked with EPA and          |
| Sample Storage,      |      | numbered as 6 instead of           | learned that HNO <sub>3</sub> is the |
| Preservation and     |      | 7 below table B2.1f                | correct acid to use to acidify       |
| Handling             |      | '6. T. phosphorus sample           | the sample to pH <2 when             |
| Requirements for     |      | taken out of TSS 1-liter and       | running method 200.7 on the          |
| SJRA Samples         |      | Nitric Acid (HNO <sub>2</sub> ) in | IC.                                  |
| Collected from The   |      | separate bottle to a pH of         |                                      |
| vvoodiands and       |      | <2.'                               |                                      |
| Analyzed by Eastex   |      |                                    |                                      |
|                      |      |                                    |                                      |
| Table B2 1g          | 45   | Change preservation                | Fastex checked with FPA and          |
| Sample Storage,      |      | method for total                   | learned that HNO <sub>3</sub> is the |

| Section/Figure/Table                                                                                                                                    | Page  | Change                                                                                                                                                                                                   | Justification                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preservation and<br>Handling<br>Requirements for<br>EIH. Samples<br>Analyzed by Eastex<br>Environmental<br>Laboratory                                   |       | phosphorus from 'H <sub>2</sub> SO <sub>4</sub> to<br>pH <2' to 'Acidified at lab.'                                                                                                                      | correct acid to use to acidify<br>the sample to pH <2 when<br>running method 200.7 on the<br>IC.                                                                        |
| Table B2.1g<br>Sample Storage,<br>Preservation and<br>Handling<br>Requirements for<br>EIH. Samples<br>Analyzed by Eastex<br>Environmental<br>Laboratory | 45    | Add footnote 6 below<br>table B2.1g<br>'6. T. phosphorus sample<br>taken out of TSS 1-liter and<br>preserved at the lab with<br>Nitric Acid (HNO <sub>3</sub> ) in<br>separate bottle to a pH of<br><2.' | Eastex checked with EPA and<br>learned that HNO <sub>3</sub> is the<br>correct acid to use to acidify<br>the sample to pH <2 when<br>running method 200.7 on the<br>IC. |
| Table B2.1h<br>Sample Storage,<br>Preservation and<br>Handling<br>Requirements for<br>TRIES. Etc.                                                       | 45/46 | Remove ' <u>period'</u> at end of<br>sentence and the words<br>' <u>Requirements for TRIES</u> '<br>Samples Analyzed by the<br>TRIES Laboratory and<br>Eastex Environmental<br>Laboratory                | Clarified language.                                                                                                                                                     |
| Table B2.1h<br>Sample Storage,<br>Preservation and<br>Handling<br>Requirements for<br>TRIES. Etc.                                                       | 45/46 | Replace the word ' <u>and'</u> in<br>second sentence with the<br>word 'or'. Should now<br>read 'Samples Analyzed by<br>the TRIES Laboratory <u>or</u><br>Eastex Environmental<br>Laboratory              | Clarified language.                                                                                                                                                     |
| Table B2.1h<br>Sample Storage,<br>Preservation and<br>Handling<br>Requirements for<br>TRIES. Etc.                                                       | 45/46 | Add the words 'at the lab'<br>after pH <2                                                                                                                                                                | Clarified language.                                                                                                                                                     |
| Section B2<br>Sample Containers                                                                                                                         | 47/48 | Remove bullet about<br>'New, certified pre-<br>cleaned, plastic bottles'                                                                                                                                 | SJRA dropped metals monitoring.                                                                                                                                         |
| Section B2<br>Processes to Prevent<br>Contamination                                                                                                     | 47/48 | Removed phrases, '; and<br>clean sampling techniques<br>for metals' AND 'Field QC<br>samples for metalshas                                                                                               | SJRA dropped metals monitoring.                                                                                                                                         |

| Section/Figure/Table   | Page          | Change                       | Justification                   |
|------------------------|---------------|------------------------------|---------------------------------|
|                        |               | not occurred.'               |                                 |
| Section B5 Quality     | 52            | Remove 3 paragraphs          | SJRA dropped metals             |
| Control; Sampling      |               | under 'Field blank'          | monitoring.                     |
| Quality Control        |               | sections. Also, removed      |                                 |
| Requirements and       |               | last two sentences from      |                                 |
| Acceptability Criteria |               | first paragraph.             |                                 |
| Section B5 Quality     | 55            | Remove two phrases in        | SJRA dropped metals             |
| Control; Quality       |               | first paragraph – 'Field     | monitoring.                     |
| Control or             |               | blanks for trace very        |                                 |
| Acceptability          |               | closely.' AND 'Equipment     |                                 |
| Deficiencies and       |               | blanks scrutinized very      |                                 |
| Corrective Actions     |               | closely.'                    |                                 |
| Appendix A             | This should   | Replace TKN methodology      | Eastex Environmental            |
| Table A7.1c            | be whatever   | 'SM 4500-Norg B or C and     | Laboratory was recently         |
| Measurement            | page it is in | SM 4500-NH3 C'               | accredited for EPA 351.2 on     |
| Performance            | the original  | with 'EPA 351.2'.            | 6/28/2020.                      |
| Specifications for     | document.     |                              |                                 |
| H-GAC                  |               |                              |                                 |
| Appendix A             |               | Replace TKN methodology      | Eastex Environmental            |
| Table A7.2b            |               | 'SM 4500-Norg B or C and     | Laboratory was recently         |
| Measurement            |               | SM 4500-NH3 C                | accredited for EPA 351.2 on     |
| Performance            |               | with 'EPA 351.2'.            | 6/28/2020.                      |
| Specifications for     |               |                              |                                 |
| HCPCS                  |               |                              |                                 |
| Annendix A             |               | Replace TKN methodology      | Fastex Environmental            |
| Table A7 3c            |               | 'SM 4500-Norg B or C and     | Laboratory was recently         |
| Measurement            |               | SM 4500-NH3 C'               | accredited for EPA 351.2 on     |
| Performance            |               | with 'EPA 351 2'             | 6/28/2020                       |
| Specifications for     |               |                              | 0/20/2020.                      |
| ннр                    |               |                              |                                 |
|                        |               | ADD 'Nitrite Nitrogen.       | HHD received accreditation for  |
|                        |               | Total' to A7.3 table.        | this parameter on $1/28/2020$ . |
| Appendix A             |               | Add new parameter            | DWO was accredited for Nitrite  |
| Table A7.4c            |               | 'Nitrite Nitrogen, Total' to | by method EPA 300.0 on          |
| Measurement            |               | A7 table for DWO.            | 1/1/2020.                       |
| Performance            |               |                              |                                 |
| Specifications for     |               |                              |                                 |
| DWO                    |               |                              |                                 |
| Appendix A             |               | Replace TKN methodology      | Eastex Environmental            |
| Table A7.4c            |               | 'SM 4500-Norg B or C and     | Laboratory was accredited for   |
| Measurement            |               | SM 4500-NH3 C'               | method EPA 351.2 on             |
| Performance            |               | with 'EPA 351.2              | 6/28/2020.                      |
| Specifications for     |               |                              |                                 |

| Section/Figure/Table                                                                     | Page | Change                                                                                     | Justification                                                                                |
|------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| DWO                                                                                      |      |                                                                                            |                                                                                              |
| Appendix A<br>Table A7.5b<br>Measurement<br>Performance<br>Specifications for<br>SJRA-LC |      | Add new parameter<br>'Nitrite Nitrogen, Total' to<br>A7 table for DWO.                     | DWO was accredited for Nitrite<br>by method EPA 300.0 on<br>1/1/2020.                        |
| Appendix A<br>Table A7.5b<br>Measurement<br>Performance<br>Specifications for<br>SJRA-LC |      | Replace TKN methodology<br>'SM 4500-Norg B or C and<br>SM 4500-NH3 C'<br>with 'EPA 351.2'. | Eastex Environmental<br>Laboratory was recently<br>accredited for EPA 351.2 on<br>6/28/2020. |
| Appendix A<br>Table A7.6c<br>Measurement<br>Performance<br>Specifications for<br>SJRA-W  |      | Add new field parameter:<br>Wind Intensity (1 thru 4)                                      | This parameter was accidentally<br>left out of the original QAPP A7<br>table for SJRA-W.     |
| Appendix A<br>Table A7.6c<br>Measurement<br>Performance<br>Specifications for<br>SJRA-W  |      | Add new field parameter:<br>Water Surface (1 thru 4)                                       | This parameter was accidentally<br>left out of the original QAPP A7<br>table for SJRA-W.     |
| Appendix A<br>Table A7.6c<br>Measurement<br>Performance<br>Specifications for<br>SJRA-W  |      | Replace TKN methodology<br>'SM 4500-Norg B or C and<br>SM 4500-NH3 C'<br>with 'EPA 351.2   | Eastex Environmental<br>Laboratory was recently<br>accredited for EPA 351.2 on<br>6/28/2020. |
| Appendix A<br>Table A7.6e<br>Measurement<br>Performance<br>Specifications for<br>SJRA-W  |      | Delete Table A7.6e.                                                                        | SJRA dropped metals monitoring.                                                              |
| Appendix A<br>Table A7.7c<br>Measurement<br>Performance<br>Specifications for            |      | Replace TKN methodology<br>'SM 4500-Norg B or C and<br>SM 4500-NH3 C'<br>with 'EPA 351.2'. | Eastex Environmental<br>Laboratory was recently<br>accredited for EPA 351.2 on<br>6/28/2020. |

| Section/Figure/Table | Page    | Change                  | Justification                    |
|----------------------|---------|-------------------------|----------------------------------|
| EIH                  |         |                         |                                  |
| Appendix B           |         | Update Table B1.1       | Added 2 events of field,         |
|                      |         |                         | conventionals & bacteria to site |
|                      |         |                         | 11490.                           |
| Appendix B           |         | Update Table B1.1       | Add 2 events of conventionals    |
|                      |         |                         | & bacteria to site 11493.        |
| Appendix E           | No page | Replace COC for Eastex. | Eastex Environmental             |
| COC forms            | number  |                         | Laboratory remade their COC      |
|                      |         |                         | so that all information found on |
|                      |         |                         | the back of the form is now      |
|                      |         |                         | located on the front of the form |
|                      |         |                         | making it one-page, single       |
|                      |         |                         | sided. ONLY the Eastex COC       |
|                      |         |                         | was changed. All others are      |
|                      |         |                         | included to keep the Appendix    |
|                      |         |                         | complete and only 1 file is      |
|                      |         |                         | needed to find the most          |
|                      |         |                         | current information.             |

## Distribution

QAPP Amendments and Revisions to Appendices will be distributed to all personnel on the distribution list maintained by the H-GAC.

These changes will be incorporated into the QAPP document and TCEQ, the H-GAC, and all local partners and subcontractors will acknowledge and accept these changes by signing this amendment.

## Texas Commission on Environmental Quality

## Water Quality Planning Division

Electronically Approved8/18/2020Kelly RodibaughDateProject Quality Assurance SpecialistClean Rivers Program

<u>Electronically Approved</u> 8/14/2020 Kyle Girten, Acting CRP Work Lead Date Clean Rivers Program

*Electronically Approved* 8/18/2020 Kelly Rodibaugh, Project Manager Date Clean Rivers Program

Electronically Approved8/14/2020Cathy Anderson, Team LeaderDateData Management and AnalysisDate

## **Monitoring Division**

Electronically Approved 8/17/2020

Dana Squires Date Lead CRP Quality Assurance Specialist Laboratory and Quality Assurance Section

## Houston-Galveston Area Council (H-GAC)

*Electronically Approved* 8/14/2020 Todd Running Date H-GAC Project Manager

Electronically Approved

Jean Wright Date H-GAC Quality Assurance Officer

8/14/2020

## Harris County Pollution Control Services (HCPCS)

Electronically Approved8/17/2020Michael CantuDateHCPCS CRP Project Manager

Electronically Approved8/17/2020Bryan KoslerDateHCPCS Field Quality Assurance Officer

| Electronically Approved  | <u>8/17/2020</u> |
|--------------------------|------------------|
| Michael Cantu            | Date             |
| HCPCS Laboratory Manager |                  |

Electronically Approved8/14/2020Ericka JacksonDateHCPCS Quality Assurance Officer

## City of Houston, Houston Health Department (HHD)

Electronically Approved8/14/2020Daisy JamesDateCRP Project Manager

| Electronically Approved  | 8/17/2020   |
|--------------------------|-------------|
| Nguyen Ly                | Date        |
| HHD Field Quality Assura | nce Officer |

| Electronically Approved | 8/14/2020 |
|-------------------------|-----------|
| Roger Sealy             | Date      |
| HHD BLS Lab Manager     |           |

| Electronically Approved         | 8/14/2020 |
|---------------------------------|-----------|
| Kimyattia Smith                 | Date      |
| HHD BLS Lab Quality Assurance C | officer   |

## City of Houston, Drinking Water Operations (DWO)

Electronically Approved8/17/2020Shubha ThakurDateCRP Project Manager & DWO Laboratory Director

Electronically Approved8/18/2020Harold LongbaughDateDWO Laboratory Manager

Electronically Approved8/14/2020Narendara JoshiDateDWO Laboratory Quality Assurance Officer

Electronically Approved8/17/2020Desta TakieDateDWO Field Quality Assurance Officer

## San Jacinto River Authority (SJRA)

David Sidney for Shane SimpsonElectronically Approved8/17/2020Shane SimpsonDateSJRA CRP Project Manager andField Quality Assurance Officer

## Environmental Institute of Houston, University of Houston – Clear Lake (EIH)

| Electronically Approved | 8/14/2020 |
|-------------------------|-----------|
| Dr. George Guillen      | Date      |
| EIH CRP Project Manager |           |

| Electronically Approved       | <u>8/14/2020</u> |
|-------------------------------|------------------|
| Jenny Oakley                  | Date             |
| EIH Quality Assurance Officer |                  |

## Texas Research Institute for Environmental Studies (TRIES)

Electronically Approved8/17/2020Dr. Chad HargraveDateTRIES CRP Project Manager

Electronically Approved8/14/2020Ashley Morgan-OlveraDateTRIES CRP Quality Assurance Officer

Electronically Approved8/14/2020Dr. Rachelle SmithDateTRIES Laboratory Manager & Quality Assurance Officer

## Eastex Environmental Laboratory, Inc. (Coldspring, TX)

Electronically Approved8/14/2020Natalia BondarDateEastex Lab Technical Director

Electronically Approved8/14/2020Tiffany GuerreroDateEastex Lab Quality Assurance Officer

## City of Houston – Houston Health Department (HHD)

#### Daisy James

#### **CRP** Project Manager

Responsible for conducting routine monitoring in support of the QAPP. Responsible for implementing and monitoring CRP requirements in QAPPs and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC Project Manager and/or QAO. Ensures H-GAC Quality Assurance Officer is notified of deficiencies and corrective actions, and that issues are resolved

#### Lisa Montemayor Nguyen Ly

#### CRP QAO

Responsible for coordinating the implementation of the QA program and for coordinating with the H-GAC QA staff to resolve QA-related issues. Notifies the CRP Project Manager and/or H-GAC QA staff of circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective actions. Coordinates the research and review of technical QA material and data related to water quality monitoring system design and analytical techniques. Ensures that field staff is properly trained and that training records are maintained.

#### <del>Lisa Leija</del> Blanca Hinojosa

#### CRP Data Manager

Responsible for ensuring that field data are properly reviewed and verified. Formats and delivers data in the format described in the most recent version of the DMRG to the H-GAC CRP Data Manager. Responsible for sending hard copies of field data sheets and COC forms to H-GAC CRP Data Manager.

## *City of Houston – Houston Health Department – Bureau of Laboratory Services (HHD-BLS)*

#### Roger Sealy

#### HHD-BLS Lab Manager

Responsible for overall performance, administration, and reporting of analyses performed by HHD-BLS. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Communicates QA issues to HHD CRP QAO, HHD CRP Data Manager, and HGAC staff. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Responsible party for ensuring that laboratory staff are trained and that training records are maintained. Additionally, the lab manager will review and verify all laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and will confirm data is validated against the data quality objectives listed in Appendix A of this QAPP. Provides a final review of lab data against Appendix A of this QAPP, NELAC standards and method requirements prior to submission to HGAC.

#### Kimyattia Smith

#### HHS-BLS Lab Quality Assurance Officer

Responsible for the overall quality control and quality assurance of analyses performed by HHD-BLS. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory. Coordinates and monitors deficiencies and corrective actions. Validates data against the quality objectives listed in Appendix A of this QAPP.

## City of Houston – Drinking Water Operations (DWO)

#### Shubha Thakur

#### CRP Project Manager / Laboratory Director

Responsible for implementing and monitoring CRP requirements in contracts, QAPPs and QAPP amendments and appendices. Coordinates basin planning activities and work of basin partners. Ensures monitoring systems audits are conducted to ensure QAPPs are followed by City of Houston Drinking Water Operations Laboratory, participants and that projects are producing data of known quality. Ensures CRP project managers and /or QA Specialists are notified of deficiencies and corrective actions, and that issues are resolved.

#### Harold Longbaugh

#### Laboratory Manager

Responsible overall performance, administration and reporting of analyses by City of Houston Drinking Water Operations Laboratory. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Responsible for reviewing & validating field data submitted on COCs & laboratory data against raw data entered in BTLIMS.

#### Shubha Thakur Narendra Joshi

#### 'Acting' Lab QA Manager / 'Acting' CRP QAO / 'Acting' Lab Data Manager

Responsible for overall quality control and quality assurance of analyses performed by City of Houston Drinking Water Operations Laboratory. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory. Responsible for training and keeping record of lab personnel to produce quality analytical data. Communicates any QA issues with laboratory manager and laboratory director. Responsible for coordinating and monitoring deficiencies and corrective actions. Responsible for coordinating with the TCEQ QAS to resolve QA-related issues. Notifies the City of Houston Drinking Water Operations Project Manager and laboratory manager of particular circumstances which may adversely affect the quality of data. Responsible for reviewing at least 10% of laboratory data against raw data entered in BTLIMS. Coordinates and maintain records of data verification and validation. Responsible for sending analytical data with required QA/QC and Data Review Checklist to HGAC CRP Data Manager.

#### Desta Takie

#### Field Supervisor / CRP Field QAO / CRP Field Data Manager

Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in the this QAPP. Notifies the DWO Lab QAO of particular circumstances which may adversely affect the quality of data. Responsible for verifying and validating data files against measurement performance specifications and other requirements in the QAPP. Formats and delivers field data in the format described in the most recent revision of the DMRG to H-GAC CRP Data Manager. Submits hard copies of field sheets, chain-of custody reports and Data Review Checklist to HGAC CRP Data Manager. Trains all field monitoring personnel and maintains training records.

## Texas Research Institute for Environmental Studies (TRIES)

#### Dr. Chad Hargrave

#### CRP Project Manager

Responsible for conducting routine monitoring in support of this QAPP. Responsible for implementing and monitoring CRP requirements in QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC. Ensures H-GAC CRP project manager and/or QAO are notified of deficiencies and corrective actions, and that issues are resolved.

#### Kaitlen Gary Ashley Morgan-Olvera

#### CRP Field QAO / CRP Field Supervisor / CRP Data Manager

Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the H-GAC QAO of particular circumstances which may adversely affect the quality of data. Responsible for verifying and validating field and laboratory data against measurement performance specifications and other requirements in this QAPP. Formats and delivers data in the format described in the DMRG, most recent version, to H-GAC CRP Data Manager. Trains all field monitoring personnel and maintains training records.

#### Dr. Rachelle Smith

#### CRP Lab Manager / Lab QAO

Responsible for the overall quality control and quality assurance of analyses performed by TRIES Lab. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by this QAPP. Coordinates and monitors deficiencies and corrective actions. Conducts inhouse audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

*Figure A4.1c. The City of Houston, Health Department (HHD) CRP Organizational Chart.* 



*Figure A4.1d.* The City of Houston, Drinking Water Operations (DWO) CRP Organizational Chart.



*Figure A4.1e. San Jacinto River Authority (SJRA) CRP Organizational Chart.* 



*Figure A4.1g. Texas Research Institute for Environmental Studies (TRIES) CRP Organizational Chart.* 



"A6 Project/Task Description" continued

information for Lake Woodlands, Panther Branch and Bear Branch – tributaries of Spring Creek. That data is also shared with the Clean Rivers Program as detailed in this QAPP. Field parameters are monitored monthly while conventional, flow, and bacteriological parameters are analyzed quarterly. Total Copper and Selenium in water samples are collected and analyzed twice a year to look for changes in the concentrations of these metals in the water body over time. Data is submitted to H-GAC on a quarterly basis.

**Environmental Institute of Houston** is contracted by H-GAC to monitor surface water quality locations in the San Jacinto-Brazos Coastal Basin, the Brazos-Colorado Coastal Basin, Trinity-San Jacinto Coastal Basin, and the Bays and Estuaries (Basin 24). Data is collected for the Clean Rivers Program on a quarterly basis for a total of four events at each site per year.

The **Texas Research Institute for Environmental Studies** is contracted by H-GAC to monitor ambient surface water quality on the Upper East Fork San Jacinto River and Winters Bayou watersheds. Data collected at these sites will supplement data currently collected in this watershed at four active CRP monitoring stations, all of which were previously established by H-GAC and the City of Houston Drinking Water Operations.

Routine monitoring is scheduled at varying frequencies, which are determined by the parameters of concern for individual streams. Water bodies are also selected for baseline monitoring if there is high public interest; if it has a high potential for impairment; or there is a need for continuous up-to-date water quality information. Frequencies vary from quarterly for some partners and parameters to monthly in more highly impacted areas (see coordinated monitoring schedule in Appendix B).

Data collected through routine monitoring is designed to characterize water quality trends and monitor progress in protecting and restoring water quality. This monitoring will provide an overall view of water quality throughout the river and coastal basins. Baseline monitoring will include the collection of basic field parameters at all sites and the collection of bacteria, flow, and conventional chemical parameters at sites where indicated. All monitoring procedures and methods will follow the guidelines prescribed in H-GAC QAPP and the most current versions of TCEQ's *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).* 

## 24-Hour Dissolved Oxygen (DO) monitoring by the Houston-Galveston Area Council and the Environmental Institute of Houston.

Numerous segments and unclassified waterbodies in H-GAC region have dissolved oxygen (DO) impairments or concerns for depressed DO. Using the most recent Texas Integrated Report, H-GAC identified segments and/or unclassified waterbodies which have been listed in the 303(d) List as being impaired or having DO concerns. Additional data is needed to confirm DO impairments on these segments and/or unclassified waterbodies. All data collected and summarized will be submitted to the TCEQ. H-GAC and/or EIH will conduct 24-hour DO monitoring at up to four monitoring sites quarterly during the two-year contract period. Monitoring events will be planned and conducted according to the most current version of TCEQ's *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).* 

The sites are located on segments/unclassified segments:

- Site 21965 (1010C) Spring Branch at Shakey Hollow west of Woodbranch Village in Montgomery County
- Site 11490 (1110\_01) Oyster Creek at Hwy 35 west of Angleton in Brazoria County
- Site 11493 (1110\_03) Oyster Creek at FM 1462 west of Rosharon in Brazoria County

## Permit Support monitoring by the Houston-Galveston Area Council (H-GAC) and the Environmental Institute of Houston (EIH).

During FY2020, H-GAC and EIH will collect field parameters and discharge measurements at three stations in segment 1004 - the West Fork San Jacinto River, and three stations in segment 1110 – Oyster Creek Above Tidal. At least ten monitoring events will be conducted at each station with a goal of collecting 12 events at each location.

- Site 11181 (1004D Crystal Creek at FM 1314 southeast of Conroe
- Site 11243 (1004) West Fork San Jacinto River immediately upstream of SH 242
- Site 16626 (1004E) Stewarts Creek 175 meters downstream of SH Loop 336 southeast of Conroe
- Site 11491 (1110\_02) Oyster Creek at Sims Road (CR 30) at Holiday Lakes in Brazoria County

"A6 Project/Task Description" continued

• Site 11493 – (1110\_03) – Oyster Creek at FM 1462 west of Rosharon in Brazoria County

See Appendix B for the project-related work plan tasks and schedule of deliverables for a description of work defined in this QAPP.

See Appendix B for sampling design and monitoring pertaining to this QAPP.

## Amendments to the QAPP

Revisions to the QAPP may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the H-GAC Project Manager and/or QAO to the CRP Project Manager electronically. The H-GAC will submit a completed QAPP Amendment document, including a justification of the amendment, a table of changes, and all pages, sections, and attachments affected by the amendment. Amendments are effective immediately upon approval by the H-GAC Project Manager, the H-GAC QAO, the CRP Project Manager, the CRP Lead QA Specialist, the TCEQ QA Manager or designee, the CRP Project QA Specialist, and additional parties affected by the amendment. Amendmented without an approved QAPP or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of this QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP will be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation.

Amendments will be incorporated into the QAPP by way of attachment and distributed to personnel on the distribution list by the H-GAC Project Manager or designee. If adherence letters are required, the H-GAC will secure an adherence letter from each sub-tier project participant (e.g., subcontractors, sub-participant, or other units of government) affected by the amendment stating the organization's awareness of and commitment to requirements contained in each amendment to the QAPP. The H-GAC will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

## Special Project Appendices

Projects requiring QAPP appendices will be planned in consultation with the H-GAC PM and/or QAO and the TCEQ Project Manager and TCEQ technical staff. Appendices will be written in an abbreviated format and will reference the Multi-Basin QAPP where appropriate. Appendices will be approved by the H-GAC Project Manager, the H-GAC QAO, the Laboratory (as applicable), and the CRP Project Manager, the CRP Project QA Specialist, the CRP Lead QA Specialist and additional parties affected by the Appendix, as appropriate. Copies of approved QAPP appendices will be distributed by the H-GAC to project participants before data collection activities commence. H-GAC will secure written documentation from each sub-tier project participant (e.g., subcontractors, subparticipants, other units of government) stating the organization's awareness of and commitment to requirements contained in each special project appendix to the QAPP. The H-GAC will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

## A7 Quality Objectives and Criteria

The purpose of routine water quality monitoring is to collect surface water quality data that can be used to characterize water quality conditions, identify significant long-term water quality trends, support water quality standards development, support the permitting process, and conduct water quality assessments in accordance with TCEQ's <u>Guidance for Assessing and Reporting Surface Water Quality in Texas, June 2015</u> or most recent version (https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014\_guidance.pdf). These water quality data, and data collected by other organizations (e.g., United States Geological Survey (USGS), TCEQ, etc.), will be subsequently reconciled for use and assessed by the TCEQ.

The measurement performance specifications to support the project purpose for a minimum data set are specified in Appendix A.

H-GAC FY20-21 QAPP July 20, 2020 Replacement Page 32 Amendment 1 period (March 15- October 15). Although data may be collected during varying regimes of weather and flow, the data sets will not be biased toward unusual conditions of flow, runoff, or season. The goal for meeting maximum representation of the water body will be tempered by funding availability.

## Comparability

Confidence in the comparability of routine data sets for this project and for water quality assessments is based on the commitment of project staff to use only approved sampling and analysis methods and QA/QC protocols in accordance with quality system requirements as described in this QAPP and in TCEQ guidance. Comparability is also guaranteed by reporting data in standard units, by using accepted rules for rounding figures, and by reporting data in a standard format as specified in the Data Management Plan in Section B10.

## Completeness

The completeness of the data describes how much of the data are available for use compared to the total potential data. Ideally, 100% of the data should be available. However, the possibility of unavailable data due to accidents, insufficient sample volume, broken or lost samples, etc. is to be expected. Therefore, it will be a general goal of the project(s) that 90% data completion is achieved.

## **A8** Special Training/Certification

Before new field personnel independently conduct field work, the local partner designated trainer (See table A8.1 below) trains him/her in proper instrument calibration, field sampling techniques, and field analysis procedures. The QA officer (or designee) will document the successful field demonstration. The QA Officer (or designee) will retain documentation of training and the successful field demonstration in the employee's personnel file (or other designated location) and ensure that the documentation will be available during monitoring systems audits.

Local partners, contractors and subcontractors must ensure that laboratories analyzing samples under this QAPP meet the requirements contained in The NELAC Institute Standard (2009) Volume 1, Module 2, Section 4.5.5 (concerning Subcontracting of Environmental Tests).

| Local Partner Agency                               | Designated Trainer                              |
|----------------------------------------------------|-------------------------------------------------|
| Houston-Galveston Area Council                     | Jean Wright                                     |
| Harris County Pollution Control Services           | Bryan Kosler                                    |
| City of Houston – Houston Health Department        | Lisa Montemayor                                 |
| City of Houston – Drinking Water Operations        | Desta Takie                                     |
| San Jacinto River Authority                        | Jean Wright                                     |
| Environmental Institute of Houston                 | Jenny Oakley                                    |
| Texas Research Institute for Environmental Studies | <del>Kaitlen Gary</del><br>Ashley Morgan-Olvera |

 Table A8.1 The Designated Trainer for each Local Partner.

## **A9** Documents and Records

The documents and records that describe, specify, report, or certify activities are listed. The list below is limited to documents and records that may be requested for review during a monitoring systems audit.

The data manager reformats the data to create an input dataset for SAS processing and saves it in a separate folder as a "working" file. Unaltered copies of submitted data are retained in the raw data folder. Partner-specific SAS code has been written to create Access tables for review; identify outliers and possible errors, and automate the correction, deletion, or acceptance of suspect data values; and to create properly formatted text files to be submitted to TCEQ. Many tasks previously performed manually are now performed as part of SAS processing and additional improvements to the data management process are made on an ongoing basis. While many data validation and verification tasks are now part of routine processing, data sets are still reviewed manually by H-GAC's QAO to identify issues not found during routine processing. The data processing, verification, and review process is described in H-GAC's Data Management Procedures (Appendix H).

The following table outlines how data is received from each local partner or sub-tier participant. All local partner data is submitted with a Data Review Checklist. The Checklist includes specific information regarding each data set. As H-GAC performs data processing and management tasks, the Data Manager compiles a Data Summary report (see example in Appendix G) that is submitted with the Event/Results text files. The Data Summary Report/Sheet will include information from the local partner Data Review Checklists as well as information about any changes to or deletions of data by H-GAC before it was submitted to TCEQ.

| Sub-Tier Participants    | Software                   |  |  |
|--------------------------|----------------------------|--|--|
| HCPCS                    | MS <del>Access</del> Excel |  |  |
| HHD                      | MS Access                  |  |  |
| DWO                      | MS Excel                   |  |  |
| SJRA                     | MS Excel                   |  |  |
| EIH                      | MS Excel                   |  |  |
| TRIES                    | MS Excel                   |  |  |
| Eastex Environmental Lab | MS Excel                   |  |  |

 Table A9.2 The Software used by Local Partners to Submit Data to H-GAC.

Data will be submitted electronically to the TCEQ in the Event/Result file format described in the most recent version of the <u>DMRG</u>, which can be found at https://www.tceq.texas.gov/waterquality/data-management/dmrg\_index.html. A completed Data Summary (see Appendix F) will be submitted with each data submittal.

## **B1** Sampling Process Design

See Appendix B for sampling process design information and monitoring tables associated with data collected under this QAPP.

## **B2** Sampling Methods

#### Field Sampling Procedures

Field sampling will be conducted in accordance with the latest versions of the TCEQ Surface Water Quality Monitoring Procedures Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment, and Tissue, 2012 (RG-415) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416), collectively referred to as "SWQM Procedures." Updates to SWQM Procedures are posted to the Surface Water Quality Monitoring Procedures website

(https://www.tceq.texas.gov/waterquality/monitoring/swqm\_guides.html), and shall be incorporated into H-GAC's procedures, QAPP, SOPs, etc., within 60 days of any final published update. Additional aspects outlined in Section B below reflect specific requirements for sampling under CRP and/or provide additional clarification.

| Table B2.1a Sample Storage, | Preservation and Handling Requirements |
|-----------------------------|----------------------------------------|
| for H-GAC Samples Analyzed  | by Eastex Environmental Laboratory     |

| Parameter                 | Matrix | Container                                | Preservation                                                                              | Sample<br>Volume             | Holding<br>Time      |
|---------------------------|--------|------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------|----------------------|
| TSS                       | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                                            | 1 L                          | 7 days               |
| Sulfate                   | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                                            | 100 mL <sup>2</sup>          | 28 days              |
| Chloride                  | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                                            | 100 mL <sup>2</sup>          | 28 days              |
| E. coli IDEXX<br>Colilert | water  | Sterile Plastic w/<br>sodium thiosulfate | Cool to <6°C<br>but not frozen                                                            | 120 mL4                      | 8 hours <sup>1</sup> |
| TKN                       | water  | Plastic                                  | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2                    | 500 mL <sup>3</sup>          | 28 days              |
| Ammonia-N                 | water  | Plastic                                  | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH $<2$        | 125 mL <sup>3</sup>          | 28 days              |
| Nitrite + nitrate-<br>N   | water  | Plastic                                  | Cool to $<6^{\circ}$ C but not frozen,<br>H <sub>2</sub> SO <sub>4</sub> to pH $<2$       | 125 mL $^{3 \text{ and } 5}$ | 28 days              |
| Nitrate-N                 | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                                            | 100 mL <sup>2 and 5</sup>    | 48 hours             |
| Nitrite-N                 | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                                            | 100 mL <sup>2 and 5</sup>    | 48 hours             |
| Phosphorus-P,<br>total    | water  | Plastic                                  | Cool to <6°C but not frozen<br><del>H₂SO₄ to pH &lt;2</del> Acidified at lab <sup>6</sup> | 125 mL <sup>6</sup>          | 28 days              |

1. *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. One 500 mL plastic container is used to collect these four parameters.

3. Four or five Three tests are analyzed from one 1L plastic bottle.

4. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

5. Eastex will run IC speciation (100 mL samples) but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down

6. T. phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle to a pH of <2.

#### Table B2.1c Sample Storage, Preservation and Handling Requirements for HHD

| Parameter                           | Matrix | Container                                   | Preservation                                                              | Sample<br>Volume    | Holding Time         |
|-------------------------------------|--------|---------------------------------------------|---------------------------------------------------------------------------|---------------------|----------------------|
| TSS                                 | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                            | 700 mL <sup>3</sup> | 7 days               |
| Sulfate                             | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                            | 100 mL <sup>3</sup> | 28 days              |
| Chloride                            | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                            | 100 mL <sup>3</sup> | 28 days              |
| <i>E. coli</i> IDEXX<br>Colilert-18 | water  | Sterile Plastic w/<br>sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                            | 120 mL/250 mL       | 8 hours <sup>1</sup> |
| Enterococci<br>IDEXX<br>Enterolert  | water  | Sterile Plastic w/<br>sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                            | 120 mL              | 8 hours              |
| TKN                                 | water  | Plastic                                     | Cool to <6°C<br>but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 250 mL              | 28 days²             |
| Ammonia-N                           | water  | Plastic                                     | Cool to <6°C<br>but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 100 mL4             | 28 days              |
| Nitrite-N                           | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                            | 100 mL <sup>3</sup> | 48 hours             |
| Nitrate-N                           | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                            | 100 mL <sup>3</sup> | 48 hours             |
| Phosphorus-P,<br>total              | water  | Plastic                                     | Cool to <6°C<br>but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 100 mL4             | 28 days              |

1. E. coli samples analyzed by SM 9223-B should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.2. Eastex Environmental Lab will pick up and analyze sample(s).3. Multiple tests are collected from one 1-liter plastic cubitainer that has not been acidified.4. Multiple tests are conducted out of one 1 liter plastic cubitainer which has been preserved with acid.

#### *Table B2.1d Sample Storage, Preservation and Handling Requirements for DWO*

| Parameter                        | Matrix | Container                                   | Preservation                                                                     | Sample<br>Volume             | Holding Time                                                                         |
|----------------------------------|--------|---------------------------------------------|----------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|
| TSS                              | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 1000 mL                      | 7 days                                                                               |
| Sulfate                          | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 50 mL <sup>3</sup>           | 28 days                                                                              |
| Chloride                         | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 50 mL <sup>3</sup>           | 28 days                                                                              |
| <i>E. coli</i> IDEXX<br>Colilert | water  | Sterile Plastic w/<br>sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                                   | 120 mL4                      | 8 hours <sup>1</sup>                                                                 |
| TKN                              | water  | Plastic                                     | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2           | 500 mL                       | 28 days <sup>2</sup>                                                                 |
| Ammonia-N                        | water  | Plastic                                     | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 500 mL                       | 28 days                                                                              |
| Nitrate Nitrite                  | water  | Plastie                                     | <del>Cool to &lt;6°C</del><br><del>but not frozen</del>                          | <del>50 mL<sup>3</sup></del> | <del>48 hours</del>                                                                  |
| Nitrite-N                        | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 50 mL <sup>3</sup>           | 48 hours                                                                             |
| Nitrate-N                        | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 50 mL <sup>3</sup>           | 48 hours                                                                             |
| Phosphorus-P,<br>total           | water  | Brown, glass<br>bottle                      | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 125 mL                       | 28 days                                                                              |
| Chlorophyll-a                    | water  | Brown plastic                               | Dark & iced before<br>filtration; Dark & frozen<br>after filtration              | 4 L                          | Filtered w/in 48 hours;<br>after filtered, then<br>frozen up to 24 days <sup>2</sup> |
| Alkalinity,<br>Total             | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                   | 50 mL <sup>3</sup>           | 14 days                                                                              |

 E. coli samples analyzed by SM 9223-B should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. Eastex Environmental Lab will pick up and analyze sample(s).

3. All tests are collected in one 500 mL plastic bottle.

4. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

# *Table B2.1e Sample Storage, Preservation and Handling Requirements for SJRA Samples Collected from Lake Conroe and Analyzed by DWO Laboratory*

| Parameter                        | Matrix | Container                                   | Preservation                                                                       | Sample<br>Volume    | Holding Time         |
|----------------------------------|--------|---------------------------------------------|------------------------------------------------------------------------------------|---------------------|----------------------|
| TSS                              | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                     | 1000 mL             | 7 days               |
| Sulfate                          | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                     | 50 mL <sup>3</sup>  | 28 days              |
| Chloride                         | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                     | 50 mL <sup>3</sup>  | 28 days              |
| <i>E. coli</i> IDEXX<br>Colilert | water  | Sterile Plastic w/<br>sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                                     | 120 mL <sup>4</sup> | 8 hours <sup>2</sup> |
| TKN <sup>2</sup>                 | water  | Plastic                                     | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH $<2$ | 500 mL              | 28 days²             |
| Ammonia-N                        | water  | Plastic                                     | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH $<2$ | 500 mL              | 28 days              |
| Nitrite-N                        | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                     | 50 mL <sup>3</sup>  | 48 hours             |

| Nitrate-N                      | water | Plastic                | Cool to <6°C<br>but not frozen                                                     | 50 mL <sup>3</sup> | <del>28 days</del><br>48 hours                                                       |
|--------------------------------|-------|------------------------|------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------|
| Phosphorus-<br>P, total        | water | Brown, glass<br>bottle | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH $<2$ | 125 mL             | 28 days                                                                              |
| Chlorophyll-<br>a <sup>2</sup> | water | Brown plastic          | Dark & iced before<br>filtration; Dark & frozen<br>after filtration                | 4 L                | Filtered w/in 48 hours;<br>after filtered, then<br>frozen up to 24 days <sup>2</sup> |
| Alkalinity,<br>Total           | water | Plastic                | Cool to <6°C<br>but not frozen                                                     | 50 mL <sup>3</sup> | 14 days                                                                              |

1. E. coli samples analyzed by SM 9223-B should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. Eastex Environmental Lab will pick up and analyze sample(s).

3. One 500 mL plastic bottle is collected, specified volumes withdrawn for analysis.

4. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

# *Table B2.1f Sample Storage, Preservation and Handling Requirements for SJRA Samples Collected from The Woodlands and Analyzed at Eastex Environmental Laboratory*

| Parameter                        | Matrix | Container                                   | Preservation                                                                                        | Sample<br>Volume                          | Holding Time                                                                         |
|----------------------------------|--------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|
| TSS                              | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                      | 1 L                                       | 7 days                                                                               |
| Sulfate                          | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                      | 100 ml <sup>3</sup>                       | 28 days                                                                              |
| Chloride                         | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                      | 100 mL <sup>3</sup>                       | 28 days                                                                              |
| <i>E. coli</i> IDEXX<br>Colilert | water  | Sterile Plastic<br>w/ sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                                                      | 120 mL <sup>5</sup>                       | 8 hours <sup>1</sup>                                                                 |
| Ammonia-N                        | water  | Plastic                                     | Cool to <6°C but not frozen<br>Add H2SO4 to pH <2                                                   | 125 mL²                                   | 28 days                                                                              |
| TKN                              | water  | Plastic                                     | Cool to <6°C but not frozen<br>Add H <sub>2</sub> SO <sub>4</sub> to pH <2                          | 500 mL                                    | 28 days                                                                              |
| Nitrite-N                        | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                      | 100 mL <sup>3</sup><br>and <del>56</del>  | 48 hours                                                                             |
| Nitrate-N                        | water  | Plastic                                     | Cool to <6°C<br>but not frozen,                                                                     | 100 mL <sup>3</sup><br>and <del>56</del>  | 48 hours                                                                             |
| Nitrite+Nitrate-<br>N            | water  | Plastic                                     | Cool to <6°C but not frozen<br>Add H2SO4 to pH <2                                                   | 125 mL <sup>2 and</sup><br>5 <del>6</del> | 28 days                                                                              |
| Phosphorus-P,<br>total           | water  | Plastic                                     | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2Acidified at lab <sup>6</sup> | 125 mL²                                   | 28 days                                                                              |
| Chlorophyll-a                    | water  | Brown plastic                               | Dark & iced before filtration;<br>Dark & frozen after filtration                                    | 4 L                                       | Filtered w/in 48 hours;<br>after filtered, then<br>frozen up to 24 days <sup>2</sup> |
| Hardness, Total                  | water  | Plastic                                     | Cool to <6°C but not frozen<br>Add H <sub>2</sub> SO <sub>4</sub> to pH <2                          | 100 mL                                    | 28 days                                                                              |
| Copper, Total                    | water  | Plastic                                     | <del>Cool to &lt;6°C but not frozen</del><br>Add HNO <sub>3</sub> to pH <2                          | <del>100 mL</del> ‡                       | <del>6 months</del>                                                                  |
| <del>Selenium, Total</del>       | water  | Plastic                                     | <del>Cool to &lt;6°C but not frozen</del><br>Add HNO <sub>3</sub> to pH <2                          | <del>100 mL</del> ‡                       | <del>6 months</del>                                                                  |

1. E. coli samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. Nutrient tests are collected from one 1 L plastic bottle.

3. One 1 L plastic container is used to collect these threefour parameters.

4. All three "Total Metals" related parameters are collected in one 1-L plastic container and split at the lab for the various parameters.

45. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

56. Eastex will run IC speciation (100 mL samples) first but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down.

6. T. phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle to a pH of <2.

# *Table B2.1g Sample Storage, Preservation and Handling Requirements for EIH. Samples Analyzed by Eastex Environmental Laboratory*

| Parameter                           | Matrix | Container                                   | Preservation                                                                                           | Sample<br>Volume             | Holding Time                                                            |
|-------------------------------------|--------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------|
| TSS                                 | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                         | 1 L                          | 7 days                                                                  |
| Sulfate                             | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                         | 100 ml <sup>3</sup>          | 28 days                                                                 |
| Chloride                            | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                         | 100 mL <sup>3</sup>          | 28 days                                                                 |
| <i>E. coli</i><br>IDEXX<br>Colilert | water  | Sterile Plastic<br>w/ sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                                                         | 120 mL4                      | 8 hours <sup>1</sup>                                                    |
| Enterococci<br>IDEXX<br>Enterolert  | water  | Sterile Plastic<br>w/ sodium<br>thiosulfate | Cool to <6°C<br>but not frozen                                                                         | 120 mL4                      | 8 hours                                                                 |
| TKN                                 | water  | Plastic                                     | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2                                 | 500 mL²                      | 28 days                                                                 |
| Ammonia-N                           | water  | Plastic                                     | Cool to $<6^{\circ}$ C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2                       | 125 mL <sup>2</sup>          | 28 days                                                                 |
| Nitrite-N                           | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                         | 100 mL <sup>2 and 5</sup>    | 48 hours                                                                |
| Nitrate-N                           | water  | Plastic                                     | Cool to <6°C<br>but not frozen                                                                         | 100 mL <sup>2 and 5</sup>    | 48 hours                                                                |
| Nitrite +<br>nitrate-N              | water  | Plastic                                     | Cool to <6°C but not frozen,<br>H <sub>2</sub> SO <sub>4</sub> to pH <2                                | 125 mL $^{3 \text{ and } 5}$ | 28 days                                                                 |
| Phosphorus-<br>P, total             | water  | Plastic                                     | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2Acidified at<br>lab <sup>6</sup> | 125 mL <sup>2</sup>          | 28 days                                                                 |
| Chlorophyll-a                       | water  | Brown plastic                               | Dark & iced before filtration;<br>Dark & frozen after filtration                                       | 4 L                          | Filtered w/in 48 hours;<br>after filtered, then<br>frozen up to 24 days |

1. *E. coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. Five tests are analyzed from one 1L plastic bottle.

3. One 500 mL plastic container is used to collect these three samples.

4. Maximum volume analyzed for bacteria analysis is 50 ml allowing duplicate analyses from 1 container.

5. Eastex will run IC speciation (100 mL samples) first but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down.

6. T. phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle to a pH of <2.

# *Table B2.1h Sample Storage, Preservation, and Handling Requirements for TRIES. Requirements for TRIES Samples Analyzed by the TRIES Laboratory and or Eastex Environmental Laboratory*

| Parameter                        | Matrix | Container                                | Preservation                                                           | Sample<br>Volume      | Holding<br>Time      |
|----------------------------------|--------|------------------------------------------|------------------------------------------------------------------------|-----------------------|----------------------|
| TSS                              | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                         | 1 L                   | 7 days               |
| Sulfate                          | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                         | 100 mL <sup>2</sup>   | 28 days              |
| Chloride                         | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                         | 100 mL <sup>2</sup>   | 28 days              |
| <i>E. coli</i> IDEXX<br>Colilert | water  | Sterile Plastic w/<br>sodium thiosulfate | Cool to <6°C<br>but not frozen                                         | 120 mL4               | 8 hours <sup>1</sup> |
| Ammonia-N                        | water  | Plastic                                  | Cool to <6°C but not frozen<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | 125 mL <sup>3</sup>   | 28 days              |
| Nitrate-N                        | water  | Plastic                                  | Cool to <6°C<br>but not frozen                                         | $125  mL^{3  and  6}$ | 48 hours             |

| Nitrite-N               | water | Plastic | Cool to <6°C<br>but not frozen                                          | $125  mL^{3  and  6}$ | 48 hours             |
|-------------------------|-------|---------|-------------------------------------------------------------------------|-----------------------|----------------------|
| Nitrite +<br>Nitrate-N  | water | Plastic | Cool to <6°C but not frozen,<br>H <sub>2</sub> SO <sub>4</sub> to pH <2 | $125  mL^{3  and  6}$ | 28 days <sup>5</sup> |
| Phosphorus-<br>P, total | water | Plastic | Cool to <6°C but not frozen<br>HNO <sub>3</sub> to pH <2 at the lab     | 125 mL <sup>3</sup>   | 28 days              |

1. E.coli samples analyzed by SM 9223-B should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

2. One 500 mL plastic container is used to collect these two samples.

3. Four or five tests are analyzed from one 1L plastic bottle.

4. Maximum volume analyzed for E. coli is 50 ml allowing duplicate analyses from 1 container.

5. Eastex Environmental Lab will pick up and analyze sample(s) if necessary.

6. TRIES & Eastex can both run IC speciation but Eastex will analyze Nitrite+Nitrate by cadmium reduction method if TRIES IC equipment is down

## Sample Containers

Certificates from sample container manufacturers are maintained in a notebook by each of the monitoring partners as appropriate. Information about the various sample containers for each local partner is described below.

#### Houston-Galveston Area Council (H-GAC)

All sample containers are provided to H-GAC by their contract lab, Eastex. The lab performs and tracks required QC procedures for all bottles purchased.

- Plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- When preservation is required for particular parameters, the acid is added to the container in the field by field personnel immediately after samples are collected.

#### Harris County Pollution Control Services (HCPCS)

All sample containers are purchased by the HCPCS Lab except as noted below. The labs perform and track all required QC procedures for the bottles they purchased and provide to the field crew.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used routinely for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are also provided by H-GAC's contract lab, Eastex.
- When preservation is required for particular parameters, the bottles are pre-acidified at the lab. Containers are never dipped underwater but are filled using a white or opaque, plastic pitcher and water sample are collected from the required depth as specified in the SWQM Procedures Volume 1 manual.

#### <u>City of Houston - Health Department (HHD)</u>

All sample containers are purchased by the Bureau of Pollution Control and Prevention except as noted below. All containers are received at the field office located on Park Place. Before containers are used by field crews, a specified number of containers are pulled out for delivery to the HHD-BLS Lab where all QC checks and documentation are performed. The HHD-BLS Lab QAO reviews and tracks the results of all QC testing.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 or 250 mL plastic, disposable bottles with sodium thiosulfate tablet added, are used for the microbiological samples.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required, the preservative is added to the container in the field by field personnel immediately after the samples are collected.

<u>City of Houston - Drinking Water Operations (DWO)</u> **and** San Jacinto River Authority – Lake Conroe samples All disposal sample containers are purchased by the DWO Lab except as noted below. Each lab cited below performs and tracks all required QC procedures for all bottles they purchase. SJRA-Lake Conroe samples are analyzed by the City of Houston Drinking Water Operations Lab (DWO).

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with sodium thiosulfate added, are used for bacteriological samples.
- Amber glass bottles are used to collect total phosphorus samples. These containers are thoroughly cleaned for re-use. See washing procedure following this list.
- Brown, polyethylene, 4-liter cubitainers are used routinely for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required for particular parameters, the bottles are pre-acidified at the office. Bottles are never filled by dipping. Rather, bottles are filled by pouring from a sample collection container that has been pre-rinsed 3 times at each monitoring location.

DWO container washing procedures (excluding bacteria bottles): The bottles are sent through a mechanical wash cycle followed by an acid rinse. The procedure is as follows: The bottles are placed in a dish washing machine where it goes through a pre-wash cycle with distilled water, a wash cycle with phosphate-free soap, a deionized water (DI) rinse cycle, then an acid rinse cycle. Next, the bottles are rinsed with DI water several times making sure there is at least a three (3) volume exchange of water. Lastly, the bottles are air dried. Afterwards, the bottles are sealed prior to storage for their next use.

#### San Jacinto River Authority – The Woodlands samples

Eastex Environmental Lab is the contract lab for samples collected from The Woodlands. The lab performs and tracks required QC procedures for all bottles purchased.

- Plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used for chlorophyll-*a* samples.
- When preservation is required for particular parameters, the containers are pre-acidified by the lab before being given to field personnel.
- New, certified pre-cleaned, plastic bottles are used for all "metals-in-water" samples. The vendor provides certificates for the bottles which are maintained on file by the laboratory and the lab tests at least one bottle from each box purchased as part of QC.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.

#### Environmental Institute of Houston (EIH)

All sample containers are provided to H-GAC by their contract lab, Eastex. The lab performs and tracks required QC procedures for all bottles purchased.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex.
- When preservation is required for particular parameters, the acid is added to the container in the field by field personnel immediately after samples are collected.

The <u>TRIES Analytical Lab</u> provides all sample containers for sample collection. The lab performs and tracks required QC procedures for all bottles purchased.

- Pre-cleaned, plastic, reusable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
• When preservation is required for particular parameters, the acid is added to the container in the field by field personnel immediately after samples are collected.

TRIES container washing procedures (excluding bacteria bottles): The bottles are sent through a mechanical wash cycle. The procedure is as follows: The bottles are placed in a dish washing machine where it goes through a pre-wash cycle with distilled water, a wash cycle with phosphate-free soap, and then a deionized water (DI) rinse cycle. Next, the bottles are allowed to air dry. Afterwards, the bottles are sealed prior to storage for their next use.

## Processes to Prevent Contamination

SWQM Procedures outline the necessary steps to prevent contamination of samples, including: direct collection into sample containers, when possible.; and clean sampling techniques for metals. Several local partners collect samples from a bridge and must use the bucket method. All those partners practice the triple rinse procedure to eliminate or at least minimize the chance of carry-over from one site to the next. Field QC samples for metals testing (identified in Section B5) are collected to verify that contamination has not occurred.

## Documentation of Field Sampling Activities

Field sampling activities are documented on field data sheets as presented in Appendix D. Flow worksheets, aquatic life use monitoring checklists, habitat assessment forms, field biological assessment forms, and records of bacteriological analyses (if applicable) are part of the field data record. The following will be recorded for all visits:

- Station ID
- Sampling Date
- Location
- Sampling Depth
- Sampling Time
- Sample Collector's name
- Values for all field parameters collected

Notes containing detailed observational data not captured by field parameters, including;

- Water appearance
- Weather
- Biological activity
- Unusual odors
- Pertinent observations related to water quality or stream uses
- Watershed or instream activities
- Specific sample information
- Missing parameters

### Recording Data

For the purposes of this section and subsequent sections, all field and laboratory personnel follow the basic rules for recording information as documented below:

- Write legibly, in indelible ink
- Make changes by crossing out original entries with a single line strike-out, entering the changes, and initialing and dating the corrections.
- Close-out incomplete pages with an initialed and dated diagonal line.

submitted with the corresponding data set, and a corrective action plan (as described in section C1) may be necessary.

## **B5** Quality Control

## Sampling Quality Control Requirements and Acceptability Criteria

The minimum field QC requirements, and program-specific laboratory QC requirements, are outlined in SWQM Procedures. Specific requirements are outlined below. Field QC sample results are submitted with the laboratory data report (see Section A9.).

#### Field blank

Field blanks are required for total metals in water samples when collected without sample equipment (i.e., as grab samples). For other types of samples, they are optional. A field blank is prepared in the field by filling a elean container with pure deionized water and appropriate preservative, if any, for the specific sampling activity being undertaken. Field blanks are used to assess contamination from field sources, such as airborne materials, containers, or preservatives. The minimum frequency requirement for field blanks for total metals in water samples is specified in the SWQM Procedures. For SJRA, metals are collected twice a year.

The analysis of field blanks should yield values lower than the LOQ. When target analyte concentrations are high, blank values should be lower than 5% of the lowest value of the batch, or corrective action will be implemented.

Field blanks are associated with batches of field samples. In the event of a field blank failure for one or more target analytes, all applicable data associated with the field batch may need to be qualified as not meeting project QC requirements, and these qualified data will not be reported to the TCEQ. These data include all samples collected on that day during that sample run and should not be confused with the laboratory analytical batch.

## Laboratory Measurement Quality Control Requirements and Acceptability Criteria

#### Batch

A batch is defined as environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same NELAP-defined matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 25 hours. An analytical batch is composed of prepared environmental samples (extract, digestates, or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various environmental matrices and can exceed 20 samples.

#### Method Specific QC requirements

QC samples, other than those specified later this section (e.g., sample duplicates, surrogates, internal standards, continuing calibration samples, interference check samples, positive control, negative control, and media blank), are run as specified in the methods and in SWQM Procedures. The requirements for these samples, their acceptance criteria or instructions for establishing criteria, and corrective actions are method-specific.

Detailed laboratory QC requirements and corrective action procedures are contained within the individual laboratory quality manuals (QMs). The minimum requirements that all participants abide by are stated below.

#### Comparison Counting

For routine bacteriological samples, repeat counts on one or more positive samples are required, at least monthly. If possible, the analyst will compare counts with another analyst who also performs the analysis. Replicate counts by the same analyst should agree within 5 percent, and those between analysts should agree within 10 percent. The analyst(s) will record the results.

- <u>Harris County Pollution Control Services (HCPCS)</u> The measurement performance specification for matrix spikes is recovery between 75 and 125 percent. If a spike recovery is outside this range, the result is qualified in the QC narrative contained in the data submittal checklist. In addition, the laboratory applies control chart techniques to monitor performance, and establishes updated internal control limits for matrix spike recovery on an annual basis.
- <u>The City of Houston, HHD BLS Lab</u> has a matrix spike recovery requirement of 80-120 percent unless specifically stated for the parameter. A spike that falls outside laboratory limits is reanalyzed. If the spike fails a second time, another sample within the same set is prepared as a spike and analyzed. When several different matrix spikes fall outside stated limits, matrix interference is likely. If the required matrix spike recovery is not met, the data affected are qualified and flagged as exceeding control limits.
- <u>The City of Houston, DWO Lab</u> The recovery of matrix spikes for the samples analyzed in DWO laboratory is between 80 to 120 percent. If a spike recovery is outside this range, the result is qualified in the QC narrative contained in the data submittal checklist. In addition, the laboratory applies control chart techniques to monitor performance.
- <u>Eastex</u> uses matrix spike recovery limits of 80-120 for parameters where a spike solution is available. These recoveries are monitored with QC charts to help determine interferences or detect trends. Matrix spikes that fail to meet these guidelines are reanalyzed, if possible. An alternate sample may be used to help determine whether the problem was specific to that sample. If matrix spikes are not achievable within 80-120 % recovery then this recovery is flagged as exceeding the control limit on the QC report.
- <u>TRIES Lab</u> uses matrix spike recovery limits of 75-125 percent which are published in the mandated test method where a spike solution is required. Matrix spikes that fail to meet these guidelines are reanalyzed, if possible, or an alternate sample may be used to help determine whether the problem was specific to that sample. If matrix spikes are not achievable within method acceptance criteria, the data are reported with appropriate data qualifying codes on the analytical report. Control Charts are monitored for laboratory performance.

### Method blank

A method blank is a sample of matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as the samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. The method blank is used to document contamination from the analytical process. The analysis of method blanks should yield values less than the LOQ. For very high-level analyses, the blank value should be less than 5% of the lowest value of the batch, or corrective action will be implemented. Samples associated with a contaminated blank shall be evaluated as to the best corrective action for the samples (e.g. reprocessing, data qualifying codes). In all cases the corrective action must be documented.

The method blank shall be analyzed at a minimum of one per preparation batch. In those instances for which no separate preparation method is used (e.g., VOA) the batch shall be defined as environmental samples that are analyzed together with the same method and personnel, using the same lots of reagents, not to exceed the analysis of 20 environmental samples.

# Quality Control or Acceptability Requirements Deficiencies and Corrective Actions

Sampling QC excursions are evaluated by the H-GAC Project Manager, in consultation with the H-GAC QAO and/or H-GAC Data Manager. In that differences in sample results are used to assess the entire sampling process, including environmental variability, the arbitrary rejection of results based on pre-determined limits is not practical. Therefore, the professional judgment of the H-GAC Project Manager, QAO and Data Manager will be relied upon in evaluating results. Field blanks for trace elements are scrutinized very closely. Field blank values exceeding the acceptability criteria will automatically invalidate the sample. Notations of blank contamination are noted in the data summaries that accompany data deliverables. Equipment blanks for metals analysis are also scrutinized very closely.

| ABLE A7.1a Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)                       |        |        |                                |                   |       |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------|-------------------|-------|--|--|--|--|--|--|
| Field Parameters                                                                                                   |        |        |                                |                   |       |  |  |  |  |  |  |
| Parameter                                                                                                          | Units  | Matrix | Method                         | Parameter<br>Code | Lab   |  |  |  |  |  |  |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                           | DEG C  | water  | SM 2550 B and<br>TCEQ SOP V1   | 00010             | Field |  |  |  |  |  |  |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                                | meters | water  | TCEQ SOP V1                    | 00078             | Field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)*                                                                          | us/cm  | water  | EPA 120.1 and<br>TCEQ SOP, V1  | 00094             | Field |  |  |  |  |  |  |
| OXYGEN, DISSOLVED (MG/L)*                                                                                          | mg/L   | water  | SM 4500-O G and<br>TCEQ SOP V1 | 00300             | Field |  |  |  |  |  |  |
| PH (STANDARD UNITS)*                                                                                               | s.u    | water  | EPA 150.1 and<br>TCEQ SOP V1   | 00400             | Field |  |  |  |  |  |  |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                              | days   | other  | TCEQ SOP V1                    | 72053             | Field |  |  |  |  |  |  |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                      | meters | water  | TCEQ SOP V2                    | 82903             | Field |  |  |  |  |  |  |
| MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**                                                                     | meters | other  | TCEQ SOP V2                    | 89864             | Field |  |  |  |  |  |  |
| MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**                                                                      | meters | other  | TCEQ SOP V2                    | 89865             | Field |  |  |  |  |  |  |
| POOL LENGTH, METERS**                                                                                              | meters | other  | TCEQ SOP V2                    | 89869             | Field |  |  |  |  |  |  |
| % POOL COVERAGE IN 500 METER REACH**                                                                               | %      | other  | TCEQ SOP V2                    | 89870             | Field |  |  |  |  |  |  |
| WIND INTENSITY<br>(1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                | NU     | other  | NA                             | 89965             | Field |  |  |  |  |  |  |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU     | other  | NA                             | 89966             | Field |  |  |  |  |  |  |
| WATER<br>SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                | NU     | water  | NA                             | 89968             | Field |  |  |  |  |  |  |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL,<br>3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER<br>(WRITE IN COMMENTS)) | NU     | water  | NA                             | 89971             | Field |  |  |  |  |  |  |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR<br>6=OT                                                                | NU     | water  | NA                             | 89969             | Field |  |  |  |  |  |  |
| WATER CLARITY (1=EXCELLENT, 2=GOOD, 3=FAIR,<br>4=POOR)                                                             | NU     | water  | NA                             | 20424             | Field |  |  |  |  |  |  |
| TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)                                                                      | NU     | water  | NA                             | 88842             | Field |  |  |  |  |  |  |

\* Reporting to be consistent with SWQM guidance and based on measurement capability.

\*\* To be routinely reported when collecting data from perennial pools.

#### References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017. TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014

(RG-416).

| ABLE A7.1b         Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)                                                                                                                      |                                       |                                                   |                                                        |                   |                                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------|--------------------------------------------------------|-------------------|------------------------------------------|--|--|--|
| Flc                                                                                                                                                                                                                       | ow Parai                              | meters                                            |                                                        |                   |                                          |  |  |  |
| Parameter                                                                                                                                                                                                                 | Units                                 | Matrix                                            | Method                                                 | Parameter<br>Code | Lab                                      |  |  |  |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER<br>SEC)                                                                                                                                                                        | cfs                                   | water                                             | TCEQ SOP V1                                            | 00061             | Field                                    |  |  |  |
| FLOW SEVERITY:1=No<br>Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry                                                                                                                                                            | NU                                    | water                                             | TCEQ SOP V1                                            | 01351             | Field                                    |  |  |  |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU<br>5=DOPPLER                                                                                                                                                                     | NU                                    | other                                             | TCEQ SOP V1                                            | 89835             | Field                                    |  |  |  |
| References:<br>United States Environmental Protection Agency (USEPA) Me<br>020<br>U.S. Code of Federal Regulations (CFR). Title 40: Protection of<br>American Public Health Association (APHA), American Wate<br>Standard | ethods for<br>of Environ<br>r Works A | Chemical Anal<br>ment, Part 13t<br>ssociation (AV | lysis of Water and Wast<br>5<br>VWA), and Water Enviro | es, Manual #EF    | <sup>2</sup> A-600/4-79-<br>Ition (WEF), |  |  |  |

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| ABLE A7.1c Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC) |                                  |        |                                                                                  |                   |           |      |                          |                    |                      |        |  |
|----------------------------------------------------------------------------------------------|----------------------------------|--------|----------------------------------------------------------------------------------|-------------------|-----------|------|--------------------------|--------------------|----------------------|--------|--|
|                                                                                              | Conventional Parameters in Water |        |                                                                                  |                   |           |      |                          |                    |                      |        |  |
| Parameter                                                                                    | Units                            | Matrix | Method                                                                           | Parameter<br>Code | TCEQ AWRL | רסס  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab    |  |
| RESIDUE, TOTAL NONFILTRABLE<br>(MG/L)                                                        | mg/L                             | water  | SM 2540D                                                                         | 00530             | 5         | 1    | NA                       | NA                 | NA                   | Eastex |  |
| NITROGEN, AMMONIA, TOTAL<br>(MG/L AS N)                                                      | mg/L                             | water  | SM 4500<br>NH3G                                                                  | 00610             | 0.1       | 0.1  | 70-130                   | 20                 | 80-120               | Eastex |  |
| NITRITE NITROGEN, TOTAL (MG/L<br>AS N)                                                       | mg/L                             | water  | EPA 300.0                                                                        | 00615             | 0.05      | 0.05 | 70-130                   | 20                 | 80-120               | Eastex |  |
| NITRATE NITROGEN, TOTAL (MG/L<br>AS N)                                                       | mg/L                             | water  | EPA 300.0                                                                        | 00620             | 0.05      | 0.05 | 70-130                   | 20                 | 80-120               | Eastex |  |
| NITROGEN, KJELDAHL, TOTAL (MG/L<br>AS N)                                                     | mg/L                             | water  | <del>SM 4500-N<sub>org</sub><br/>B or C and SM<br/>4500-NH3 C</del><br>EPA 351.2 | 00625             | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex |  |
| NITRITE PLUS NITRATE, TOTAL ONE<br>LAB DETERMINED VALUE (MG/L AS<br>N)                       | mg/L                             | water  | SM 4500-NO3<br>F                                                                 | 00630             | 0.05      | 0.02 | 70-130                   | 20                 | 80-120               | Eastex |  |
| PHOSPHORUS, TOTAL, WET<br>METHOD (MG/L AS P)                                                 | mg/L                             | water  | EPA 200.7                                                                        | 00665             | 0.06      | 0.06 | 70-130                   | 20                 | 80-120               | Eastex |  |
| PHOSPHORUS, TOTAL, WET<br>METHOD (MG/L AS P)                                                 | mg/L                             | water  | EPA 200.7                                                                        | 00665             | 0.06      | 0.06 | 70-130                   | 20                 | 80-120               | Eastex |  |
| CHLORIDE (MG/L AS CL)                                                                        | mg/L                             | water  | EPA 300.0                                                                        | 00940             | 5         | 5    | 70-130                   | 20                 | 80-120               | Eastex |  |
| SULFATE (MG/L AS SO4)                                                                        | mg/L                             | water  | EPA 300.0                                                                        | 00945             | 5         | 4    | 70-130                   | 20                 | 80-120               | Eastex |  |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### TABLE A7.1d Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)

|                                               | Bacteriological Parameters in Water |        |            |                   |           |     |                          |                                 |                      |        |  |  |
|-----------------------------------------------|-------------------------------------|--------|------------|-------------------|-----------|-----|--------------------------|---------------------------------|----------------------|--------|--|--|
| Parameter                                     | Units                               | Matrix | Method     | Parameter<br>Code | TCEQ AWRL | rog | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab    |  |  |
| E. COLI, COLILERT, IDEXX METHOD,<br>MPN/100ML | MPN/100<br>mL                       | water  | Colilert** | 31699             | 1         | 1   | NA                       | 0.50*                           | NA                   | Eastex |  |  |
| E.COLI, COLILERT, IDEXX, HOLDING<br>TIME      | hours                               | water  | NA         | 31704             | NA        | NA  | NA                       | NA                              | NA                   | Eastex |  |  |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.1e Measurement Performance Specifications for H | louston-Galvestor | n Area Cou | ıncil (H-GAC) |                   |       |
|----------------------------------------------------------|-------------------|------------|---------------|-------------------|-------|
| 24 HourPara                                              | meters in Water   |            |               |                   |       |
| Parameter                                                | Units             | Matrix     | Method        | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG        | DEG C             | Water      | TCEQ SOP V1   | 00209             | field |
| WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX          | DEG C             | Water      | TCEQ SOP V1   | 00210             | field |
| TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN         | DEG C             | Water      | TCEQ SOP V1   | 00211             | field |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG             | uS/cm             | Water      | TCEQ SOP V1   | 00212             | field |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX             | uS/cm             | Water      | TCEQ SOP V1   | 00213             | field |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN             | uS/cm             | Water      | TCEQ SOP V1   | 00214             | field |
| PH, S.U., 24HR MAXIMUM VALUE                             | std. units        | Water      | TCEQ SOP V1   | 00215             | field |
| PH, S.U., 24HR, MINIMUM VALUE                            | std. units        | Water      | TCEQ SOP V1   | 00216             | field |
| WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS           | NU                | Water      | TCEQ SOP V1   | 00221             | field |
| SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS        | NU                | Water      | TCEQ SOP V1   | 00222             | field |
| pH, # OF MEASUREMENTS IN 24-HRS                          | NU                | Water      | TCEQ SOP V1   | 00223             | field |
| DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA         | mg/l              | Water      | TCEQ SOP V1   | 89855             | field |
| DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA         | mg/l              | Water      | TCEQ SOP V1   | 89856             | field |
| DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA         | mg/l              | Water      | TCEQ SOP V1   | 89857             | field |
| DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS            | NU                | Water      | TCEQ SOP V1   | 89858             | field |
| References:                                              |                   |            |               |                   |       |

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.2a Measurement Performance Specification                                                                                              | s for Harris Co     | unty Poll | ution Control Services (H      | ICPCS)            |       |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------------------------|-------------------|-------|
| F                                                                                                                                              | ield Parameter      | rs        |                                |                   |       |
| Parameter                                                                                                                                      | Units               | Matrix    | Method                         | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                                                       | DEG C               | water     | SM 2550 B and TCEQ<br>SOP V1   | 00010             | Field |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                                                            | meters              | water     | TCEQ SOP V1                    | 00078             | Field |
| SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)*                                                                                                      | us/cm               | water     | EPA 120.1 and TCEQ<br>SOP, V1  | 00094             | Field |
| OXYGEN, DISSOLVED (MG/L)*                                                                                                                      | mg/L                | water     | SM 4500-O G and<br>TCEQ SOP V1 | 00300             | Field |
| PH (STANDARD UNITS)*                                                                                                                           | s.u                 | water     | EPA 150.1 and TCEQ<br>SOP V1   | 00400             | Field |
| SALINITY - PARTS PER THOUSAND                                                                                                                  | РРТ                 | water     | SM 2520 and TCEQ<br>SOP V1     | 00480             | Field |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                                                          | days                | other     | TCEQ SOP V1                    | 72053             | Field |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                                                  | meters              | water     | TCEQ SOP V2                    | 82903             | Field |
| WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                                               | NU                  | other     | NA                             | 89965             | Field |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                                                    | NU                  | other     | NA                             | 89966             | Field |
| WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                                               | NU                  | water     | NA                             | 89968             | Field |
| TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI                                                                                               | NU                  | water     | NA                             | 89972             | Field |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN<br>EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN<br>COMMENTS))                             | NU                  | water     | NA                             | 89971             | Field |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT                                                                                               | NU                  | water     | NA                             | 89969             | Field |
| TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)                                                                                                  | NU                  | water     | NA                             | 88842             | Field |
| * Reporting to be consistent with SWQM guidance and based on measure<br>** To be routinely reported when collecting data from perennial pools. | urement capability. |           |                                |                   |       |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

#### Harris County Pollution Control Services (HCPCS) A7.2 Tables

| BLE A7.2b Measurement Performance Specifications for Harris County Pollution Control (HCPCS) |       |        |                                                                      |                   |           |      |                          |                    |                      |        |
|----------------------------------------------------------------------------------------------|-------|--------|----------------------------------------------------------------------|-------------------|-----------|------|--------------------------|--------------------|----------------------|--------|
| Conventional Parameters in Water                                                             |       |        |                                                                      |                   |           |      |                          |                    |                      |        |
| Parameter                                                                                    | Units | Matrix | Method                                                               | Parameter<br>Code | TCEQ AWRL | רסס  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab    |
| RESIDUE, TOTAL NONFILTRABLE (MG/L)                                                           | mg/L  | water  | SM 2540D                                                             | 00530             | 5         | 4    | NA                       | NA                 | NA                   | HCPCS  |
| NITROGEN, AMMONIA, TOTAL (MG/L AS<br>N)                                                      | mg/L  | water  | SM 4500 NH3-D                                                        | 00610             | 0.1       | 0.1  | 70-130                   | 20                 | 85-115               | HCPCS  |
| NITROGEN, KJELDAHL, TOTAL (MG/L AS N)                                                        | mg/L  | water  | SM 4500-N <sub>org</sub> B<br>or C and SM<br>4500 NH3 C<br>EPA 351.2 | 00625             | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex |
| NITRITE PLUS NITRATE, TOTAL ONE LAB<br>DETERMINED VALUE (MG/L AS N)                          | mg/L  | water  | SM 4500-NO3 E                                                        | 00630             | 0.05      | 0.04 | 70-130                   | 20                 | 85-115               | HCPCS  |
| PHOSPHORUS, TOTAL, WET METHOD<br>(MG/L AS P)                                                 | mg/L  | water  | SM 4500-P E                                                          | 00665             | 0.06      | 0.02 | 70-130                   | 20                 | 85-115               | HCPCS  |
| CHLOROPHYLL-A UG/L<br>SPECTROPHOTOMETRIC ACID. METH                                          | ug/L  | water  | EPA 446.0                                                            | 32211             | 3         | 3    | NA                       | 20                 | 80-120               | Eastex |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### Harris County Pollution Control Services (HCPCS) A7.2 Tables

| TABLE A7.2c Measurement Performa                                                                                                                       | ance Specific                                | ations fo    | r Harris Cou    | nty Polluti       | on Contro     | l Servi | ces (HCPCS               | )                               |                      |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------|-----------------|-------------------|---------------|---------|--------------------------|---------------------------------|----------------------|--------|
| Bacteriological Parameters in Water                                                                                                                    |                                              |              |                 |                   |               |         |                          |                                 |                      |        |
| Parameter                                                                                                                                              | Units                                        | Matrix       | Method          | Parameter<br>Code | TCEQ AWRL     | רסס     | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab    |
| ENTEROCOCCI, ENTEROLERT, IDEXX,<br>(MPN/100 ML)                                                                                                        | MPN/100<br>mL                                | water        | ASTM D-<br>6503 | 31701             | 1***          | 10      | NA                       | 0.50*                           | NA                   | HCPCS  |
| * This value is not expressed as a relative perce<br>logarithm of the duplicate result. See Section B<br>***Enterococcus samples should be diluted 1:1 | ent difference.  <br>5.<br>0 for all waters. | lt represent | s the maximum   | allowable di      | fference betv | ween th | e logarithm of           | the result of a                 | sample ar            | nd the |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.3a Measurement Performance Specifications for Ci                                                       | BLE A7.3a Measurement Performance Specifications for City of Houston, Health Department (HHD) |        |                             |                   |       |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|-----------------------------|-------------------|-------|--|--|--|--|--|--|
|                                                                                                                 | Field Param                                                                                   | eters  |                             |                   |       |  |  |  |  |  |  |
| Parameter                                                                                                       | Units                                                                                         | Matrix | Method                      | Parameter<br>Code | Lab   |  |  |  |  |  |  |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                        | DEG C                                                                                         | water  | SM 2550 B and TCEQ SOP V1   | 00010             | Field |  |  |  |  |  |  |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                             | meters                                                                                        | water  | TCEQ SOP V1                 | 00078             | Field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)*                                                                       | us/cm                                                                                         | water  | EPA 120.1 and TCEQ SOP, V1  | 00094             | Field |  |  |  |  |  |  |
| OXYGEN, DISSOLVED (MG/L)*                                                                                       | mg/L                                                                                          | water  | SM 4500-O G and TCEQ SOP V1 | 00300             | Field |  |  |  |  |  |  |
| PH (STANDARD UNITS)*                                                                                            | s.u                                                                                           | water  | EPA 150.1 and TCEQ SOP V1   | 00400             | Field |  |  |  |  |  |  |
| SALINITY - PARTS PER THOUSAND                                                                                   | РРТ                                                                                           | water  | SM 2520 and TCEQ SOP V1     | 00480             | Field |  |  |  |  |  |  |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                           | days                                                                                          | other  | TCEQ SOP V1                 | 72053             | Field |  |  |  |  |  |  |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                   | meters                                                                                        | water  | TCEQ SOP V2                 | 82903             | Field |  |  |  |  |  |  |
| MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**                                                                  | meters                                                                                        | other  | TCEQ SOP V2                 | 89864             | Field |  |  |  |  |  |  |
| MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**                                                                   | meters                                                                                        | other  | TCEQ SOP V2                 | 89865             | Field |  |  |  |  |  |  |
| POOL LENGTH, METERS**                                                                                           | meters                                                                                        | other  | TCEQ SOP V2                 | 89869             | Field |  |  |  |  |  |  |
| % POOL COVERAGE IN 500 METER REACH**                                                                            | %                                                                                             | other  | TCEQ SOP V2                 | 89870             | Field |  |  |  |  |  |  |
| WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                | NU                                                                                            | other  | NA                          | 89965             | Field |  |  |  |  |  |  |
| PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU                                                                                            | other  | NA                          | 89966             | Field |  |  |  |  |  |  |
| WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                | NU                                                                                            | water  | NA                          | 89968             | Field |  |  |  |  |  |  |
| TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI                                                                | NU                                                                                            | water  | NA                          | 89972             | Field |  |  |  |  |  |  |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS,<br>4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS)) | NU                                                                                            | water  | NA                          | 89971             | Field |  |  |  |  |  |  |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT                                                                | NU                                                                                            | water  | NA                          | 89969             | Field |  |  |  |  |  |  |

\* Reporting to be consistent with SWQM guidance and based on measurement capability.
\*\* To be routinely reported when collecting data from perennial pools.

References: United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

| TABLE A7.3b Measurement Performance Specification              | ons for ( | City of Hou | ston, Health Depart | ment (HHD         | ))    |
|----------------------------------------------------------------|-----------|-------------|---------------------|-------------------|-------|
| Flow F                                                         | Paramet   | ers         |                     |                   |       |
| Parameter                                                      | Units     | Matrix      | Method              | Parameter<br>Code | Lab   |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)                | cfs       | water       | TCEQ SOP V1         | 00061             | Field |
| FLOW SEVERITY:1=No<br>Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry | NU        | water       | TCEQ SOP V1         | 01351             | Field |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU<br>5=DOPPLER          | NU        | other       | TCEQ SOP V1         | 89835             | Field |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

| TABLE A7.3c Measurement Per                  | BLE A7.3c Measurement Performance Specifications for City of Houston, Health Department (HHD) |        |                                                                                                       |                   |           |      |                          |                    |                      |         |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------|-------------------|-----------|------|--------------------------|--------------------|----------------------|---------|
|                                              |                                                                                               | C      | onventional Para                                                                                      | meters in         | Water     |      |                          |                    |                      |         |
| Parameter                                    | Units                                                                                         | Matrix | Method                                                                                                | Parameter<br>Code | TCEQ AWRL | רסס  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab     |
| RESIDUE, TOTAL NONFILTRABLE<br>(MG/L)        | mg/L                                                                                          | water  | SM 2540D                                                                                              | 00530             | 5         | 4    | NA                       | NA                 | NA                   | HHD-BLS |
| NITROGEN, AMMONIA, TOTAL<br>(MG/L AS N)      | mg/L                                                                                          | water  | SM 4500-NH3 H                                                                                         | 00610             | 0.1       | 0.1  | 70-130                   | 20                 | 80-120               | HHD-BLS |
| NITRITE NITROGEN, TOTAL (MG/L<br>AS N)       | mg/L                                                                                          | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                          | 00615             | 0.05      | 0.02 | 70-130                   | 20                 | 80-120               | HHD-BLS |
| NITRATE NITROGEN, TOTAL (MG/L<br>AS N)       | mg/L                                                                                          | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                          | 00620             | 0.05      | 0.02 | 70-130                   | 20                 | 80-120               | HHD-BLS |
| NITROGEN, KJELDAHL, TOTAL<br>(MG/L AS N)     | mg/L                                                                                          | water  | <del>SM 4500-N<sub>org</sub> B</del><br><del>or C and SM</del><br>4 <del>500-NH3 C</del> EPA<br>351.2 | 00625             | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex  |
| PHOSPHORUS, TOTAL, WET<br>METHOD (MG/L AS P) | mg/L                                                                                          | water  | EPA 365.1                                                                                             | 00665             | 0.06      | 0.02 | 70-130                   | 20                 | 80-120               | HHD-BLS |
| CHLORIDE (MG/L AS CL)                        | mg/L                                                                                          | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                          | 00940             | 5         | 5    | 70-130                   | 20                 | 80-120               | HHD-BLS |
| SULFATE (MG/L AS SO4)                        | mg/L                                                                                          | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                          | 00945             | 5         | 5    | 70-130                   | 20                 | 80-120               | HHD-BLS |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.3d Measurement Pe                      | ABLE A7.3d Measurement Performance Specifications for City of Houston, Health Department (HHD) |        |                      |                   |           |     |                          |                                 |                      |         |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|--------|----------------------|-------------------|-----------|-----|--------------------------|---------------------------------|----------------------|---------|
| Bacteriological Parameters in Water             |                                                                                                |        |                      |                   |           |     |                          |                                 |                      |         |
| Parameter                                       | Units                                                                                          | Matrix | Method               | Parameter<br>Code | TCEQ AWRL | רסס | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab     |
| E. COLI, COLILERT, IDEXX<br>METHOD, MPN/100ML   | MPN/100<br>mL                                                                                  | water  | IDEXX<br>Colilert 18 | 31699             | 1         | 1   | NA                       | 0.50*                           | NA                   | HHD-BLS |
| ENTEROCOCCI, ENTEROLERT,<br>IDEXX, (MPN/100 ML) | MPN/100<br>mL                                                                                  | water  | Enterolert           | 31701             | 1***      | 10  | NA                       | 0.50*                           | NA                   | HHD-BLS |
| E.COLI, COLILERT, IDEXX,<br>HOLDING TIME        | hours                                                                                          | water  | NA                   | 31704             | NA        | NA  | NA                       | NA                              | NA                   | HHD-BLS |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.
\*\*\*Enterococcus samples should be diluted 1:10 for all waters.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.4a Measurement Performance Specification                                                                  | ns for City of H        | louston, | Drinking Water Operations (DWO) |                   |       |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|----------|---------------------------------|-------------------|-------|
|                                                                                                                    | Field Param             | eters    |                                 |                   |       |
| Parameter                                                                                                          | Units                   | Matrix   | Method                          | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                           | DEG C                   | water    | SM 2550 B and TCEQ SOP V1       | 00010             | Field |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                                | meters                  | water    | TCEQ SOP V1                     | 00078             | Field |
| SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)*                                                                         | us/cm                   | water    | EPA 120.1 and TCEQ SOP, V1      | 00094             | Field |
| OXYGEN, DISSOLVED (MG/L)*                                                                                          | mg/L                    | water    | SM 4500-O G and TCEQ SOP V1     | 00300             | Field |
| PH (STANDARD UNITS)*                                                                                               | s.u                     | water    | EPA 150.1 and TCEQ SOP V1       | 00400             | Field |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                              | days                    | other    | TCEQ SOP V1                     | 72053             | Field |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                      | meters                  | water    | TCEQ SOP V2                     | 82903             | Field |
| RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***                                                                     | FT ABOVE MSL            | water    | TWDB                            | 00052             | Field |
| RESERVOIR PERCENT FULL***                                                                                          | % RESERVOIR<br>CAPACITY | water    | TWDB                            | 00053             | Field |
| RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1<br>IF REPORTING                                                | NS                      | other    | TCEQ Drought Guidance           | 00051             | Field |
| WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                   | NU                      | other    | NA                              | 89965             | Field |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU                      | other    | NA                              | 89966             | Field |
| WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                   | NU                      | water    | NA                              | 89968             | Field |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN<br>EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN<br>COMMENTS)) | NU                      | water    | NA                              | 89971             | Field |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT                                                                   | NU                      | water    | NA                              | 89969             | Field |
| TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)                                                                      | NU                      | water    | NA                              | 88842             | Field |

Reporting to be consistent with SWQM guidance and based on measurement capability. \*\*\* As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

#### Houston Drinking Water Operations (DWO) A7.4 Tables

| TABLE A7.4b Measurement Performance Specifica                  | tions fo | r City of I | Houston, Drinking Wa | ter Opera          | tions (D |  |  |  |  |
|----------------------------------------------------------------|----------|-------------|----------------------|--------------------|----------|--|--|--|--|
| Flow Parameters                                                |          |             |                      |                    |          |  |  |  |  |
| Parameter                                                      | Units    | Matrix      | Method               | Paramete<br>r Code | Lab      |  |  |  |  |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)                | cfs      | water       | TCEQ SOP V1          | 00061              | Field    |  |  |  |  |
| FLOW SEVERITY:1=No<br>Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry | NU       | water       | TCEQ SOP V1          | 01351              | Field    |  |  |  |  |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU<br>5=DOPPLER          | NU       | other       | TCEQ SOP V1          | 89835              | Field    |  |  |  |  |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### Houston Drinking Water Operations (DWO) A7.4 Tables

| TABLE A7.4c Measurement Perfor                      | ABLE A7.4c Measurement Performance Specifications for City of Houston, Drinking Water Operations (DWO) |        |                                                                      |                   |           |      |                          |                    |                      |        |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------|-------------------|-----------|------|--------------------------|--------------------|----------------------|--------|
|                                                     |                                                                                                        | Con    | ventional Parame                                                     | eters in W        | ater      |      |                          |                    |                      |        |
| Parameter                                           | Units                                                                                                  | Matrix | Method                                                               | Parameter<br>Code | TCEQ AWRL | רסס  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab    |
| ALKALINITY, TOTAL (MG/L AS CACO3)                   | mg/L                                                                                                   | water  | SM 2320B                                                             | 00410             | 20        | 20   | NA                       | 20                 | NA                   | DWO    |
| RESIDUE, TOTAL NONFILTRABLE<br>(MG/L)               | mg/L                                                                                                   | water  | SM 2540D                                                             | 00530             | 5         | 4    | NA                       | NA                 | NA                   | DWO    |
| NITROGEN, AMMONIA, TOTAL (MG/L<br>AS N)             | mg/L                                                                                                   | water  | EPA 350.3                                                            | 00610             | 0.1       | 0.1  | 70-130                   | 20                 | 80-120               | DWO    |
| NITRATE NITROGEN, TOTAL (MG/L AS<br>N)              | mg/L                                                                                                   | water  | EPA 300.0 Rev.<br>2.1 (1993)                                         | 00620             | 0.05      | 0.04 | 70-130                   | 20                 | 80-120               | DWO    |
| NITRITE NITROGEN, TOTAL (MG/L AS<br>N)              | mg/L                                                                                                   | water  | EPA 300.0 Rev.<br>2.1 (1993)                                         | 00615             | 0.05      | 0.04 | 70-130                   | 20                 | 80-120               | DWO    |
| NITROGEN, KJELDAHL, TOTAL (MG/L<br>AS N)            | mg/L                                                                                                   | water  | SM 4500 N <sub>org</sub> B<br>or C and SM<br>4500 NH3 C<br>EPA 351.2 | 00625             | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex |
| PHOSPHORUS, TOTAL, WET METHOD<br>(MG/L AS P)        | mg/L                                                                                                   | water  | EPA 365.3                                                            | 00665             | 0.06      | 0.02 | 70-130                   | 20                 | 80-120               | DWO    |
| CHLORIDE (MG/L AS CL)                               | mg/L                                                                                                   | water  | EPA 300.0 Rev.<br>2.1 (1993)                                         | 00940             | 5         | 5    | 70-130                   | 20                 | 80-120               | DWO    |
| SULFATE (MG/L AS SO4)                               | mg/L                                                                                                   | water  | EPA 300.0 Rev.<br>2.1 (1993)                                         | 00945             | 5         | 5    | 70-130                   | 20                 | 80-120               | DWO    |
| CHLOROPHYLL-A UG/L<br>SPECTROPHOTOMETRIC ACID. METH | ug/L                                                                                                   | water  | EPA 446.0                                                            | 32211             | 3         | 3    | NA                       | 20                 | 80-120               | Eastex |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### Houston Drinking Water Operations (DWO) A7.4 Tables

| TABLE A7.4d Measurement Perfor                | ABLE A7.4d Measurement Performance Specifications for City of Houston, Drinking Water Operations (DWO) |        |                 |                   |           |     |                          |                                 |                      |     |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|-----------------|-------------------|-----------|-----|--------------------------|---------------------------------|----------------------|-----|
|                                               | Bacteriological Parameters in Water                                                                    |        |                 |                   |           |     |                          |                                 |                      |     |
| Parameter                                     | Units                                                                                                  | Matrix | Method          | Parameter<br>Code | TCEQ AWRL | LOQ | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab |
| E. COLI, COLILERT, IDEXX METHOD,<br>MPN/100ML | MPN/100<br>mL                                                                                          | water  | SM 9223-<br>B** | 31699             | 1         | 1   | NA                       | 0.50*                           | NA                   | DWO |
| E.COLI, COLILERT, IDEXX, HOLDING<br>TIME      | hours                                                                                                  | water  | NA              | 31704             | NA        | NA  | NA                       | NA                              | NA                   | DWO |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.5a Measurement Performance Specification                                                                  | ns for San Jaci         | nto River | Authority - Lake Conroe (SJRA-LC) |                   |       |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-----------------------------------|-------------------|-------|
|                                                                                                                    | Field Param             | neters    |                                   |                   |       |
| Parameter                                                                                                          | Units                   | Matrix    | Method                            | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                           | DEG C                   | water     | SM 2550 B and TCEQ SOP V1         | 00010             | Field |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                                | meters                  | water     | TCEQ SOP V1                       | 00078             | Field |
| SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)*                                                                         | us/cm                   | water     | EPA 120.1 and TCEQ SOP, V1        | 00094             | Field |
| OXYGEN, DISSOLVED (MG/L)*                                                                                          | mg/L                    | water     | SM 4500-O G and TCEQ SOP V1       | 00300             | Field |
| PH (STANDARD UNITS)*                                                                                               | s.u                     | water     | EPA 150.1 and TCEQ SOP V1         | 00400             | Field |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                              | days                    | other     | TCEQ SOP V1                       | 72053             | Field |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                      | meters                  | water     | TCEQ SOP V2                       | 82903             | Field |
| RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***                                                                     | FT ABOVE MSL            | water     | TWDB                              | 00052             | Field |
| RESERVOIR PERCENT FULL***                                                                                          | % RESERVOIR<br>CAPACITY | water     | TWDB                              | 00053             | Field |
| RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1<br>IF REPORTING                                                | NS                      | other     | TCEQ Drought Guidance             | 00051             | Field |
| WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                   | NU                      | other     | NA                                | 89965             | Field |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU                      | other     | NA                                | 89966             | Field |
| WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                   | NU                      | water     | NA                                | 89968             | Field |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN<br>EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN<br>COMMENTS)) | NU                      | water     | NA                                | 89971             | Field |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT                                                                   | NU                      | water     | NA                                | 89969             | Field |
| * Reporting to be consistent with SWQM guidance and based on mea                                                   | surement capabilit      | y.        |                                   |                   |       |

\*\*\* As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### San Jacinto River Authority – Lake Conroe (SJRA-LC) A7.5 Tables

| TABLE A7.5b Measurement Pe                             | ABLE A7.5b Measurement Performance Specifications for San Jacinto River Authority - Lake Conroe (SJRA-LC) |        |                                                                                             |                   |           |      |                          |                    |                      |        |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------|-------------------|-----------|------|--------------------------|--------------------|----------------------|--------|--|
|                                                        |                                                                                                           | C      | onventional Parar                                                                           | neters in '       | Water     |      |                          |                    |                      |        |  |
| Parameter                                              | Units                                                                                                     | Matrix | Method                                                                                      | Parameter<br>Code | TCEQ AWRL | רסס  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | qeJ    |  |
| ALKALINITY, TOTAL (MG/L AS<br>CACO3)                   | mg/L                                                                                                      | water  | SM 2320B                                                                                    | 00410             | 20        | 20   | NA                       | 20                 | NA                   | DWO    |  |
| RESIDUE, TOTAL NONFILTRABLE<br>(MG/L)                  | mg/L                                                                                                      | water  | SM 2540D                                                                                    | 00530             | 5         | 4    | NA                       | NA                 | NA                   | DWO    |  |
| NITROGEN, AMMONIA, TOTAL<br>(MG/L AS N)                | mg/L                                                                                                      | water  | EPA 350.3                                                                                   | 00610             | 0.1       | 0.1  | 70-130                   | 20                 | 80-120               | DWO    |  |
| NITRATE NITROGEN, TOTAL (MG/L<br>AS N)                 | mg/L                                                                                                      | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                | 00620             | 0.05      | 0.04 | 70-130                   | 20                 | 80-120               | DWO    |  |
| NITRITE NITROGEN, TOTAL (MG/L<br>AS N)                 | mg/L                                                                                                      | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                | 00615             | 0.05      | 0.04 | 70-130                   | 20                 | 80-120               | DWO    |  |
| NITROGEN, KJELDAHL, TOTAL<br>(MG/L AS N)               | mg/L                                                                                                      | water  | <del>SM 4500-N<sub>org</sub> B</del><br>or C and SM-<br>4 <del>500-NH3 C</del> EPA<br>351.2 | 00625             | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex |  |
| PHOSPHORUS, TOTAL, WET<br>METHOD (MG/L AS P)           | mg/L                                                                                                      | water  | EPA 365.3                                                                                   | 00665             | 0.06      | 0.02 | 70-130                   | 20                 | 80-120               | DWO    |  |
| CHLORIDE (MG/L AS CL)                                  | mg/L                                                                                                      | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                | 00940             | 5         | 5    | 70-130                   | 20                 | 80-120               | DWO    |  |
| SULFATE (MG/L AS SO4)                                  | mg/L                                                                                                      | water  | EPA 300.0 Rev.<br>2.1 (1993)                                                                | 00945             | 5         | 5    | 70-130                   | 20                 | 80-120               | DWO    |  |
| CHLOROPHYLL-A UG/L<br>SPECTROPHOTOMETRIC ACID.<br>METH | ug/L                                                                                                      | water  | EPA 446.0                                                                                   | 32211             | 3         | 3    | NA                       | 20                 | 80-120               | Eastex |  |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

#### San Jacinto River Authority – Lake Conroe (SJRA-LC) A7.5 Tables

#### TABLE A7.5c Measurement Performance Specifications for San Jacinto River Authority - Lake Conroe (SJRA-LC)

|                                               | E             | Bacteriolo | gical Param     | eters in W        | ater      |     |                          |                                 |                      |     |
|-----------------------------------------------|---------------|------------|-----------------|-------------------|-----------|-----|--------------------------|---------------------------------|----------------------|-----|
| Parameter                                     | Units         | Matrix     | Method          | Parameter<br>Code | TCEQ AWRL | רסס | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab |
| E. COLI, COLILERT, IDEXX METHOD,<br>MPN/100ML | MPN/100<br>mL | water      | SM 9223-<br>B** | 31699             | 1         | 1   | NA                       | 0.50*                           | NA                   | DWO |
| E.COLI, COLILERT, IDEXX, HOLDING<br>TIME      | hours         | water      | NA              | 31704             | NA        | NA  | NA                       | NA                              | NA                   | DWO |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.6a Measurement Performance Specifications for Sar                                                      | n Jacinto River         | Authorit | y - samples from The Woodlands ( | SJRA-W)           |       |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------------------------------|-------------------|-------|
| F                                                                                                               | ield Parameter          | s        |                                  |                   |       |
| Parameter                                                                                                       | Units                   | Matrix   | Method                           | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                        | DEG C                   | water    | SM 2550 B and TCEQ SOP V1        | 00010             | Field |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                             | meters                  | water    | TCEQ SOP V1                      | 00078             | Field |
| SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)*                                                                      | us/cm                   | water    | EPA 120.1 and TCEQ SOP, V1       | 00094             | Field |
| OXYGEN, DISSOLVED (MG/L)*                                                                                       | mg/L                    | water    | SM 4500-O G and TCEQ SOP V1      | 00300             | Field |
| PH (STANDARD UNITS)*                                                                                            | s.u                     | water    | EPA 150.1 and TCEQ SOP V1        | 00400             | Field |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                           | days                    | other    | TCEQ SOP V1                      | 72053             | Field |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*                                                                   | meters                  | water    | TCEQ SOP V2                      | 82903             | Field |
| RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***                                                                  | FT ABOVE MSL            | water    | TWDB                             | 00052             | Field |
| RESERVOIR PERCENT FULL***                                                                                       | % RESERVOIR<br>CAPACITY | water    | TWDB                             | 00053             | Field |
| RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF<br>REPORTING                                             | NS                      | other    | TCEQ Drought Guidance            | 00051             | Field |
| PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU                      | other    | NA                               | 89966             | Field |
| WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                | NU                      | other    | NA                               | 89965             | Field |
| WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                | NU                      | water    | NA                               | 89968             | Field |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS,<br>4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS)) | NU                      | water    | NA                               | 89971             | Field |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT                                                                | NU                      | water    | NA                               | 89969             | Field |

\* Reporting to be consistent with SWQM guidance and based on measurement capability.

\*\*\* As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| Flow Parame                                                                                                                                                                                      | eters        | 1               |                  | 1                 | 1     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|------------------|-------------------|-------|
| Parameter                                                                                                                                                                                        | Units        | Matrix          | Method           | Parameter<br>Code | Lab   |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)                                                                                                                                                  | cfs          | water           | TCEQ SOP V1      | 00061             | Field |
| FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry                                                                                                                                      | NU           | water           | TCEQ SOP V1      | 01351             | Field |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER                                                                                                                                               | NU           | other           | TCEQ SOP V1      | 89835             | Field |
| References:<br>United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of W<br>U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136 | /ater and Wa | istes, Manual # | EPA-600/4-79-020 |                   |       |

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.6c Measurement Perfor                                         | rmance S | Specifica | tions for San Jacint                                                              | to River A        | uthority - sa | amples | from The                 | Woodla             | ands (SJRA-          | W)     |
|------------------------------------------------------------------------|----------|-----------|-----------------------------------------------------------------------------------|-------------------|---------------|--------|--------------------------|--------------------|----------------------|--------|
|                                                                        |          |           | Conventional Para                                                                 | ameters i         | n Water       |        |                          |                    |                      |        |
| Parameter                                                              | Units    | Matrix    | Method                                                                            | Parameter<br>Code | TCEQ AWRL     | род    | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab    |
| RESIDUE, TOTAL NONFILTRABLE<br>(MG/L)                                  | mg/L     | water     | SM 2540D                                                                          | 00530             | 5             | 1      | NA                       | NA                 | NA                   | Eastex |
| NITROGEN, AMMONIA, TOTAL<br>(MG/L AS N)                                | mg/L     | water     | SM 4500 NH3 G                                                                     | 00610             | 0.1           | 0.1    | 70-130                   | 20                 | 80-120               | Eastex |
| NITRITE NITROGEN, TOTAL (MG/L AS<br>N)                                 | mg/L     | water     | EPA 300.0                                                                         | 00615             | 0.05          | 0.05   | 70-130                   | 20                 | 80-120               | Eastex |
| NITRATE NITROGEN, TOTAL (MG/L<br>AS N)                                 | mg/L     | water     | EPA 300.0                                                                         | 00620             | 0.05          | 0.05   | 70-130                   | 20                 | 80-120               | Eastex |
| NITROGEN, KJELDAHL, TOTAL (MG/L<br>AS N)                               | mg/L     | water     | S <del>M 4500 N<sub>org</sub> B<br/>or C and SM<br/>4500 NH3 C</del> EPA<br>351.2 | 00625             | 0.2           | 0.2    | 70-130                   | 20                 | 80-120               | Eastex |
| NITRITE PLUS NITRATE, TOTAL ONE<br>LAB DETERMINED VALUE (MG/L AS<br>N) | mg/L     | water     | SM 4500 - NO3 -<br>F                                                              | 00630             | 0.05          | 0.02   | 70-130                   | 20                 | 80-120               | Eastex |
| PHOSPHORUS, TOTAL, WET METHOD<br>(MG/L AS P)                           | mg/L     | water     | EPA 200.7                                                                         | 00665             | 0.06          | 0.06   | 70-130                   | 20                 | 80-120               | Eastex |
| CHLORIDE (MG/L AS CL)                                                  | mg/L     | water     | EPA 300.0                                                                         | 00940             | 5             | 5      | 70-130                   | 20                 | 80-120               | Eastex |
| SULFATE (MG/L AS SO4)                                                  | mg/L     | water     | EPA 300.0                                                                         | 00945             | 5             | 4      | 70-130                   | 20                 | 80-120               | Eastex |
| CHLOROPHYLL-A UG/L<br>SPECTROPHOTOMETRIC ACID. METH                    | ug/L     | water     | EPA 446.0                                                                         | 32211             | 3             | 3      | NA                       | 20                 | 80-120               | Eastex |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.6d Measurement Performa              | ABLE A7.6d Measurement Performance Specifications for San Jacinto River Authority - samples from The Woodlands (SJRA-W) |        |            |                   |           |     |                          |                                 |                      |        |  |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|------------|-------------------|-----------|-----|--------------------------|---------------------------------|----------------------|--------|--|
| Bacteriological Parameters in Water           |                                                                                                                         |        |            |                   |           |     |                          |                                 |                      |        |  |
| Parameter                                     | Units                                                                                                                   | Matrix | Method     | Parameter<br>Code | TCEQ AWRL | LOQ | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab    |  |
| E. COLI, COLILERT, IDEXX METHOD,<br>MPN/100ML | MPN/100<br>mL                                                                                                           | water  | Colilert** | 31699             | 1         | 1   | NA                       | 0.50*                           | NA                   | Eastex |  |
| E.COLI, COLILERT, IDEXX, HOLDING<br>TIME      | hours                                                                                                                   | water  | NA         | 31704             | NA        | NA  | NA                       | NA                              | NA                   | Eastex |  |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.7a Measurement Performance Spec                                                                           | cifications for | <sup>.</sup> Environi | mental Institute of Houston (EIH) |                   |       |
|--------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-----------------------------------|-------------------|-------|
|                                                                                                                    | Field Pa        | arameter              | s                                 |                   |       |
| Parameter                                                                                                          | Units           | Matrix                | Method                            | Parameter<br>Code | Lab   |
| TEMPERATURE, WATER (DEGREES CENTIGRADE)*                                                                           | DEG C           | water                 | SM 2550 B and TCEQ SOP V1         | 00010             | Field |
| TRANSPARENCY, SECCHI DISC (METERS)*                                                                                | meters          | water                 | TCEQ SOP V1                       | 00078             | Field |
| SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)*                                                                          | us/cm           | water                 | EPA 120.1 and TCEQ SOP, V1        | 00094             | Field |
| OXYGEN, DISSOLVED (MG/L)*                                                                                          | mg/L            | water                 | SM 4500-O G and TCEQ SOP V1       | 00300             | Field |
| PH (STANDARD UNITS)*                                                                                               | s.u             | water                 | EPA 150.1 and TCEQ SOP V1         | 00400             | Field |
| SALINITY - PARTS PER THOUSAND                                                                                      | PPT             | water                 | SM 2520 and TCEQ SOP V1           | 00480             | Field |
| DAYS SINCE PRECIPITATION EVENT (DAYS)                                                                              | days            | other                 | TCEQ SOP V1                       | 72053             | Field |
| DEPTH OF BOTTOM OF WATER BODY AT SAMPLE<br>SITE*                                                                   | meters          | water                 | TCEQ SOP V2                       | 82903             | Field |
| MAXIMUM POOL WIDTH AT TIME OF STUDY<br>(METERS)**                                                                  | meters          | other                 | TCEQ SOP V2                       | 89864             | Field |
| MAXIMUM POOL DEPTH AT TIME OF<br>STUDY(METERS)**                                                                   | meters          | other                 | TCEQ SOP V2                       | 89865             | Field |
| POOL LENGTH, METERS**                                                                                              | meters          | other                 | TCEQ SOP V2                       | 89869             | Field |
| % POOL COVERAGE IN 500 METER REACH**                                                                               | %               | other                 | TCEQ SOP V2                       | 89870             | Field |
| WIND INTENSITY<br>(1=CALM,2=SLIGHT,3=MOD.,4=STRONG)                                                                | NU              | other                 | NA                                | 89965             | Field |
| PRESENT WEATHER<br>(1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)                                                        | NU              | other                 | NA                                | 89966             | Field |
| WATER<br>SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)                                                                | NU              | water                 | NA                                | 89968             | Field |
| TIDE STAGE<br>1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI                                                                | NU              | water                 | NA                                | 89972             | Field |
| WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL,<br>3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE,<br>7=OTHER (WRITE IN COMMENTS)) | NU              | water                 | NA                                | 89971             | Field |
| WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK                                                                              | NU              | water                 | NA                                | 89969             | Field |

\* Reporting to be consistent with SWQM guidance and based on measurement capability.

\*\* To be routinely reported when collecting data from perennial pools.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.7b Measurement Performance Specifications for Environmental Institute of Houston (EIH) |         |        |             |                   |       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|---------|--------|-------------|-------------------|-------|--|--|--|--|--|--|
| Flow Para                                                                                       | ameters |        |             |                   |       |  |  |  |  |  |  |
| Parameter                                                                                       | Units   | Matrix | Method      | Parameter<br>Code | Lab   |  |  |  |  |  |  |
| FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)                                                 | cfs     | water  | TCEQ SOP V1 | 00061             | Field |  |  |  |  |  |  |
| FLOW SEVERITY:1=No<br>Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry                                  | NU      | water  | TCEQ SOP V1 | 01351             | Field |  |  |  |  |  |  |
| FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER                                              | NU      | other  | TCEQ SOP V1 | 89835             | Field |  |  |  |  |  |  |

#### References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

| TABLE A7.7c Measurement Performance Specifications for Environmental Institute of Houston (EIH) |       |        |                                                                       |                    |           |      |                          |                    |                      |        |  |  |  |
|-------------------------------------------------------------------------------------------------|-------|--------|-----------------------------------------------------------------------|--------------------|-----------|------|--------------------------|--------------------|----------------------|--------|--|--|--|
|                                                                                                 |       | Con    | ventional Paran                                                       | neters in <b>\</b> | Nater     |      |                          |                    |                      |        |  |  |  |
| Parameter                                                                                       | Units | Matrix | Method                                                                | Parameter<br>Code  | TCEQ AWRL | род  | LOQ Check<br>Sample %Rec | Precision<br>(RPD) | Bias %Rec. of<br>LCS | Lab    |  |  |  |
| RESIDUE, TOTAL NONFILTRABLE (MG/L)                                                              | mg/L  | water  | SM 2540D                                                              | 00530              | 5         | 1    | NA                       | NA                 | NA                   | Eastex |  |  |  |
| NITROGEN, AMMONIA, TOTAL (MG/L AS N)                                                            | mg/L  | water  | SM 4500<br>NH3G                                                       | 00610              | 0.1       | 0.1  | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| NITRITE NITROGEN, TOTAL (MG/L AS N)                                                             | mg/L  | water  | EPA 300.0                                                             | 00615              | 0.05      | 0.05 | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| NITRATE NITROGEN, TOTAL (MG/L AS N)                                                             | mg/L  | water  | EPA 300.0                                                             | 00620              | 0.05      | 0.05 | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| NITROGEN, KJELDAHL, TOTAL (MG/L AS N)                                                           | mg/L  | water  | <del>SM 4500 Norg<br/>B or C and SM<br/>4500 NH3 C</del><br>EPA 351.2 | 00625              | 0.2       | 0.2  | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| NITRITE PLUS NITRATE, TOTAL ONE LAB<br>DETERMINED VALUE (MG/L AS N)                             | mg/L  | water  | SM 4500-NO3<br>F                                                      | 00630              | 0.05      | 0.02 | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| PHOSPHORUS, TOTAL, WET METHOD (MG/L<br>AS P)                                                    | mg/L  | water  | EPA 200.7                                                             | 00665              | 0.06      | 0.06 | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| CHLORIDE (MG/L AS CL)                                                                           | mg/L  | water  | EPA 300.0                                                             | 00940              | 5         | 5    | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| SULFATE (MG/L AS SO4)                                                                           | mg/L  | water  | EPA 300.0                                                             | 00945              | 5         | 4    | 70-130                   | 20                 | 80-120               | Eastex |  |  |  |
| CHLOROPHYLL-A UG/L<br>SPECTROPHOTOMETRIC ACID. METH                                             | ug/L  | water  | EPA 446.0                                                             | 32211              | 3         | 3    | NA                       | 20                 | 80-120               | Eastex |  |  |  |

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.7d Measurement Performance Specifications for Environmental Institute of Houston (EIH) |                |              |                |                   |           |        |                          |                                 |                      |           |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------|--------------|----------------|-------------------|-----------|--------|--------------------------|---------------------------------|----------------------|-----------|--|--|--|
|                                                                                                 | В              | acteriolo    | ogical Param   | eters in W        | /ater     |        |                          |                                 |                      |           |  |  |  |
| Parameter                                                                                       | Units          | Matrix       | Method         | Parameter<br>Code | TCEQ AWRL | год    | LOQ Check<br>Sample %Rec | Log Difference<br>of Duplicates | Bias %Rec. of<br>LCS | Lab       |  |  |  |
| E. COLI, COLILERT, IDEXX METHOD,<br>MPN/100ML                                                   | MPN/100<br>mL  | water        | Colilert**     | 31699             | 1         | 1      | NA                       | 0.50*                           | NA                   | Eastex    |  |  |  |
| ENTEROCOCCI, ENTEROLERT, IDEXX,<br>(MPN/100 ML)                                                 | MPN/100<br>mL  | water        | Enterolert     | 31701             | 1***      | 10     | NA                       | 0.50*                           | NA                   | Eastex    |  |  |  |
| E.COLI, COLILERT, IDEXX, HOLDING TIME                                                           | hours          | water        | NA             | 31704             | NA        | NA     | NA                       | NA                              | NA                   | Eastex    |  |  |  |
| * This value is not expressed as a relative perce                                               | ant difference | It renrecent | ts the maximum | allowable d       | ifference | hetwee | n the logarithm          | n of the result                 | of a sample          | e and the |  |  |  |

\* This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

\*\* E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

\*\*\*Enterococcus Samples should be diluted 1:10 for all waters.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| TABLE A7.1e Measurement Performance Specifications for Environmental Institute of Houston (EIH) |                 |        |             |                   |       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------|--------|-------------|-------------------|-------|--|--|--|--|--|--|
| 24 HourPara                                                                                     | meters in Water |        |             |                   |       |  |  |  |  |  |  |
| Parameter                                                                                       | Units           | Matrix | Method      | Parameter<br>Code | Lab   |  |  |  |  |  |  |
| TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG                                               | DEG C           | Water  | TCEQ SOP V1 | 00209             | field |  |  |  |  |  |  |
| WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX                                                 | DEG C           | Water  | TCEQ SOP V1 | 00210             | field |  |  |  |  |  |  |
| TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN                                                | DEG C           | Water  | TCEQ SOP V1 | 00211             | field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG                                                    | uS/cm           | Water  | TCEQ SOP V1 | 00212             | field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX                                                    | uS/cm           | Water  | TCEQ SOP V1 | 00213             | field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN                                                    | uS/cm           | Water  | TCEQ SOP V1 | 00214             | field |  |  |  |  |  |  |
| PH, S.U., 24HR MAXIMUM VALUE                                                                    | std. units      | Water  | TCEQ SOP V1 | 00215             | field |  |  |  |  |  |  |
| PH, S.U., 24HR, MINIMUM VALUE                                                                   | std. units      | Water  | TCEQ SOP V1 | 00216             | field |  |  |  |  |  |  |
| WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS                                                  | NU              | Water  | TCEQ SOP V1 | 00221             | field |  |  |  |  |  |  |
| SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS                                               | NU              | Water  | TCEQ SOP V1 | 00222             | field |  |  |  |  |  |  |
| pH, # OF MEASUREMENTS IN 24-HRS                                                                 | NU              | Water  | TCEQ SOP V1 | 00223             | field |  |  |  |  |  |  |
| DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA                                                | mg/l            | Water  | TCEQ SOP V1 | 89855             | field |  |  |  |  |  |  |
| DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA                                                | mg/l            | Water  | TCEQ SOP V1 | 89856             | field |  |  |  |  |  |  |
| DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA                                                | mg/l            | Water  | TCEQ SOP V1 | 89857             | field |  |  |  |  |  |  |
| DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS                                                   | NU              | Water  | TCEQ SOP V1 | 89858             | field |  |  |  |  |  |  |
| References:                                                                                     |                 |        |             |                   |       |  |  |  |  |  |  |

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

| Site Description                                                                                                                            | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|----------|
| SAN JACINTO RIVER TIDAL IMMEDIATELY DOWNSTREAM OF IH 10 BRIDGE EAST OF CHANNELVIEW                                                          | 11193      | 1001         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL 23 METERS SOUTH AND 735 METERS EAST OF INTERSECTION OF WALLISVILLE ROAD AND 7TH STREET                              | 11198      | 1001         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL IMMEDIATELY DOWNSTREAM OF US 90 BRIDGE EAST OF SHELDON                                                              | 11200      | 1001         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL AT MAGNOLIA GARDENS 1.78 KM UPSTREAM OF US BUS 90U/<br>BEAUMONT HIGHWAY IN HOUSTON                                  | 11201      | 1001         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL AT BAYTOWN TUNNEL/CM 103 1.84 KM NORTH AND 1.17 KM EAST<br>OF INTERSECTION OF SH 225 AND SH 146                        | 11254      | 1005         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL AT SAN JACINTO PK WEST OF THE BATTLESHIP TX 317 M N AND 303<br>M W OF INTERSECTION OF BATTLEGROUND RD AND MARKER DR    | 11264      | 1006         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL AT CONFLUENCE WITH GREENS BAYOU/CM 152                                                                                 | 11271      | 1006         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL/BUFFALO BAYOU HSC AT WASHBURN TUNNEL                                                                                   | 11283      | 1007         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| HSC/BUFFALO BAYOU IN TURNING BASIN 2.82 K UPSTREAM OF CONFLUENCE WITH BRAYS<br>BAYOU 433 M S AND 182 M W OF INTERSECT OF SIGNET AND DORSETT | 11292      | 1007         | 10    | 12     | HG | HC | RT | 12    | 12   | 12       |      |          |             |          |
| CLEAR LAKE AT SH 146 DRAWBRIDGE                                                                                                             | 13332      | 2425         | 24    | 12     | HG | HC | RT | 6     | 6    | 6        |      |          |             |          |
| TABBS BAY MIDWAY BETWEEN GOOSE CREEK AND UPPER HOG ISLAND                                                                                   | 13338      | 2426         | 24    | 12     | HG | HC | RT | 6     | 6    | 6        |      |          |             |          |
| BLACK DUCK BAY AT MID BAY 0.6 KM NE OF SH 146 BRIDGE AND 0.6 KM SE OF END OF OKLAHOMA ST IN BAYTOWN                                         | 13340      | 2428         | 24    | 12     | HG | HC | RT | 6     | 6    | 6        |      |          |             |          |
| BURNETT BAY AT MID BAY 1.3 KM SSW OF CONFLUENCE WITH SPRING GULLY AND 1.6 KM SE                                                             | 13344      | 2430         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |          |
| ARMAND BAYOU TIDAL 25 M WEST OF CLEAR LAKE PARK FISHING PIER IN MUD                                                                         | 15455      | 1113         | 11    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |          |
| CLEAR CREEK TIDAL AT THE CONFLUENCE WITH CLEAR LAKE 30 M NORTH AND 266 M WEST OF                                                            | 16573      | 1101         | 11    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |          |
| HOUSTON SHIP CHANNEL AT CARGUL TERMINAL NORTH OF TIDAL ROAD                                                                                 | 16617      | 1006         | 10    | 12     | НG | НС | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL W OF EXXON DOCKS AND N OF ALEXANDER ISLAND 316 M S AND<br>1.55 KM W OF INTERSECTION OF BAYWAY DR AND BAYTOWN AVE       | 16618      | 1005         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL AT LYNCHBURG FERRY INN SOUTH OF LYNCHBURG RD 658 M N AND<br>802 M E OF INTERSECTION OF BATTLEGROUND RD AND TIDAL RD    | 16619      | 1005         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| HOUSTON SHIP CHANNEL/BUFFALO BAYOU AT MAYO SHELL RD 1.42 KM S AND 41 M W OF<br>INTERSECTION OF MAYO SHELL RD AND CLINTON DR IN HOUSTON      | 16620      | 1007         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL AT CONFLUENCE WITH HSC 226 M S AND 1.07 KM W OF<br>INTERSECTION OF S LYNCHBURG RD AND POQUENO RD IN HOUSTON         | 16621      | 1005         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL AT BANANA BEND ROAD AT END OF PAVEMENT IN HOUSTON                                                                   | 16622      | 1001         | 10    | 12     | НG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| SAN JACINTO RIVER TIDAL MID STREAM AT TERMINUS OF SHADY LANE IN CHANNELVIEW 9 M S<br>AND 648 M W OF INTERSECTION OF SHADY LN AND PARK DR    | 17919      | 1001         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |          |
| CRYSTAL BAY IN BAYTOWN 383 METERS WEST AND 137 METERS SOUTH OF THE INTERSECTION<br>OF BAYSHORE DRIVE AND CROW ROAD                          | 17921      | 2430A        | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |          |

| Site Description                                                                                                                                                             | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|-----------------------------------------------------------------|
| SCOTT BAY 1.2 KM SW OF INTERSECTION OF BAYWAY DRIVE AND PARK STREET IN BAYTOWN                                                                                               | 17922      | 2429         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| UPPER SAN JACINTO BAY UNDERNEATH ELECTRICAL TRANSMISSION LINES 2.1 KM E/NE OF INTERSECTION OF MILLER CUTOFF RD AND OLD CLARK RD                                              | 17923      | 2427         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| LOWER SAN JACINTO BAY MID CHANNEL SOUTH OF SH 146 1 KM NE OF INTERSECTION OF SH 225 AND STRANG ROAD IN LAPORTE                                                               | 17924      | 2427         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| BARBOUR'S CUT NEAR NORTH BANK 0.5 KM NNW OF THE INTERSECTION OF BARBOURS CUT<br>BLVD AND MAPLE ST                                                                            | 17925      | 2436         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| GOOSE CREEK NEAR SH 146 340 M SOUTH OF THE INTERSECTION OF SH 146 AND WEST MAIN IN BAYTOWN                                                                                   | 17927      | 2426C        | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| HARRIS COUNTY FLOOD CONTROL DITCH A TRIBUTARY TO TAYLOR BAYOU 385 M UPSTREAM<br>OF CONFLUENCE WEST OF SH 146 AT PORT ROAD IN HARRIS COUNTY                                   | 20012      | 2425E        | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| TAYLOR BAYOU MID CHANNEL 400 M DOWNSTREAM OF PORT ROAD BRIDGE IN HARRIS<br>COUNTY                                                                                            | 20013      | 2425A        | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| CLEAR LAKE UNNAMED INLET 115 M SOUTHWEST OF THE INTERSECTION OF NASA ROAD 1<br>AND OCEANVIEW DRIVE IN SEABROOK IN HARRIS COUNTY                                              | 20014      | 2425         | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| TAYLOR LAKE MID LAKE AT BLUE WINDOWS 230 M SOUTH OF LAKEWAY DRIVE AT RAY SHELL COURT/HARBOR COVE CIRCLE IN HARRIS COUNTY                                                     | 20015      | 2425A        | 24    | 12     | HG | нс | RT | 6     | 6    | 6        |      |          |             |                                                                 |
| CARPENTERS BAYOU AT MOUTH OF BARGE CANAL 32 METERS WEST AND 666 METERS SOUTH<br>FROM THE INTERSECTION OF DE ZAVALLA ROAD AND HARDING ROAD/HARDING STREET IN<br>HARRIS COUNTY | 20797      | 1006         | 10    | 12     | HG | нс | RT | 12    | 12   | 12       |      |          |             |                                                                 |
| SPRING BRANCH IMMEDIATELY DOWNSTREAM OF SHAKEY HOLLOW WEST OF WOODBRANCH VILLAGE IN MONTGOMERY COUNTY                                                                        | 21965      | 1010C        | 10    | 12     | HG | HG | BS |       |      |          | 4    | 4        |             | Started collecting 24-hr DO in 2/2017;<br>Continue through FY21 |
| BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF GREEN BUSH ROAD 3.1 MILES SOUTHEAST OF KATY                                                                                          | 11145      | 1014B        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| CRYSTAL CREEK AT FM 1314 SOUTHEAST OF CONROE                                                                                                                                 | 11181      | 1004D        | 10    | 12     | HG | HG | RT | 10    |      |          | 10   |          |             | Site added in FY19                                              |
| WEST FORK SAN JACINTO RIVER IMMEDIATELY UPSTREAM OF SH 242                                                                                                                   | 11243      | 1004         | 10    | 12     | HG | HG | RT | 10    |      |          | 10   |          |             | Site added FY19                                                 |
| CANEY CREEK IMMEDIATELY UPSTREAM OF FM 2090 WEST OF SPLENDORA                                                                                                                | 11335      | 1010         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| LAKE CREEK AT EGYPT COMMUNITY ROAD 8.3 MILES SOUTHWEST OF CONROE                                                                                                             | 11367      | 1015         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| STEWARTS CREEK 175 METERS DOWNSTREAM OF SH LOOP 336 SOUTHEAST OF CONROE                                                                                                      | 16626      | 1004E        | 10    | 12     | HG | HG | RT | 10    |      |          | 10   |          |             | Site added in FY19                                              |
| EAST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF SH 150 WEST OF COLDSPRING                                                                                              | 17431      | 1003         | 10    | 10     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| MOUND CREEK 167 METERS DOWNSTREAM OF MULLIGAN ROAD 1.35 KM UPSTREAM OF CONFLUENCE WITH LAKE CREEK                                                                            | 17937      | 1015A        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| LAKE CREEK AT SH 105 NR DOBBIN                                                                                                                                               | 18192      | 1015         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             | This site replaces site 18191                                   |
| SPRING CREEK AT ROBERTS CEMETERY ROAD WEST-NORTHWEST OF TOMBALL                                                                                                              | 18868      | 1008         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| CANEY CREEK AT FIRETOWER ROAD WEST TO THE CITY OF WOODBRANCH                                                                                                                 | 20452      | 1010         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| CANEY CREEK AT COUNTY LINE ROAD IN MONTGOMERY COUNTY EAST TO THE CITY OF WILLIS                                                                                              | 20453      | 1010         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| PEACH CREEK AT COUNTY LINE ROAD-FM 3081 NORTHEAST OF CONROE IN MONTGOMERY COUNTY                                                                                             | 20454      | 1011         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| LITTLE CYPRESS CREEK AT MUESCHKE ROAD 4.4 KILOMETERS NORTH OF SH 290 NORTHWEST<br>OF CYPRESS                                                                                 | 20456      | 1009E        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| CYPRESS CREEK AT KATY HOCKLEY ROAD 7 KILOMETERS SOUTH OF SH 290 WEST OF CYPRESS                                                                                              | 20457      | 1009         | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |
| WALNUT CREEK AT DECKER PRAIRIE ROSEHL ROAD NORTHWEST OF TOMBALL                                                                                                              | 20462      | 10081        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                                 |

| Site Description                                                                                                                                   | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|-----------------------------------------------------------|
| BRUSHY CREEK AT GLENMONT ESTATES BOULEVARD 265 METERS NORTH AND 35 METERS<br>WEST TO THE INTERSECTION OF ARNDT LANE AND ANN CIRCLE WEST OF TOMBALL | 20463      | 1008J        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                           |
| HORSEPEN CREEK AT FM 529 1.9 KILOMETERS EAST OF SH 6 NORTHWEST OF HOUSTON                                                                          | 20465      | 1014C        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                           |
| TARKINGTON BAYOU AT SH 105/SH 321 SOUTHEAST OF CLEVELAND                                                                                           | 20466      | 1002A        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                           |
| WHITE OAK CREEK AT MEMORIAL DRIVE IN CONROE                                                                                                        | 20731      | 1004J        | 10    | 12     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                           |
| WINTERS BAYOU AT TONY TAP ROAD NEAR CLEVELAND                                                                                                      | 21417      | 1003A        | 10    | 10     | HG | HG | RT | 4     | 4    | 4        | 4    |          |             |                                                           |
| MILL CREEK AT FM 149 NORTH OF TOMBALL                                                                                                              | 21957      | 1008A        | 10    | 12     | НG | HG | RT | 4     | 4    | 4        | 4    |          |             | This site replaces site 20461 in Feb. 2017                |
| SPRING BRANCH IMMEDIATELY DOWNSTREAM OF SHAKEY HOLLOW WEST OF WOODBRANCH<br>VILLAGE IN MONTGOMERY COUNTY                                           | 21965      | 1010C        | 10    | 12     | НG | HG | RT | 4     | 4    | 4        | 4    |          |             | This site replaces site 20451 in Feb. 2017                |
| GARNERS BAYOU AT NORTH SAM HOUSTON PARKWAY/SH LOOP 8 NE OF HOUSTON                                                                                 | 11125      | 1016A        | 10    | 12     | HG | НН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074250                                    |
| HALLS BAYOU AT JENSEN DRIVE IN HOUSTON                                                                                                             | 11126      | 1006D        | 10    | 12     | HG | ΗН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8076500                                    |
| HALLS BAYOU 87 METERS UPSTREAM OF TIDWELL ROAD IN SETTEGAST                                                                                        | 11127      | 1006D        | 10    | 12     | HG | НН | RT | 6     | 6    | 6        |      |          |             |                                                           |
| HUNTING BAYOU IMMEDIATELY DOWNSTREAM OF IH 10 EAST OF HOUSTON                                                                                      | 11128      | 1007R        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| HUNTING BAYOU AT NORTH LOOP EAST/IH 610 IN HOUSTON                                                                                                 | 11129      | 1007R        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075770                                    |
| SIMS BAYOU AT TELEPHONE ROAD/SH 35 IN HOUSTON                                                                                                      | 11132      | 1007D        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075500                                    |
| SIMS BAYOU AT CULLEN BLVD/FM 865 SOUTH OF HOUSTON                                                                                                  | 11133      | 1007D        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | -    |          |             |                                                           |
| SIMS BAYOU AT HIRAM CLARKE RD IN HOUSTON                                                                                                           | 11135      | 1007D        | 10    | 12     | HG | НН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075400                                    |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF ALMEDA ROAD SOUTHWEST OF HOUSTON                                                                             | 11138      | 1007B        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| BRAYS BAYOU AT SOUTH MAIN ST IN HOUSTON                                                                                                            | 11139      | 1007B        | 10    | 12     | HG | ΗН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075000                                    |
| BRAYS BAYOU AT SOUTH GESSNER DRIVE IN HOUSTON                                                                                                      | 11140      | 1007B        | 10    | 12     | HG | ΗН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074810                                    |
| LITTLE WHITE OAK BAYOU AT TRIMBLE STREET/NORTH EDGE OF HOLLYWOOD CEMETERY IN                                                                       | 11148      | 1013A        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074540                                    |
| VOGEL CREEK IMMEDIATELY DOWNSTREAM OF WEST LITTLE YORK ROAD                                                                                        | 11155      | 1017C        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| ROLLING FORK CREEK IMMEDIATELY DOWNSTREAM OF LAKE LANE                                                                                             | 11157      | 1017F        | 10    | 12     | HG | нн | RT | 6     | -    | 6        |      |          |             |                                                           |
| SOUTH MAYDE CREEK IMMEDIATELY DOWNSTREAM OF MEMORIAL DRIVE                                                                                         | 11163      | 1014H        | 10    | 12     | HG | НН | RT | 6     | 6    | 6        |      |          |             |                                                           |
| BRAYS/KEEGANS BAYOU IMMEDIATELY DOWNSTREAM OF ROARK ROAD NEAR US 59 AT<br>BELTWAY 8 IN SOUTHWEST HOUSTON                                           | 11169      | 1007C        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074800                                    |
| LITTLE VINCE BAYOU IMMEDIATELY DOWNSTREAM OF NORTH MAIN STREET IN PASADENA TX                                                                      | 11172      | 1007         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| WILLOW CREEK IMMEDIATELY UPSTREAM OF GOSLING ROAD                                                                                                  | 11185      | 1008H        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                                                           |
| RUMMEL CREEK IMMEDIATELY DOWNSTREAM OF MEMORIAL DRIVE IN WEST HOUSTON                                                                              | 11188      | 1014N        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| GREENS BAYOU IMMEDIATELY DOWNSTREAM OF GREEN RIVER ROAD/LEY ROAD IN HOUSTON                                                                        | 11279      | 1006         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8076700                                    |
| HUNTING BAYOU TIDAL AT FEDERAL ROAD BRIDGE IN HOUSTON                                                                                              | 11298      | 1007         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                                                           |
| SIMS BAYOU TIDAL IMMEDIATELY DOWNSTREAM OF LAWNDALE AVENUE IN HOUSTON                                                                              | 11302      | 1007         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                                                           |
| BRAYS BAYOU TIDAL AT 75TH STREET IN HOUSTON                                                                                                        | 11306      | 1007         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                                                           |
| BRAYS BAYOU TIDAL AT SCOTT STREET IN HOUSTON                                                                                                       | 11309      | 1007         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                                                           |
| SPRING CREEK IMMEDIATELY DOWNSTREAM OF RILEY FUZZEL ROAD                                                                                           | 11312      | 1008         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8068520                                    |
| SPRING CREEK 1.13 KM UPSTREAM OF SH 249 NEAR DRAGONFLY RD IN SPRING CREEK PARK                                                                     | 11315      | 1008         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             | Replaced 11314 in FY2020 due to<br>construction at bridge |
| SPRING CREEK IMMEDIATELY UPSTREAM OF DECKER PRAIRIE ROSEHILL ROAD                                                                                  | 11323      | 1008         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             | -                                                         |
| CYPRESS CREEK AT STEUBNER-AIRLINE ROAD IN HOUSTON                                                                                                  | 11330      | 1009         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8068900                                    |
| CYPRESS CREEK AT SH 249                                                                                                                            | 11331      | 1009         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                                                           |

| Site Description                                                                                      | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments                   |
|-------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|----------------------------|
| CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF GRANT ROAD NEAR CYPRESS                                       | 11332      | 1009         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8068800     |
| CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF HOUSE HAHL ROAD NEAR CYPRESS                                  | 11333      | 1009         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8068740     |
| BUFFALO BAYOU TIDAL AT MCKEE ST IN HOUSTON                                                            | 11345      | 1013         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU TIDAL IMMEDIATELY DOWNSTREAM OF MAIN STREET IN HOUSTON                                  | 11347      | 1013         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074600     |
| BUFFALO BAYOU TIDAL AT SHEPHERD DRIVE IN HOUSTON                                                      | 11351      | 1013         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8074000     |
| BUFFALO BAYOU AT VOSS ROAD                                                                            | 11356      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF WEST BELTWAY 8 IN HOUSTON                                     | 11360      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8073600     |
| BUFFALO BAYOU AT WILCREST DRIVE IN HOUSTON                                                            | 11361      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF DAIRY ASHFORD ROAD WEST OF HOUSTON                            | 11362      | 1014         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8073500     |
| BUFFALO BAYOU AT ELDRIDGE ROAD IN HOUSTON                                                             | 11363      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU AT SH 6                                                                                 | 11364      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8072500     |
| GREENS BAYOU AT TIDWELL ROAD IN HARRIS CO                                                             | 11369      | 1016         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| GREENS BAYOU IMMEDIATELY DOWNSTREAM OF MT HOUSTON PARKWAY                                             | 11370      | 1016         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| GREENS BAYOU AT US 59 NORTH OF HOUSTON                                                                | 11371      | 1016         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| GREENS BAYOU AT WEST GREENS PARKWAY                                                                   | 11376      | 1016         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| WHITEOAK BAYOU AT NORTH SHEPHERD STREET IN HOUSTON                                                    | 11389      | 1017         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| WHITEOAK BAYOU AT NORTH HOUSTON ROSSLYN ROAD                                                          | 11394      | 1017         | 10    | 12     | HG | ΗН | RT | 6     | 6    | 6        |      |          |             |                            |
| WHITEOAK BAYOU IMMEDIATELY DOWNSTREAM OF TAHOE DRIVE                                                  | 11396      | 1017         | 10    | 12     | HG | ΗН | RT | 6     | 6    | 6        |      |          |             |                            |
| ARMAND BAYOU AT GENOA-RED BLUFF RD NE OF ELLINGTON AFB                                                | 11404      | 1113A        | 11    | 12     | HG | НН | RT | 6     | 6    | 6        |      |          |             |                            |
| ARMAND BAYOU AT FAIRMONT PARKWAY ALONG MEDIAN AT MIDPOINT BETWEEN BRIDGES                             | 11405      | 1113A        | 11    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                            |
| ARMAND BAYOU TIDAL AT BAY AREA BLVD NORTH OF NASA AT MIDDLE OF MEDIAN BETWEEN 2 BRIDGES EASTERN SHORE | 11503      | 1113         | 11    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                            |
| GREENS BAYOU 184 METERS DOWNSTREAM OF KNOBCREST DRIVE                                                 | 13778      | 1016         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075900     |
| LITTLE CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF KLUGE ROAD IN HOUSTON                                  | 14159      | 1009E        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| WHITEOAK BAYOU IMMEDIATELY DOWNSTREAM OF WEST 43RD STREET IN NORTHWEST HOUSTON                        | 15829      | 1017         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                            |
| WHITEOAK BAYOU AT WEST TIDWELL ROAD IN NORTHWEST HOUSTON                                              | 15831      | 1017         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU TIDAL IMMEDIATELY UPSTREAM OF JENSEN DRIVE IN HOUSTON                                   | 15841      | 1007         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU TIDAL AT SABINE STREET NORTH OF ALLEN PARKWAY IN HOUSTON                                | 15843      | 1013         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU AT CHIMNEY ROCK ROAD IN HOUSTON                                                         | 15845      | 1014         | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF BRIAR FOREST DRIVE IN WEST HOUSTON                            | 15846      | 1014         | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                            |
| TURKEY CREEK 200 M UPSTREAM OF MEMORIAL DRIVE AT BRIDGE IN MEMORIAL OAKS<br>CEMETERY                  | 15847      | 1014K        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             | Moved upstream in mid-FY20 |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF SH 6 IN WEST HOUSTON                                            | 15848      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU AT DAIRY ASHFORD STREET IN WEST HOUSTON                                                   | 15850      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU AT WILCREST DRIVE IN WEST HOUSTON                                                         | 15851      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF BEECHNUT STREET IN WEST HOUSTON                                 | 15852      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF HILLCROFT STREET IN WEST HOUSTON                                | 15853      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF SOUTH RICE AVENUE IN WEST HOUSTON                               | 15854      | 1007B        | 10    | 12     | HG | нн | RT | 6     | 6    | 6        |      |          |             |                            |
| BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF STELLA LINK ROAD IN HOUSTON                                     | 15855      | 1007B        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| HALLS BAYOU AT HOMESTEAD ROAD IN NORTHEAST HOUSTON                                                    | 15862      | 1006D        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| HALLS BAYOU AT HIRSCH RD IN NORTHEAST HOUSTON                                                         | 15863      | 1006D        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| HALLS BAYOU AT MESA DR IN NORTHEAST HOUSTON                                                           | 15864      | 1006D        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |
| HUNTING BAYOU AT JENSEN DRIVE IN NORTHEAST HOUSTON                                                    | 15867      | 1007R        | 10    | 12     | HG | HH | RT | 6     | 6    | 6        |      |          |             |                            |

| Site Description                                                                                                       | Station ID | Waterbody ID | Basin | Region | SE | CE | MT   | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments               |
|------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|------|-------|------|----------|------|----------|-------------|------------------------|
| HUNTING BAYOU AT CAVALCADE ST IN NORTHEAST HOUSTON                                                                     | 15869      | 1007R        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| HUNTING BAYOU AT LOCKWOOD DRIVE IN NORTHEAST HOUSTON                                                                   | 15873      | 1007R        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| SIMS BAYOU IMMEDIATELY DOWNSTREAM OF ALMEDA ROAD IN SOUTH HOUSTON                                                      | 15876      | 1007D        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| SIMS BAYOU AT MARTIN LUTHER KING JUNIOR BOULEVARD IN SOUTH HOUSTON                                                     | 15877      | 1007D        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        | 6    |          |             | Flow from gage 8075470 |
| SIMS BAYOU AT SWALLOW STREET IN SOUTHEAST HOUSTON                                                                      | 15878      | 1007D        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| BRAYS BAYOU AT SOUTH WAYSIDE DRIVE 802 METERS UPSTREAM OF IH 45 IN SOUTHEAST HOUSTON                                   | 16479      | 1007         | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| GARNERS BAYOU IMMEDIATELY UPSTREAM OF OLD HUMBLE ROAD AT CONFLUENCE WITH                                               | 16589      | 1016A        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| UNNAMED TRIBUTARY OF GREENS BAYOU AT MESA DR/E. HOUSTON-DYERSDALE ROAD IN                                              | 16590      | 1016B        | 10    | 12     | НG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
|                                                                                                                        |            |              |       |        |    |    |      |       |      |          |      |          |             |                        |
| OF IH 10 IN WEST HOUSTON                                                                                               | 16592      | 10140        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| COLE CREEK IMMEDIATELY UPSTREAM OF BOLIVIA BLVD 792 METERS UPSTREAM OF<br>CONFLUENCE WITH WHITEOAK BAYOU IN NW HOUSTON | 16593      | 1017B        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| BRICKHOUSE GULLY AT US 290 IN NORTHWEST HOUSTON 2.03 KM UPSTREAM OF CONFLUENCE WITH WHITEOAK BAYOU                     | 16594      | 1017A        | 10    | 12     | HG | нн | RT   | 6     |      | 6        | 6    |          |             | Flow from gage 8074250 |
| UNNAMED TRIBUTARY OF WHITE OAK BAYOU AT W 14TH IN WEST HOUSTON 516 METERS                                              | 16596      | 1017E        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| NEWMAN BRANCH / NEIMANS BAYOU AT MEMORIAL DRIVE IN WEST HOUSTON                                                        | 16597      | 1014M        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| LITTLE WHITE OAK BAYOU AT WHITE OAK DRIVE IN NORTH HOUSTON                                                             | 16648      | 1013A        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| COUNTRY CLUB BAYOU/TRIBUTARY OF BRAYS BAYOU IMMEDIATELY UPSTREAM OF SOUTH                                              |            |              |       |        |    |    |      | -     | -    | -        |      |          |             |                        |
| WAYSIDE DRIVE/US90A IN CENTRAL HOUSTON                                                                                 | 16650      | 1007K        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| COUNTRY CLUB BAYOU/TRIBUTARY OF BRAYS BAYOU AT HUGHES STREET IN CENTRAL                                                | 16651      | 1007K        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
|                                                                                                                        | 16652      | 1007E        | 10    | 12     | нс | нн | PT   | 6     |      | 6        |      |          |             |                        |
| KITHI MAN GUILY/TRIBUTARY OF RRAVE IN SOOTHWEST HOOSTON                                                                | 10052      | 10071        | 10    | 12     |    |    | IX I | 0     |      | 0        |      |          |             |                        |
| WHEELER STREET IN SOUTHEAST CENTRAL HOUSTON                                                                            | 16653      | 1007G        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| UNNAMED TRIBUTARY OF BRAYS BAYOU AT DUMFRIES DRIVE IN SOUTH WEST HOUSTON                                               | 16654      | 1007L        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| UNNAMED TRIBUTARY OF SIMS BAYOU AT DULCIMER STREET IN SOUTH HOUSTON                                                    | 16655      | 1007N        | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| SIMS BAYOU SOUTH BRANCH AT TIFFANY DRIVE IN SOUTH HOUSTON                                                              | 16656      | 1007A        | 10    | 12     | HG | HH | RT   | 6     |      | 6        |      |          |             |                        |
| UNNAMED TRIBUTARY OF HUNTING BAYOU IMMEDIATELY UPSTREAM OF JOHN RALSTON<br>ROAD IN EAST HOUSTON                        | 16657      | 1007M        | 10    | 12     | HG | нн | RT   | 6     |      | 6        |      |          |             |                        |
| PLUM CREEK/TRIBUTARY OF SIMS BAYOU AT OLD GALVESTON ROAD IN SOUTH EAST<br>HOUSTON                                      | 16658      | 10071        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| PINE GULLY/TRIBUTARY OF SIMS BAYOU AT OLD GALVESTON ROAD IN SOUTH EAST HOUSTON                                         | 16659      | 1007H        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| BERRY BAYOU/TRIBUTARY OF SIMS BAYOU IMMEDIATELY UPSTREAM OF AHRENS DRIVE IN SOUTH EAST HOUSTON                         | 16660      | 1007         | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| BERRY BAYOU IMMEDIATELY UPSTREAM OF SOUTH RICHEY STREET IN SOUTH EAST HOUSTON                                          | 16661      | 1007F        | 10    | 12     | НG | нн | RT   | 6     | 6    | 6        |      |          | 1           |                        |
| BIG GULCH AT WALLISVILLE ROAD IN EAST HOUSTON                                                                          | 16662      | 1006F        | 10    | 12     | HG | НН | RT   | 6     |      | 6        |      |          | L           |                        |
| SPRING GULLY AT WEST TERMINUS OF BARNESWORTH DRIVE IN NORTHEAST HOUSTON                                                | 16663      | 1006H        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| GOODYEAR CREEK TIDAL IMMEDIATELY UPSTREAM OF IH 10 IN EAST HOUSTON                                                     | 16664      | 1006         | 10    | 12     | HG | HH | RT   | 6     | 6    | 6        |      |          |             |                        |
| UNNAMED TRIBUTARY OF HALLS BAYOU IMMEDIATELY DOWNSTREAM OF LANGLEY ROAD IN NORTH HOUSTON                               | 16665      | 1006J        | 10    | 12     | HG | нн | RT   | 6     | 6    | 6        |      |          |             |                        |
| Site Description                                                                                                             | Station ID | Waterbody ID | Basin | Region | SE  | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments                      |
|------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|-----|----|----|-------|------|----------|------|----------|-------------|-------------------------------|
| UNNAMED TRIBUTARY OF HALLS BAYOU AT TALTON STREET IN NORTH EAST HOUSTON                                                      | 16666      | 10061        | 10    | 12     | HG  | HH | RT | 6     |      | 6        |      |          |             |                               |
| UNNAMED TRIBUTARY OF HALLS BAYOU AT WOODLYN ROAD IN NORTH EAST HOUSTON                                                       | 16667      | 10061        | 10    | 12     | HG  | нн | RT | 6     |      | 6        |      |          |             |                               |
| UNNAMED TRIB OF BUFFALO BAYOU AT GLENWOOD CEMETARY RD 160 M W OF INTERSECT<br>OF LUBBOCK ST AND SAWYER ST IN CENTRAL HOUSTON | 16675      | 1013C        | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| UNNAMED TRIBUTARY OF GREENS BAYOU AT SMITH RD IN NORTHEAST HOUSTON                                                           | 16676      | 1016D        | 10    | 12     | HG  | ΗН | RT | 6     | 6    | 6        |      |          |             |                               |
| SPRING GULLY AT SPRING CREEK OAKS DRIVE IN TOMBALL                                                                           | 17481      | 1009D        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        |      |          |             |                               |
| LANGHAM CREEK AT SH 6 IN NORTHWEST HOUSTON                                                                                   | 17482      | 1014E        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8072760        |
| BEAR CREEK AT OLD GREENHOUSE ROAD WEST OF HOUSTON                                                                            | 17484      | 1014A        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        |      |          |             |                               |
| UNNAMED TRIBUTARY OF HORSEPEN BAYOU TIDAL AT PENN HILLS                                                                      | 17485      | 1113C        | 11    | 12     | HG  | НН | RT | 6     | 6    | 6        |      |          |             |                               |
| BIG ISLAND SLOUGH AT HILLRIDGE ROAD IN SOUTHEAST HOUSTON                                                                     | 17486      | 1113E        | 11    | 12     | HG  | НН | RT | 6     | 6    | 6        |      |          |             |                               |
| WILLOW SPRING AT BANDRIDGE ROAD IN SOUTHEAST HOUSTON                                                                         | 17487      | 1113D        | 11    | 12     | HG  | НН | RT | 6     |      | 6        |      |          |             |                               |
| SPRING CREEK IMMEDIATELY DOWNSTREAM OF KUYKENDAHL ROAD NORTHEAST OF                                                          |            |              | _     |        |     |    |    |       | -    |          |      |          |             |                               |
| HOUSTON                                                                                                                      | 17489      | 1008         | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| HALLS BAYOU AT AIRLINE ROAD IN NORTH HOUSTON                                                                                 | 17490      | 1006D        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        |      |          |             |                               |
| HALLS BAYOU AT DEER TRAIL DRIVE IN NORTH HOUSTON                                                                             | 17491      | 1006D        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        | 6    |          |             | Flow from gage 8076200        |
| BUEFALO BAYOU AT SOUTH MASON BOAD WEST OF HOUSTON                                                                            | 17492      | 1014B        | 10    | 12     | HG  | НН | RT | 6     | 6    | 6        | -    |          |             |                               |
| MASON CREEK 151 METERS DOWNSTREAM OF PARK PINE DRIVE WEST OF HOUSTON                                                         | 17494      | 1014         | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| GREENS BAYOLI IMMEDIATELY LIPSTREAM OF MILLS ROAD WEST OF HOUSTON                                                            | 17495      | 1014         | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| EALILIKEY GUILLY OF CYPRESS CREEK 105 METERS DOWNSTREAM OF LAKEWOOD FOREST DRIVE                                             | 17455      | 1010         | 10    |        |     |    |    | Ŭ     | Ū    | Ŭ        |      |          |             |                               |
|                                                                                                                              | 17496      | 1009C        | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| SIMS BAYOU UPSTREAM TIDAL AT SOUTH POST OAK ROAD IN SOUTHWEST HOUSTON                                                        | 17976      | 1007D        | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| UNNAMED TRIBUTARY OF BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF FMUEST ON                                                       | 1/5/0      | 10070        | 10    | 12     |     |    |    | Ŭ     | 0    | Ŭ        |      |          |             |                               |
| NORTH BANK 120 M SOUTH OF CLINTON DRIVE IN CENTRAL HOUSTON                                                                   | 17977      | 10070        | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| UNNAMED TRIBUTARY OF HUNTING BAYOU AT MINDEN STREET APPROXIMATELY 0.3 KM EAST                                                |            |              |       |        |     |    |    |       |      |          |      |          |             |                               |
| OF LOCKWOOD AND S OF N 610 LOOP EAST                                                                                         | 18689      | 1007V        | 10    | 12     | HG  | нн | RT | 6     |      | 6        |      |          |             |                               |
| BINTLIFF DITCH TRIBUTARY OF BRAYS BAYOU UNDER CENTER OF BISSONNET ST BRIDGE 317 M                                            |            | 40077        |       |        |     |    |    |       |      |          |      |          |             |                               |
| NE OF BISSONNET AT FONDREN RD IN SW HOUSTON                                                                                  | 18690      | 10071        | 10    | 12     | HG  | нн | RI | 6     |      | 6        |      |          |             |                               |
| MIMOSA DITCH TRIBUTARY OF BRAYS BAYOU AT NEWCASTLE DR IN SOUTHWEST HOUSTON                                                   | 18691      | 1007U        | 10    | 12     | HG  | нн | RT | 6     |      | 6        |      |          |             |                               |
| POOR FARM DITCH TRIBUTARY OF BRAYS BAYOU AT EASTBOUND NORTH BRAESWOOD BLVD                                                   | 10000      | 10070        | 10    | 10     |     |    | рт | 6     |      | <i>c</i> |      |          |             |                               |
| APPROX 200 M E OF BUFFALO SPEEDWAY IN SW HOUSTON                                                                             | 18692      | 10075        | 10    | 12     | HG  | нн | ĸı | ь     |      | ь        |      |          |             |                               |
| KEEGAN'S BAYOU AT SYNOTT ROAD 1.1 KM SOUTH OF THE INTERSECTION OF SYNOTT ROAD                                                | 20211      | 10070        | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| AND BISSONET STREET IN SOUTHWEST HOUSTON                                                                                     | 20211      | 10070        | 10    | 12     | 110 |    |    | 0     | 0    | 0        |      |          |             |                               |
| BUFFALO BAYOU NORTH SHORE IMMEDIATELY UNDERNEATH THE SOUTHBOUND FEEDER                                                       | 20212      | 1014         | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| ROAD BRIDGE OF IH 610 WEST IN HOUSTON                                                                                        | 20212      | 1011         |       |        |     |    |    | Ŭ     | Ŭ    | Ŭ        |      |          |             |                               |
| WILLOW CREEK AT TUWA ROAD APPROXIMATELY 859 METERS DOWNSTREAM OF FM 2920                                                     | 20730      | 1008H        | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| ROAD IN NORTHERN HARRIS COUNTY                                                                                               | 20/30      | 100011       | 10    |        |     |    |    | Ŭ     | Ŭ    | Ŭ        |      |          |             |                               |
| SIMS BAYOU AT GALVESTON ROAD IN HOUSTON                                                                                      | 20736      | 1007         | 10    | 12     | HG  | HH | RT | 6     | 6    | 6        |      |          |             | Replaced site 11304 in FY2020 |
| GREENS BAYOU AT WALLISVILLE ROAD APPROX 150 METERS NORTHEAST OF THE                                                          | 21008      | 1006         | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| INTERSECTION OF DATTNER ROAD AND WALLISVILLE ROAD IN HOUSTON                                                                 | 21000      | 1000         | 10    |        |     |    |    | Ŭ     | Ŭ    | Ŭ        |      |          |             |                               |
| HARRIS COUNTY FLOOD CONTROL DISTRICT CHANNEL D138 / CHIMNEY DITCH IMMEDIATELY                                                |            |              |       |        |     |    |    |       |      |          |      |          |             |                               |
| UPSTREAM OF CAVERSHAM DRIVE BETWEEN THE NORTHBOUND AND SOUTHBOUND                                                            | 21180      | 1007W        | 10    | 12     | HG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| SECTIONS OF CHIMNEY ROCK ROAD IN HOUSTON                                                                                     |            |              |       |        |     |    |    |       |      |          |      |          |             |                               |
| SOUTH MAYDE CREEK AT SOUTH PARK VIEW DRIVE WEST OF HOUSTON                                                                   | 21813      | 1014H        | 10    | 12     | HG  | HH | RT | 6     | 6    | 6        |      |          |             | Replaced site 17493 in FY2017 |
| UNNAMED TRIBUTARY OF GREENS BAYOU AT ALDINE-WESTFIELD RD                                                                     | 22090      | 1016C        | 10    | 12     | HG  | HH | RT | 6     | 6    | 6        |      |          |             | Replaced site 11124 in FY19   |
| UNNAMED TRIBUTARY OF WHITE OAK BAYOU APPROXIMATELY 30 METERS SW OF HELBERG                                                   | 22094      | 10170        | 10    | 12     | НG  | нн | RT | 6     | 6    | 6        |      |          |             |                               |
| RD DEAD END.                                                                                                                 | 22034      | 10170        | 1.0   |        | 1   | 1  |    | Ŭ     | Ŭ    | Ŭ        |      |          |             | Replaced site 16595 in FY 19. |

| Ame | endm | ent | 1 |
|-----|------|-----|---|
|     |      |     |   |

| Site Description                                                                                                                                                                      | Station ID | Waterbody ID | Basin | Region | SE  | CE    | MT   | Field    | Conv | Bacteria | Flow     | 24 hr DO | Metal Water | Comments                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|-----|-------|------|----------|------|----------|----------|----------|-------------|-------------------------------------------------------|
| TURKEY CREEK AT CLAY ROAD IN NORTHWEST HOUSTON                                                                                                                                        | 22169      | 1014K        | 10    | 12     | HG  | HH    | RT   | 6        | 6    | 6        |          |          |             | This site replaced site 17483 in FY20                 |
| CRYSTAL CREEK AT FM 1314 SOUTHEAST OF CONROE                                                                                                                                          | 11181      | 1004D        | 10    | 12     | HG  | нw    | RT   | 6        | 6    | 6        |          |          |             | Replaces site 16635 Crystal Creek at SH 242 in FY2018 |
| LUCE BAYOU/SAN JACINTO RIVER EAST FORK AT HUFFMAN-NEW CANEY ROAD                                                                                                                      | 11187      | 1002B        | 10    | 12     | HG  | HW    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| LAKE HOUSTON NORTH SIDE OF MISSOURI PACIFIC RAILROAD BRIDGE 137 METERS SOUTH<br>AND 1.36 KM WEST OF INTERSECTION OF PINO LN AND SUNOCO RD                                             | 11208      | 1002         | 10    | 12     | HG  | нw    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE HOUSTON AT FM 1960 WEST END PASS BRIDGE 269 M N AND 731 M E OF INTERSECTION<br>OF ATASCOCITA SHORES AND FM 1960/CITY HO SITE 9                                                   | 11211      | 1002         | 10    | 12     | HG  | нw    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE HOUSTON AT FM 1960 EAST END PASS BRIDGE 235 M S AND 950 M WEST OF                                                                                                                | 11212      | 1002         | 10    | 12     | HG  | нw    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| FAST FORK SAN JACINTO RIVER AT FM 1485                                                                                                                                                | 11235      | 1003         | 10    | 12     | НG  | нw    | RT   | 6        | 6    | 6        | 6        |          |             | Flow from gage 8070200                                |
| EAST FORK SAN JACINTO RIVER IMMEDIATELY UPSTREAM OF TX-105 BUSINESS ROUTE / W                                                                                                         | 11200      | 1000         | 10    |        |     |       |      | Ŭ        | Ŭ    | Ŭ        | •        |          |             |                                                       |
| SOUTHLINE STREET WEST OF CLEVELAND                                                                                                                                                    | 11238      | 1003         | 10    | 12     | HG  | нw    | RT   | 6        | 6    | 6        | 6        |          |             | Flow from gage 8070000                                |
| WEST FORK SAN JACINTO RIVER IMMEDIATELY UPSTREAM OF SH 242                                                                                                                            | 11243      | 1004         | 10    | 12     | HG  | нw    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| WEST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF SH 105 NW OF CONROE                                                                                                             |            |              |       |        |     |       |      | <i>.</i> | ~    | ~        | <i>.</i> |          |             |                                                       |
| CAMS772                                                                                                                                                                               | 11251      | 1004         | 10    | 12     | HG  | нw    | RI   | 6        | 6    | 6        | 6        |          |             | Flow from gage 8067650                                |
| SPRING CREEK BRIDGE AT IH 45 20 MILES NORTH OF HOUSTON                                                                                                                                | 11313      | 1008         | 10    | 12     | HG  | НW    | RT   | 6        | 6    | 6        | 6        |          |             | Flow from gage 8068500                                |
| CYPRESS CREEK BRIDGE ON IH 45 15 MI NORTH OF HOUSTON                                                                                                                                  | 11328      | 1009         | 10    | 12     | HG  | НW    | RT   | 6        | 6    | 6        | 6        |          |             | Flow from gage 8069000                                |
| CANEY CREEK IMMEDIATELY DOWNSTREAM OF FM 1485                                                                                                                                         | 11334      | 1010         | 10    | 12     | HG  | НW    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| PEACH CREEK BRIDGE AT FM 2090 IN SPLENDORA                                                                                                                                            | 11337      | 1011         | 10    | 12     | HG  | НW    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| LAKE HOUSTON 90 M S AND 349 M W OF INTERSECTION OF MAGNOLIA PT DR AND DIAMOND                                                                                                         | 466222     | 4000         | 4.0   | 4.2    |     |       | DT   | 42       | 40   | 4.2      |          |          |             |                                                       |
| WAY CANEY CREEK ARM IN HOUSTON                                                                                                                                                        | 16623      | 1002         | 10    | 12     | HG  | HW    | кі   | 12       | 12   | 12       |          |          |             |                                                       |
| PEACH CREEK IMMEDIATELY UPSTREAM OF OLD HWY 105                                                                                                                                       | 16625      | 1011         | 10    | 12     | HG  | НW    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| STEWARTS CREEK 175 METERS DOWNSTREAM OF SH LOOP 336 SOUTHEAST OF CONROE                                                                                                               | 16626      | 1004E        | 10    | 12     | HG  | нw    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| LK HOUSTON W OF LK SHADOWS SUBDIVISION MID LAKE NW OF HOUSTON 2.09 KM N AND                                                                                                           | 16669      | 1002         | 10    | 12     | uс  | ц.,,/ | рт   | 12       | 12   | 12       |          |          |             |                                                       |
| 1.38 KM E OF INTERSECT OF LK HOUSTON PKWY AND DITE CAYLIN                                                                                                                             | 10008      | 1002         | 10    | 12     | no  | 1100  | N1   | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE HOUSTON IN THE WEST FORK SAN JACINTO RIVER CHANNEL 270 M EAST AND 60 M                                                                                                           | 18667      | 1002         | 10    | 12     | нG  | нм    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| NORTH OF MISTY COVE AT ATASCOCITA PLACE DR                                                                                                                                            | 10007      | 1002         | 10    | 12     | 110 |       |      | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE HOUSTON/LUCE BAYOU 123 M NORTH AND 188 M WEST OF LAKEWATER DR AT<br>WATERWOOD DR IN WATER WONDERLAND SUBDIVISION IN HARRIS COUNTY                                                | 18670      | 1002         | 10    | 12     | HG  | нw    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE HOUSTON WEST FORK SAN JACINTO RIVER ARM UNDER POWER LINES 567 METERS EAST<br>AND 538 METERS NORTH FROM THE INTERSECTION OF BELLEAU WOOD DRIVE AND<br>SOUTHSHORE DRIVE IN HOUSTON | 20782      | 1002         | 10    | 12     | НG  | нw    | RT   | 12       | 12   | 12       |          |          |             |                                                       |
| CANEY CREEK AT MILLMAC ROAD NORTHEAST OF CUT AND SHOOT                                                                                                                                | 21465      | 1010         | 10    | 12     | HG  | HW    | RT   | 6        | 6    | 6        |          |          |             |                                                       |
| LAKE CONROE AT DAM MID CHANNEL 85 M OUT FROM MIDDLE TAINTER GATE 922 M N AND                                                                                                          | 11242      | 1012         | 10    | 17     | uс  | с і   | рт   | 17       | 17   | 10       |          |          |             |                                                       |
| 426 M E OF INTERSECTION OF DAM SITE RD AND SH 105                                                                                                                                     | 11542      | 1012         | 10    | 12     | по  | 21    | КI   | 12       | 12   | 12       |          |          |             |                                                       |
| LAKE CONROE AT FM 1375 IN THE MAIN CHANNEL 4TH PILING FROM THE EAST 541 M SOUTH                                                                                                       | 11244      | 1012         | 10    | 12     |     | с I   | рт   | 12       | 10   | 10       |          |          |             |                                                       |
| AND 1.40 KM W OF INTERSECTION OF KAGLE RD AND FM 1375 USGS SITE GC                                                                                                                    | 11544      | 1012         | 10    | 12     | но  | 21    | NI.  | 12       | 12   | 12       |          |          |             |                                                       |
| PANTHER BRANCH 295 METERS DOWNSTREAM OF SAWDUST ROAD IN THE WOODLANDS                                                                                                                 | 16422      | 1008C        | 10    | 12     | HG  | SJ    | RT   | 12       | 4    | 4        |          |          | 2           |                                                       |
| LAKE WOODLANDS AT WESTERN REACH 110 METERS NORTH AND 100 METERS EAST OF                                                                                                               | 16/191     | 10085        | 10    | 12     | не  | C I   | рт   | 12       | Л    | Λ        |          |          | r           |                                                       |
| INTERSECTION OF MEADOW COVE DR AND PLEASURE COVE DR IN THE WOODLANDS                                                                                                                  | 10401      | 10005        | 10    | 12     | 10  | 31    | IVI. | 12       | 4    | 4        |          |          | <u> </u>    |                                                       |
| LAKE WOODLANDS AT SOUTH END 23 METERS NORTH AND 50 METERS EAST OF THE WEST                                                                                                            | 16482      | 1008F        | 10    | 12     | НG  | SJ    | RT   | 12       | 4    | 4        |          |          | 2           |                                                       |
| EDGE OF DAM IN THE WOODLANDS                                                                                                                                                          | 10.02      | 10001        |       |        |     |       |      |          | · ·  |          |          |          | _           |                                                       |
| LAKE WOODLANDS AT MID POINT 130 METERS NORTH AND 30 METERS EAST OF THE<br>NORTHERN INTERSECTION OF E SHORE DR AND CAPE HARBOR PL IN THE WOODLANDS                                     | 16483      | 1008F        | 10    | 12     | HG  | SJ    | RT   | 12       | 4    | 4        |          |          | 2           |                                                       |

| Site Description                                                                                                                              | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|------------------------|
| LAKE WOODLANDS AT NORTH END 111 METERS DOWNSTREAM OF RESEARCH FOREST DRIVE IN THE WOODLANDS                                                   | 16484      | 1008F        | 10    | 12     | HG | SJ | RT | 12    | 4    | 4        |      |          | 2           |                        |
| LOWER PANTHER BRANCH AT FOOTBRIDGE 265 M UPSTREAM OF SAWDUST RD APPROX 200<br>M UPSTREAM OF PERMIT WQ0011401-001 LOCATED AT 2436 SAWDUST ROAD | 16627      | 1008C        | 10    | 12     | HG | SJ | RT | 12    | 4    | 4        |      |          |             |                        |
| UPPER PANTHER BRANCH APPROX 80 M UPSTREAM OF PERMIT WQ0012597-001 LOCATED AT<br>5402 RESEARCH FOREST DR                                       | 16629      | 1008B        | 10    | 12     | НG | SJ | RT | 12    | 4    | 4        |      |          |             |                        |
| UPPER PANTHER BRANCH APPROX 170 METERS DOWNSTREAM OF PERMIT WQ0012597-001<br>LOCATED AT 5402 RESEARCH FOREST DR                               | 16630      | 1008B        | 10    | 12     | HG | SJ | RT | 12    | 4    | 4        |      |          |             |                        |
| BEAR BRANCH 20 METERS DOWNSTREAM OF RESEARCH FOREST DRIVE                                                                                     | 16631      | 1008E        | 10    | 12     | HG | SJ | RT | 12    | 4    | 4        | 4    |          |             | Flow from gage 8068400 |
| LAKE CONROE AT APRIL POINT MID CHANNEL 559 M N AND 586 M E OF INTERSECTION OF<br>APRIL POINT PLACE AND APRIL HILL                             | 16638      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT SOUTH END OF LAKE ON EAST SIDE 201 METERS SOUTH AND 732 METERS<br>WEST OF INTERSECTION OF S VALLEY DRIVE AND CREST DRIVE       | 16639      | 1012         | 10    | 12     | HG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE S OF BENTWATER ISLAND WEST COVE S OF FM 1097 BRIDGE 769 M N AND 89 M<br>E OF INTERSECTION OF WATERFRONT AND SPRINGTIME DR         | 16640      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT AQUARIUS POINT MID CHANNEL N OF FM 830 BOAT RAMP 437 M N AND 924<br>M W OF INTERSECT OF FM 830 AND LAKEVIEW MANOR DR           | 16641      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT LAKE MID POINT MID CHANNEL AT FM 1097 BRIDGE 57 M S AND 520 M W OF INTERSECTION OF FM 1097 AND BLUEBERRY HILL                  | 16642      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT HUNTERS POINT CANEY CREEK ARM E OF SCOTTS RIDGE BOAT RAMP 640 M<br>N AND 558 M E OF INTERSECT OF TEEL RD AND HUNTERS TRL       | 16643      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT PARADISE POINT MID CHANNEL 396 METERS S AND 309 M WEST<br>INTERSECTION OF PARADISE VIEW DRIVE AND PARADISE POINT DRIVE         | 16644      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| LAKE CONROE AT MOUTH OF SANDY BRANCH COVE 2.63 KM EAST OF INTERSECTION OF<br>HARDY SMITH ROAD AND F S 218 A                                   | 16645      | 1012         | 10    | 12     | НG | SJ | RT | 12    | 12   | 12       |      |          |             |                        |
| EAST FORK SAN JACINTO RIVER AT FM 2090 IN LIBERTY COUNTY                                                                                      | 11236      | 1003         | 10    | 12     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| EAST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF FM 945 5.6 MILES NORTH OF                                                               | 11237      | 1003         | 10    | 10     | НG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| EAST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF US 59 AT RED GUILY                                                                      | 1/12/12    | 1003         | 10    | 12     | НG | TE | RT | Л     | 4    | Λ        | Δ    |          |             |                        |
| WINTERS BAYOU AT FM 2929 / FOUR NOTCH ROAD 4.8 KILOMETERS SOUTH OF PHELPS IN<br>WALKER COLINIY                                                | 21933      | 1003A        | 10    | 12     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| BOSWELL CREEK AT FOUR NOTCH ROAD / BOSWELL ROAD 13 KILOMETERS NORTHEAST OF                                                                    | 21934      | 1003C        | 10    | 12     | НG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| WINTERS BAYOU AT EM 2693 IN SAN JACINTO COUNTY                                                                                                | 21935      | 1003A        | 10    | 10     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| WINTERS BAYOU AT SH 150 IN SAN JACINTO COUNTY                                                                                                 | 21936      | 1003A        | 10    | 10     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| WINTERS BAYOU AT DABNEY BOTTOM RD IN SAN JACINTO COUNTY                                                                                       | 21937      | 1003A        | 10    | 10     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| NEBLETTS CREEK AT FM 1725 IN SAN JACINTO COUNTY                                                                                               | 21938      | 1003B        | 10    | 10     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| EAST FORK SAN JACINTO RIVER AT NORTH BUTCH ARTHUR ROAD IN SAN JACINTO COUNTY                                                                  | 21939      | 1003         | 10    | 10     | HG | TF | RT | 4     | 4    | 4        | 4    |          |             |                        |
| OYSTER CREEK IMMEDIATELY DOWNSTREAM OF SH 35 WEST OF ANGLETON                                                                                 | 11490      | 1110         | 11    | 12     | HG | UI | BS |       |      |          | 4    | 4        |             | Added in FY 2020       |
| OYSTER CREEK AT FM 1462                                                                                                                       | 11493      | 1110         | 11    | 12     | HG | UI | BS |       |      |          | 4    | 4        |             | Added in FY 2020       |
| CEDAR BAYOU TIDAL MID CHANNEL 45 M DOWNSTREAM OF SH 146 NORTHEAST OF BAYTOWN                                                                  | 11115      | 0901         | 9     | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |                        |
| CEDAR BAYOU TIDAL AT IH 10 EASTBOUND BRIDGE SOUTH OF MONT BELVIEU EAST SIDE OF BAYOU                                                          | 11117      | 0901         | 9     | 12     | НG | UI | RT | 4     | 4    | 4        |      |          |             |                        |
| CEDAR BAYOU ABOVE TIDAL 30 M DOWNSTREAM OF FM 1942 AT EAST BANK                                                                               | 11118      | 0902         | 9     | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |                        |

Metal Water Naterbody nments Station ID 8 Bacteria Site Description Region 24 hr Basin Field Conv Flow Ă Я Ю 11123 0902 9 12 HG UI RT 4 4 4 4 CEDAR BAYOU ABOVE TIDAL 45 M DOWNSTREAM OF FM 1960 NORTHEAST OF HUFFMAN 24 12 HG UI RT 4 MOSES BAYOU AT NORTHBOUND SH 146 BRIDGE AT MID-BRIDGE NORTH OF LA MARQUE 11400 2431A 4 4 2424A 24 12 HG HIGHLAND BAYOU AT FAIRWOOD ROAD IN LA MARQUE IN GALVESTON COUNTY 11415 UI RT 4 4 4 2432A 24 12 HG UI RT MUSTANG BAYOU AT FM 2917 SOUTH OF ALVIN 11423 4 4 4 4 1103E 11 12 HG UI RT 4 4 4 4 CEDAR CREEK AT FM 517 W OF DICKINSON 11434 1103D 11 12 HG UI RT 4 4 4 GUM BAYOU AT FM 517 E OF DICKINSON 11436 DICKINSON BAYOU TIDAL AT SH 146 BRIDGE EAST OF DICKINSON 11455 1103 11 12 HG UI RT 4 4 4 11 12 HG UI RT 4 4 4 DICKINSON BAYOU TIDAL AT IH 45 1103 11462 CHOCOLATE BAYOU TIDAL AT FM 2004 BRIDGE SOUTH OF ALVIN 11478 1107 11 12 HG UI RT 4 4 4 1109 11 12 HG UI RT OYSTER CREEK TIDAL AT THAT-WAY DRIVE 0.5 MILES BELOW FM 2004 11486 4 4 4 Start collecting field, conventionals & bact OYSTER CREEK IMMEDIATELY DOWNSTREAM OF SH 35 WEST OF ANGLETON 11490 1110 11 12 HG UI RT 2 2 2 n mid FY20 along w/ 24Hr DO 11 12 HG OYSTER CREEK AT SIMS RD / BRAZORA CR 30 WEST OF ANGLETON 11491 1110 UI RT 12 4 4 12 Added in FY2019 Added in FY 2020. Start collecting 11 12 OYSTER CREEK AT FM 1462 WEST OF ROSHARON 11493 1110 HG UI RT 12 2 2 12 conventionals & bact in mid FY20 along w/ 24Hr DO HARDEMAN SLOUGH IMMEDIATELY DOWNSTREAM OF ALLENHURST RD NE OF FM 2540 NEAR 12135 1305A 13 12 HG UI RT 4 4 4 4 ALLENHURST COMMUNITY CANEY CREEK IMMEDIATELY UPSTREAM OF CONCRETE BRIDGE 210 M DOWNSTREAM OF 12151 1304 13 12 HG UI RT 4 4 4 LINVILLE BAYOU CONFLUENCE AND ADJACENT TO FM 521 CANEY CREEK AT SERGEANT JOE PARKS JR MEMORIAL HIGHWAY / FM 457 IN MATAGORDA 13 12 UI RT 12153 1305 HG 4 4 4 4 COUNTY 24 12 HG UI RT WEST BAY OFFAT BAYOU MID BAYOU OPPOSITE LAKE MADELINE CANAL 13322 2424D 4 4 4 14622 24 12 UI RT 4 WEST BAY AT RANGE MARKER D BETWEEN SOUTH DEER ISLAND AND TEICHMAN POINT 2424 HG 4 4 2424D 24 12 HG UI RT OFFATTS BAYOU OFF CM 18 14645 4 4 4 Added for FY2019. Ck if gage 08077710 is 15941 2424A 24 12 HG UI RT 4 4 4 **HIGHLAND BAYOU AT FM 519** active. CANEY CREEK ABOVE TIDAL IMMEDIATELY UPSTREAM OF FM 457 IN CITY OF CEDAR LANE 15951 1304 13 12 HG UI RT Added for FY2019. 4 4 4 4 SAN BERNARD RIVER IMMEDIATELY DOWNSTREAM OF FM 3013 ON THE COLORADO-AUSTIN 16370 13 12 UI RT 4 4 4 1302 HG 4 COUNTY LINE APPROXIMATELY 15KM SW OF SEALY 16470 1103C 11 12 HG UI RT 4 4 GEISLER BAYOU AT FM517 BRIDGE 0.19MI UPSTREAM OF DICKINSON BAYOU IN DICKINSON 4 16471 1103A 11 12 HG UI RT 4 4 BENSONS BAYOU AT FM 517 / PINE DR IN DICKINSON 4 UI RT MARYS CREEK AT MARYS CROSSING IN NORTH FRIENDSWOOD 16473 1102B 11 12 HG 4 4 4 4 1101D 11 12 HG UI RT 4 4 4 16475 ROBINSONS BAYOU AT FM270 IN LEAGUE CITY HIGHLAND BAYOU 80 M NORTHEAST OF SH 6 BRIDGE CENTERPOINT IN BAYOU VISTA WEST OF 16488 2424A 24 12 HG UI RT 4 4 4 **IH 45 IN GALVESTON COUNTY** MARCHAND BAYOU TIDAL AT FM519 IN HITCHCOCK 16490 2424C 24 12 HG UI RT 4 4 4 HIGHLAND BAYOU AT FM 2004 IN HITCHCOCK IN GALVESTON COUNTY 16491 2424A 24 12 HG UI RT 4 4 4 UI RT CHIGGER CREEK AT FM528 BRIDGE IN FRIENDSWOOD 16493 1101B 11 12 HG 4 4 4 4 HIGHLAND BAYOU AT END OF BAYOU LANE FREDDIESVILLE 16562 2424A 24 12 HG UI RT 4 4 4 24 12 HG UI RT 4 4 LAKE MADELINE AT CORNER OF BELUCHE DRIVE AND DOMINIQUE DRIVE IN GALVESTON 16564 2424B 4 CLEAR CREEK TIDAL AT BROOKDALE DR APPROX 0.1MI DOWNSTREAM OF GRISSOM RD IN 16576 11 12 HG UI RT 4 4 1101 4 COUNTRYSIDE PARK IN CANOE LAUNCHING AREA IN LEAGUE CITY

| Site Description                                                                                                                                       | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water | Comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|-------------|----------|
| MAGNOLIA CREEK AT W BAY AREA BLVD LEAGUE CITY APPROX 250 M UPSTREAM OF WWTP<br>PERMIT WQ0010568-003                                                    | 16611      | 1101A        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| COWART CREEK 9 METERS UPSTREAM FROM CASTLEWOOD DRIVE BRIDGE IN FRIENDSWOOD                                                                             | 16677      | 1102A        | 11    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| HICKORY SLOUGH AT ROBINSON DRIVE IN PEARLAND                                                                                                           | 17068      | 1102C        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| CHOCOLATE BAY 200 M NORTHWEST OF HORSE GROVE POINT AND 5.1 KM DOWNSTREAM OF FM 2004                                                                    | 17086      | 2432         | 24    | 12     | НG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| MOSES BAYOU AT SH 3 IN TEXAS CITY                                                                                                                      | 17910      | 2431A        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| NEW BAYOU AT FM 2004 S/SW OF HITCHCOCK                                                                                                                 | 17911      | 2432E        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| PERSIMMON BAYOU AT FM 2004 S/SW OF HITCHCOCK                                                                                                           | 17913      | 2432D        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| COW BAYOU AT NASA ROAD 1 IN WEBSTER 100 M EAST OF FM 270/EL CAMINO REAL                                                                                | 17928      | 1101C        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| AUSTIN BAYOU TIDAL AT FM 2004                                                                                                                          | 18048      | 1105B        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| BASTROP BAYOU OFF BAYOU WOOD DR DUE EAST OF BRAZORIA CR 201 AT BASTROP BAYOU<br>DR                                                                     | 18502      | 1105         | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| BASTROP BAYOU TIDAL APPROXIMATELY 15 M OFF NORTH BANK AND 1.55 KM UPSTREAM OF FM 2004 IN RICHWOOD VILLAGE                                              | 18503      | 1105         | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| BASTROP BAYOU TIDAL MID CHANNEL AT NORTH END OF BASTROP BEACH ROAD 350 M<br>DOWNSTREAM OF FM 523 SE OF ANGLETON                                        | 18504      | 1105         | 11    | 12     | НG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| BASTROP BAYOU TIDAL 38 M NORTH OF N END OF COMPASS DR/BRAZORIA CR 504<br>APPROXIMATELY 4.4 KM DOWNSTREAM OF FM 523 SE OF ANGLETON                      | 18505      | 1105         | 11    | 12     | НG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| AUSTIN BAYOU IMMEDIATELY UPSTREAM OF DANBURY-ANGLETON ROAD/BRAZORIA CR 210                                                                             | 18506      | 1105C        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| FLORES BAYOU IMMEDIATELY UPSTREAM OF DANBURY-ANGLETON ROAD/BRAZORIA CR 210<br>FAST OF ANGLETON                                                         | 18508      | 1105A        | 11    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| MUSTANG BAYOU IMMEDIATELY UPSTREAM OF EAST SOUTH STREET 85 METERS WEST OF SOUTHBOUND SH 35 IN ALVIN USGS ID 8077890                                    | 18554      | 2432A        | 24    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| UNNAMED TRIBUTARY OF CLEAR CREEK TIDAL IN FOREST PARK CEMETERY IMMEDIATELY<br>UPSTREAM OF S FEEDER RD OF I 45/GULF FWY S OF NASA RD 1 IN WEBSTER       | 18591      | 1101F        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| UNNAMED TRIBUTARY OF MOSES LAKE AT STATE LOOP 197/25TH AVE NORTH 432 M EAST OF NORTHBOUND SH 146 IN TEXAS CITY                                         | 18592      | 2431C        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| HIGHLAND BAYOU DIVERSION CANAL MID CHANNEL AT SECOND STREET BRIDGE 467 M<br>UPSTREAM OF PRICE ROAD WWTP RELEASE IN HITCHCOCK                           | 18593      | 2424G        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| MARYS CREEK BYPASS AT EAST BROADWAY ST/FM 518 WEST OF SUNSET MEADOWS DR IN PEARLAND                                                                    | 18639      | 1102F        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| WILLOW BAYOU AT BAKER ST 404 M UPSTREAM OF FM 2004 SOUTH OF SANTA FE IN GALVESTON COUNTY                                                               | 18668      | 2432B        | 24    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| ENGLISH BAYOU MID BAYOU 250 M EAST AND 83 M SOUTH OF 61ST ST BRIDGE CENTERPOINT IN GALVESTON                                                           | 18695      | 2424E        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| CLEAR CREEK ABOVE TIDAL AT YOST ROAD TERMINUS IN PEARLAND IN BRAZORIA COUNTY                                                                           | 20010      | 1102         | 11    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| SAN BERNARD RIVER TIDAL AT SH 35 SOUTHWEST OF WEST COLUMBIA                                                                                            | 20460      | 1301         | 13    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |             |          |
| WEST BERNARD CREEK AT WHARTON CR 225 IN EAST OF HUNGERFORD                                                                                             | 20721      | 1302B        | 13    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| PEACH CREEK AT WHARTON CR 117/CHUDALLA ROAD/ARCHER ROAD 89 METERS SOUTH OF THE INTERSECTION OF WHARTON CR 117/CHUDALLA ROAD/ARCHER ROAD AND WHARTON CR | 20722      | 1302D        | 13    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |
| 121/ WHARTON CR 119/DONALDSON ROAD IN EAST OF WHARTON                                                                                                  |            |              |       |        |    |    |    |       |      |          |      |          |             |          |
| MOUND CREEK AT BRAZORIA CR 450/JACKSON SETTLEMENT ROAD 1.22 KILOMETERS<br>UPSTREAM OF FM 1301 IN WEST OF WEST COLUMBIA                                 | 20723      | 1302E        | 13    | 12     | НG | UI | RT | 4     | 4    | 4        | 4    |          |             |          |

| Site Description                                                                                                 | Station ID | Waterbody ID | Basin | Region | SE | CE | MT | Field | Conv | Bacteria | Flow | 24 hr DO | Metal Water<br>Comments                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|------------|--------------|-------|--------|----|----|----|-------|------|----------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BORDENS GULLY AT SPRUCE DRIVE IN DICKINSON                                                                       | 20724      | 1103B        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |                                                                                                                                                                                                                  |
| UNNAMED TRIBUTARY OF GUM BAYOU AT OWENS DRIVE 1.51 KILOMETERS UPSTREAM OF CONFLUENCE WITH GUM BAYOU IN DICKINSON | 20728      | 1103G        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |                                                                                                                                                                                                                  |
| CHOCOLATE BAYOU IMMEDIATELY UPSTREAM OF BRAZORIA CR 171 / MUSTANG CHOCOLATE<br>BAYOU ROAD IN LIVERPOOL           | 21178      | 1107         | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          |                                                                                                                                                                                                                  |
| MUSTANG BAYOU AT THE HEIGHTS-MANVEL ROAD /CARDINAL DRIVE BRIDGE NEAR ALVIN                                       | 21416      | 2432A        | 24    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |                                                                                                                                                                                                                  |
| BRUSHY BAYOU AT BRAZORIA CR 213 / SHELL ROAD 8.9 KILOMETERS EAST OF ANGLETON                                     | 21734      | 1105E        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |                                                                                                                                                                                                                  |
| UNNAMED TRIBUTARY OF BASTROP BAYOU TIDAL AT BRAZORIA CR 213 / SHELL ROAD 7.0<br>KILOMETERS EAST OF ANGLETON      | 21735      | 1105D        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |                                                                                                                                                                                                                  |
| TURKEY CREEK AT BEAMER ROAD 1.5 KM SOUTHEAST OF FM 1959/DIXIE FARM ROAD IN<br>FRIENDSWOOD                        | 21925      | 1102D        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        | 4    |          |                                                                                                                                                                                                                  |
| AUSTIN BAYOU TIDAL 1.60 KILOMETERS UPSTREAM OF THE CONFLUENCE WITH BASTROP<br>BAYOU IN BRAZORIA COUNTY           | 22012      | 1105B        | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          | Replaced site 18507                                                                                                                                                                                              |
| ARMAND BAYOU TIDAL 100 METERS DOWNSTREAM OF CONFLUENCE WITH SPRING GULLY                                         | 22187      | 1113         | 11    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          | New site added for dropping 2 Jarbo<br>Bayou sites in FY2020.                                                                                                                                                    |
| CHOCOLATE BAY 1.2 KM EAST OF WHARTON BAYOU AND 8.1 KM DOWNSTREAM OF FM 2004                                      | 17085      | 2432         | 24    | 12     | HG | UI | RT | 4     | 4    | 4        |      |          | In FY16, this became a field parameter<br>station only unless EIH cannot collect a<br>water sample from another regular<br>station during quarterly monitoring. TKN<br>& Chloro will never be collected in FY18. |



### EASTEX ENVIRONMENTAL LABORATORY, INC.

P.O. Box 1089 \* Coldspring, TX 77331 (936) 653-3249 \* (800) 525-0508 P.O. Box 631375 \* Nacogdoches, TX 75963-1375 (936) 569-8879 \* FAX (936) 569-8951 White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

www.eastexlabs.com

| REPORT TO:           |                         |                |             | <u>.)E TO:</u> |                    |                     |                       |                     |                    | <del></del>       |               |          |          |          |              |          |                                                  |          | <del></del> |          |          |                   | <u> </u>          | <del></del> |
|----------------------|-------------------------|----------------|-------------|----------------|--------------------|---------------------|-----------------------|---------------------|--------------------|-------------------|---------------|----------|----------|----------|--------------|----------|--------------------------------------------------|----------|-------------|----------|----------|-------------------|-------------------|-------------|
| Company:             |                         |                | Com         | pany:          |                    |                     |                       |                     |                    | Rema              | arks:         |          |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
| Address:             |                         |                | <b>Addr</b> | ess:           |                    |                     |                       |                     |                    |                   |               |          |          |          | STE          |          |                                                  |          |             |          | 1        |                   | !                 |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          | g            |          |                                                  | - 1      |             |          | ļ        |                   | i I               |             |
| Attn:                |                         |                | Attn:       |                |                    |                     |                       |                     |                    |                   |               |          |          |          | S RE         |          |                                                  |          |             |          |          | .                 |                   |             |
| Phone#:              |                         |                | Phor        | e#:            |                    |                     |                       |                     |                    | 1                 |               |          |          |          | , XSI        |          |                                                  |          |             |          |          |                   |                   |             |
| Email:               |                         |                | INSTR       |                | IS:                |                     |                       |                     |                    |                   |               |          |          |          | M            |          |                                                  |          |             |          |          |                   |                   |             |
| P.O. #:              |                         |                | C or G:     |                | C= Corr            | nposite (           | G= Grab               |                     |                    |                   |               |          |          |          | ◄            |          |                                                  |          |             |          |          |                   |                   |             |
|                      |                         |                | Matrix:     |                | DW=Dri             | inking Wa           | iter WW=              | =Wastew             | ater SC            | )=Soil/Slı        | udge          | OT= Of   | ther     |          |              |          |                                                  |          |             |          |          |                   |                   |             |
| Sampler's Name (prir | nt):                    |                | Contain     | er Size:       | 1=Gallor<br>6=125m | n 2=1/2<br>nL (4oz) | Gallon 3<br>7=60mL (2 | l=Quart/L<br>oz) 8= | iter 4=<br>40mL Vi | 500mL<br>al 9=Oth | 5=250r<br>1er | mL       |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
| Sampler's Signature: |                         |                | Type:       |                | P= Plas            | tic G= G            | lass T= T             | eflon S=            | = Sterile          |                   |               |          |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
|                      |                         |                | Preserv     | atives:        | C=Chille           | ed S=S              | ulfuric Acid          | d N=Nit             | ric Acid           | B=Base            | /Caust        | ic Z=Z   | In Aceta | ate      | $\mathbf{H}$ |          |                                                  |          |             |          |          |                   |                   |             |
| Project Name:        | <b>Clean Rivers Pre</b> | ogram          |             |                | 51=500             | ium inios           | Field                 | Data                | ⊨ Otner            |                   |               | Cont     | taine    | rs       | -//          | 1        | 1                                                |          |             |          |          |                   |                   |             |
| Work Order ID        | Sample ID               | Data           | Time        | Motrix         |                    | ·                   |                       |                     | Flow               | Tamp              | ш.            | 8:-0     | Turne    | Dree     | 1            |          | 1                                                | 1        | 1           |          |          |                   |                   |             |
|                      |                         | Date           | Time        | Watrix         | CorG               |                     | рп                    |                     | FIOW               | Temp              | #             | Size     | туре     | Pres     | $\vdash$     | ┼──      | <del>                                     </del> | μ        | +           | <u> </u> | +        | +                 | +                 | <u> </u>    |
|                      |                         |                |             | <u> </u>       | <u> </u>           | <u> </u>            | <u> </u>              |                     |                    | ่่่่่่่           | <u> </u>      |          | _        |          | <u> </u> '   | _        | _                                                | _        | $\parallel$ |          | <u> </u> | ⊢                 | <u> </u>          | _           |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             | 1        |          |                   |                   |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             | 1        | 1        |                   |                   |             |
|                      |                         |                |             | <u> </u>       | <u> </u> '         | <u> </u>            | <u> </u>              |                     | +                  | ┼───              |               |          | ┼──      | ┼──      | ╂──┤         | ┼──      | ┼──                                              | +        | ╉──┦        | <u> </u> | +        | +                 | +                 |             |
|                      |                         |                | <b>_</b>    | —              | <b> </b> '         | <u> </u>            | <u> </u>              | <u> </u>            | <b>_</b>           | ──                |               | <u> </u> | —        | —        | <b> </b> '   | —        | —                                                | —        | ╉──┦        | ⊢        | –        | –                 | —                 |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             | 1        |          |                   |                   |             |
|                      |                         |                | +           | <u> </u>       | ·'                 | <u> </u>            | +                     | -                   | -                  |                   |               |          |          | <u>+</u> | <u> </u>     | <u> </u> | <u>†</u>                                         |          | ╉──┦        | <u> </u> | +        | +                 | +                 | -           |
|                      |                         |                | <u> </u>    | ┣──            | <b> </b> '         | <b></b>             | —                     |                     |                    | <u> </u>          | <u> </u>      |          | ┣──      | —        | <u> </u> '   | —        | ┣──                                              | —        | <b></b>     | ⊢        | —        | —                 | —                 |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             | 1        |          |                   |                   |             |
|                      |                         |                |             | <u> </u>       | '                  | <u> </u>            |                       | -                   |                    |                   |               |          |          |          |              | <u> </u> | <u> </u>                                         | <u> </u> | +           | <u> </u> | -        | +                 | +                 |             |
|                      |                         |                |             | ──             | <u> </u> '         | <u> </u>            | +                     |                     |                    | ──                | <u> </u>      |          | —        | ──       | <u> </u>     | —        | —                                                | ╂──      | ╉──┦        | ┢───     |          | +                 | <u> </u>          | —           |
|                      |                         |                |             |                |                    |                     |                       |                     |                    |                   |               |          |          |          |              |          |                                                  |          |             |          |          |                   |                   |             |
| Relinquished By:     |                         |                |             | Receiv         | ed By:             |                     |                       |                     |                    |                   |               | Date     |          |          | Time         | l.       |                                                  |          | Rece        | eiver    | d Ice    | d: )              | γes /             | NO          |
| Relinquished By:     |                         |                |             | Receiv         | ed By:             |                     |                       |                     |                    |                   |               | Date     |          |          | Time         |          |                                                  |          | Rece        | eive     | d Ice    | d: ۱              | YES /             | NO          |
| Relinquished By:     |                         |                |             | Received       | By and/or          | r Checked i         | n By:                 |                     |                    |                   |               | Date     |          |          | Time         | ;        |                                                  |          | Rect        | aive     | d Ice    | <u>م.</u><br>۱۰۰۰ | <u>,</u><br>√FS / | NO          |
| LAB USE ONLY         | San                     | mple Condition | Accept      | able:          | YES                | J NO                |                       |                     | Tor                | n ກໍ C            | *Th€          | erm ID   | Loa      | aed In E | 3v:          |          |                                                  |          | neee        | Date     |          |                   | Time              |             |
| Alternate Check In:  |                         |                | Date        | ,              |                    | Time                | ;                     |                     | 1011               |                   |               |          |          | ,        | ,            |          |                                                  |          |             |          |          |                   |                   |             |
| 4                    |                         |                |             |                |                    |                     |                       |                     | 1                  |                   | 1             |          | 1        |          |              |          |                                                  |          |             |          |          |                   |                   |             |

\*Thermometer has 0.0 factor and recorded temperature is actual temperature

|                           | Pollution Con<br>101 S. Richey, So<br>Pasadana IX 77 | Itrol Services D<br>Lite H<br>1506 Fax: 713.27 | Department                        | 712-07-0-7831                                         |                          | Sa                       | mple Da            | ita and Cust                 | ody Record            |            |
|---------------------------|------------------------------------------------------|------------------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------|--------------------------|--------------------|------------------------------|-----------------------|------------|
|                           | Turney (1998)                                        |                                                | - off officies                    |                                                       | molt May                 | ri dan secera            | SECTO D-           | 4                            | Time                  | *<br>      |
| O, <u>PRIMANA AND AND</u> | i ype: <u>containe</u>                               | abautary (alaysia)<br>Attested                 | Content and the                   | Robus Holdson                                         | ernit NO: 200            | Soupe Roward             | Da                 |                              |                       |            |
| Site Id:                  |                                                      | Name:                                          | an de la se<br>Nacional de la seu | un de la composition<br>Anti-Manada de la composition |                          | in an thi<br>She thirthe |                    | Key Ma                       | p:                    |            |
| Sample Locatio            | on:                                                  |                                                | 1                                 |                                                       |                          | Outfall:                 |                    |                              |                       |            |
| Sample Locatio            | on Info:                                             |                                                |                                   |                                                       |                          |                          |                    |                              |                       |            |
| Outcome:                  | Collected                                            | Collecter                                      | d (sample com                     | promised)                                             | Field Te                 | est Only                 | No I               | Flow                         |                       |            |
|                           | emperature (°(                                       |                                                | Dissolved Or                      | Tests and                                             | Measurem                 | ients                    |                    | on E                         |                       |            |
|                           |                                                      | »                                              | Colinity (ppl)                    |                                                       | °                        |                          |                    |                              |                       | n (meters) |
|                           | n (stanuard units                                    | <sup>5</sup> ) [                               | Committy (hbr)                    |                                                       |                          |                          | sk i ranspa        | irency (meters)              |                       |            |
|                           | ater Color 1-B                                       | rownish 2-Red                                  | dish 3-Greeni                     | sh 4-Blackish 5-                                      | Clear 6-Ot               | vater<br>her             |                    |                              |                       |            |
| Si Si                     | urface Condition                                     | s 1-Clear 2-S                                  | cum 3-Foam                        | 4-Debris 5-Shee                                       | en                       |                          |                    |                              |                       |            |
|                           | /ater Odor 1-S                                       | ewage 2-Oily/Cl                                | hemical 3-Rot                     | ten Eaa 4-Musky                                       | 5-Fishv 6                | -None 7-Ot               | her                |                              |                       |            |
|                           | ubidity 1-Low 2                                      | 2-Medium 3-Hir                                 | ah                                |                                                       |                          |                          | -                  |                              |                       |            |
|                           | ater Surface 1                                       | -Calm 2-Rinnle                                 | es 3-Waves 4                      | -White Cans                                           |                          |                          |                    |                              |                       |            |
|                           |                                                      |                                                |                                   | teld Obeenrette                                       | Wassing                  | r and Othe               |                    | gelijke strategije           |                       |            |
| <b>∏</b> Pr               | esent Weather                                        | 1-Clear 2-Parl                                 | tly Cloudy 3-C                    | loudy 4-Rain 5-                                       | Other                    |                          | €.316Cospaniesia∮9 |                              | en de Nataria de Lado |            |
|                           | ind Intensity 1-                                     | -Calm 2-Slight                                 | 3-Moderate 4                      | -Strong                                               | -                        |                          |                    |                              |                       |            |
|                           | de Stage 1-Lov                                       | v 2-Falling 3-S                                | lack 4-Rising                     | 5-High                                                |                          |                          |                    | 7 89978(Num                  | ber of neonle obs     | enved)     |
|                           | avs Since Last 9                                     | Significant Rainf                              | all Source                        |                                                       |                          |                          |                    |                              | dance of estivity     | 50,700)    |
|                           |                                                      |                                                |                                   | ·                                                     |                          |                          |                    | 09979 (EM                    | dence of activity)    |            |
| Matrix:                   | Air Drinkir<br>ethod                                 | ng Watert<br>Grab (                            | Liquid Liquid Composite           | OilOther                                              | Solid                    | Particulate              | Sludi              | ge 🗌 Soil [                  | Water                 | Other      |
| Samples C                 | ollected:                                            | ainer                                          |                                   | Applyria                                              | Direct                   | Collection               | 1                  |                              |                       |            |
| No.                       | Type Si                                              | ze Preserv                                     | vative Ice?                       | Requested                                             | Coll. Req.               | Туре                     | Split              | Sampled By                   | 112)                  |            |
|                           |                                                      | se<br>normer weekstellere                      | Y/N                               |                                                       | n<br>21<br>21 marcenness | D/I                      | Y/N                |                              |                       |            |
| NUCLEY OF STREET          |                                                      |                                                | Y/N                               |                                                       |                          | D/1                      | Y/N                | errola promoto attain        | -t'                   |            |
|                           | a secondaria.                                        |                                                | Y/N                               |                                                       |                          | D/I                      | Y/N                |                              |                       |            |
|                           |                                                      |                                                | Y/N                               |                                                       |                          | D/I                      | Y/N                |                              |                       |            |
| t vittalet                |                                                      | a a 2 Malessan -                               | Y/N                               |                                                       |                          | D/I                      | Y/N                |                              |                       |            |
|                           |                                                      |                                                | Y/N                               |                                                       | 1                        | D/I                      | Y/N                |                              | .I.                   |            |
| 1                         |                                                      |                                                | Y/N                               |                                                       |                          | D/I                      | Y/N                | +++: <=>=+;:====3335;;;{\$\$ |                       |            |
| and the second            |                                                      |                                                | Y/N                               |                                                       | ila Satan<br>V           | D/I                      | Y/N                | LIS PUSSEALS CL              | 백                     |            |
| OF 18 OCCUPATION          |                                                      | 1<br>1<br>1<br>1                               | Y/N                               | 000 HIL 1000 D R                                      | 10000                    | D/1                      | Y/N                | ana ina ina mana kata        | a.<br>                |            |
|                           | antes (1999-1972) - 1 (1997-1994)                    |                                                | Y/N                               |                                                       |                          | D/I                      | Y/N                | بالتنجة فالنجا بللدة بالتبي  | 1                     |            |

|                                                                                                                    |                                                                                         |                                                                                                                                    | Custody    |       |       |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|
| Relinquished By:                                                                                                   |                                                                                         |                                                                                                                                    | Receive    | d By: |       |
| Date/Time:                                                                                                         |                                                                                         | AM PM                                                                                                                              | - Date/Tin | ne:   | AM PM |
| Samples placed in res                                                                                              | stricted area by:                                                                       | (initial)                                                                                                                          |            |       |       |
| Legend<br>Collection Type<br>D - Direct<br>I - Indirect<br>Preservatives<br>H2SO4 NaOH<br>HCL Na2S2O3<br>HNO3 none | Container Size<br>1/2 gal 250 m<br>1 gal 500 m<br>1 qt 4 oz<br>40 mL 8 oz<br>100 mL n/a | s Container Types<br>L P - Plasitc<br>L G - Glass<br>Can - Canister<br>C - Cartridge<br>PB - Plastic Bag<br>S - Slide<br>O - Other |            | ,     | E.    |

 $\mathbf{x}$ 

| Field No.                                                                 |                                                               | B<br>FIELI                                    | (<br>Housto<br>ureau of Pollu<br>741<br>832.393.57<br><b>5 FORM &amp;</b> | City of H<br>n Health<br>ution Co<br>1 Park I<br>30 F<br>CHAIN | ouston<br>Department<br>ontrol and Pre<br>Place Blvd<br>AX 832-393-<br>OF CUSTC | z<br>event<br>5726<br><b>DDY</b> | ion<br>F <b>ORM</b>                                   | iji Hous                                                              | TON HEALTH                                           |
|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|
| Date                                                                      | Sa                                                            | mples Collect                                 | ted By:                                                                   |                                                                |                                                                                 |                                  |                                                       |                                                                       |                                                      |
| Run No                                                                    | Station II                                                    | 0                                             |                                                                           | Time                                                           | e (24 hr)                                                                       |                                  | Fi                                                    | eld Meter #                                                           |                                                      |
| Stream Name 8                                                             | k Intersecting S                                              | treet                                         |                                                                           |                                                                |                                                                                 |                                  |                                                       |                                                                       |                                                      |
|                                                                           |                                                               |                                               |                                                                           |                                                                | For lab use                                                                     | only                             | :                                                     |                                                                       |                                                      |
| FIELD OBSERV                                                              | ATIONS                                                        |                                               |                                                                           |                                                                | Samples Re                                                                      | ceive                            | ed on Ice? Yes /                                      | No Thermometer ID:                                                    |                                                      |
| Number of day                                                             | s since significa                                             | ant rainfall                                  |                                                                           | -                                                              | Temp (°C) _                                                                     |                                  | Corrected                                             | Temp (°C)                                                             |                                                      |
| Flow Severity                                                             | Tidal Stage                                                   | Color                                         |                                                                           | Odor                                                           |                                                                                 | Wa                               | ter Surface                                           | Current Weather                                                       | Wind Intensity                                       |
| 1 – no flow<br>2 – low<br>3 – normal<br>4 – flood<br>5 – high<br>6 – dry* | 1 – low<br>2 – falling<br>3 – slack<br>4 – rising<br>5 – high | 1 - b $2 - r$ $3 - g$ $4 - b$ $5 - c$ $6 - c$ | rownish<br>eddish<br>reenish<br>lackish<br>lear<br>ther*                  | 1 - se $2 - oi$ $3 - ro$ $4 - m$ $5 - fis$ $6 - nc$ $7 - ot$   | wage<br>ly/chemical<br>tten egg<br>usky<br>hy<br>ne<br>her*                     |                                  | 1 – calm<br>2 – ripples<br>3 – waves<br>4 - whitecaps | 1 - clear<br>2 - partly cloudy<br>3 - cloudy<br>4 - rain<br>5 - other | 1 – calm<br>2 – slight<br>3 – moderate<br>4 - strong |
| Flow Method                                                               | Flow (cfs)                                                    | Secch                                         | i Depth (cm)                                                              | Evider<br>Prima<br>Recre                                       | nce of<br>ry Contact<br>ation                                                   | # p<br>obs                       | eople<br>served                                       | Sample Depth (ft)                                                     | Total Depth<br>(ft)                                  |
| 1 – flow-gauge statio<br>5 - Doppler                                      | on .                                                          |                                               |                                                                           | 1 -<br>0 -                                                     | observed<br>not observed                                                        | <u> </u>                         | 1 – 10<br>> 10                                        |                                                                       |                                                      |
| INSTRUMENT I                                                              | READINGS                                                      |                                               |                                                                           |                                                                |                                                                                 |                                  | *Other Obser                                          | vations:                                                              |                                                      |
| Temp                                                                      | Conductivity                                                  | Dissolved<br>Oxygen (DO)                      | рН                                                                        | Sa                                                             | linity                                                                          |                                  | -                                                     |                                                                       |                                                      |
|                                                                           |                                                               |                                               |                                                                           |                                                                |                                                                                 |                                  | ÷                                                     |                                                                       |                                                      |
| (1.0 to 38.0 °C)                                                          | (0.03 to 60 mS/cm)                                            | (0.5 to 15.0 mg/L)                            | (5 <sub>.0</sub> to 10.0)                                                 |                                                                | (.009 to 45.0 PSS)                                                              | Ľ                                |                                                       |                                                                       |                                                      |
| Request for An                                                            | alysis (circle w                                              | hat is request                                | <u>ed):</u>                                                               |                                                                | No.                                                                             | of Co                            | ontainers:                                            | Acid ID# <u>H2SO4</u>                                                 |                                                      |
| 1 – pH<br>2 – Conductivity<br>3 – TSS<br>4 – N-NO3                        | 5 – CI-<br>6 – SO4<br>7 – N-NH3<br>8 – T-PO4                  | 9 –<br>10 ·                                   | E. coli<br>· Enterococcus                                                 | 5                                                              |                                                                                 | 100 n<br>1 L pl<br>1 gall        | nL sterile plastic<br>lastic<br>lon plastic           | 200 mL ste<br>1 L plastic<br>1 L plastic(<br>w/H2SO4                  | rile plastic<br>w/ H₂SO4<br>TKN) bottle              |
| Samples Relin                                                             | quished By:                                                   | (s                                            | ignature only)                                                            |                                                                |                                                                                 |                                  |                                                       | Date:                                                                 |                                                      |
| Lab Sample No                                                             | 0                                                             |                                               | Rec                                                                       | ceived                                                         | by:(si                                                                          | gnatu                            | re only)                                              | Date:                                                                 |                                                      |

\*Note: If site is dry, photo should be taken. If water present within 400 m, and pool is 10+m long, and 0.4+m deep, collect sample and record Maximum pool width, depth, length, and percent pool coverage in 500 m reach (if measureable) in observations section.

|               |                                                                 |                                                            |                                                                                 |                                                                                |                                                                                         | DR _                                             | INKING M                       | CITY OF<br>VATER OP<br>STON WATE | ERATION<br>RENED SITISHED SITISHE | TON<br>4S LABOR<br>TE MONITOF<br>SUSTODY | LATORY<br>RING                                              |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
|---------------|-----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------|-------------------|--------------------|
|               | Date of Sampling:                                               |                                                            | Aŭr Temperat                                                                    | :<br>Ture:                                                                     |                                                                                         | Days Since L                                     | ast Significan                 | ıt Rainfall :                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Samples Co                                                  | Locument II<br>lected By: | : 150                                                                                       |                                                                                                                                                                                | Vers                                              | sion: 1.09                                 |           |                   |                    |
|               | Sample Run Collected Bi-Monthly                                 |                                                            |                                                                                 |                                                                                | Note: All sar                                                                           | nples taken a                                    | t a one foot di                | epth by plastl                   | c bucket unle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ess specificali                          | y designated                                                | in 'Sample                | Jepth' colum                                                                                | in below,                                                                                                                                                                      |                                                   |                                            |           | ľ                 |                    |
| Sample<br>No. | Station Name                                                    | TCEQ                                                       | Time                                                                            | Sample<br>Depth (ft)                                                           | Total<br>Depth (ft)                                                                     | Water<br>Temp *C                                 | Sp. Cond.<br>µs/cm             | Ha                               | DO<br>Ma/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Secchi<br>Depth (m)                      | Flow<br>Severity                                            | Obser.<br>Turb.           | Water                                                                                       | Mater Pr                                                                                                                                                                       | esent N                                           | And W<br>ensity Su                         | ater Pri  | nary Ev<br>tact o | vidance<br>of P.C. |
| -             | LUCE BAYOU HUFFMAN /<br>CLEVELAND                               | 11187                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| N             | EAST FORK SAN JACINTO RIVER<br>@ FM 1485 (gage 8070200)         | 11235                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| 63            | CANEY CREEK @ FM 1485                                           | 11334                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| 4             | PEACH CREEK @ FM 2090                                           | 11337                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| ю             | EAST FORK SAN JACINTO @ SH<br>105 (9290 8070000)                | 11238                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                | 0.00                                              |                                            |           | -                 |                    |
| ω             | PEACH CREEK @ FM 105                                            | 16625                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                | -                                                 |                                            | -         |                   |                    |
| 2             | CANEY CREEK @Millmac Rd.                                        | 21465                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   | -                                          | -         |                   |                    |
| σ             | WEST FORK SAN JACINTO @ FM<br>105 (gage 8067550)                | 11251                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| on            | STEWART CREEK @ LOOP 336,<br>CONROE                             | 16626                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             | -                                                                                                                                                                              |                                                   |                                            |           |                   |                    |
| 9             | CRYSTAL CREEK @ HWY 242                                         | 18835                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| 1             | WEST FORK SAN JACINTO @ FM<br>242                               | 11243                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| 4             | SPRING CREEK @ 1-45 (3age<br>accasoo)                           | 11313                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| 13            | CYPRESS CREEK @ I-45 (gage<br>8063000)                          | 11328                                                      |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                           |                                                                                             |                                                                                                                                                                                |                                                   |                                            |           |                   |                    |
| Comme         | nts:                                                            |                                                            |                                                                                 |                                                                                |                                                                                         |                                                  |                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | 1-no flow<br>2-low<br>3-normal<br>a-hadh<br>5-hadh<br>6-dry | -medium 2<br>-bigh 3      | eddish 2-oll<br>eddish 2-oll<br>preenish 3-ro<br>preenish 4-oll<br>their 5-fa<br>their 5-fa | Wage 1-cle<br>yichemical 2-p. 1<br>(then agg 3-cle<br>usty 4-th<br>ing 4-th<br>ing 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | ar 1-call<br>loudy 2-sig<br>udy 3-mb<br>ody 2-sto | m 1-ca5<br>hi 2-cpt<br>d. 3-we<br>tre 4-wh | Ne Obser  | end 1-Obse        | observed           |
|               | Analysis Required:<br>Bottles used:<br>• WQP analysis includes: | VOC, WC<br>1-100ml s<br>H <sub>2</sub> SOL for<br>pH, Cond | 2P°, T-phos, /<br>steriized bott<br>· NH <sub>3</sub> analysis<br>· TSS, Alk, H | Ammonia, Tota<br>le for Bacci ana<br>s, 1-250i<br>larc, NO <sub>2</sub> 'N, Ni | l Coliform, E. cc<br>lysis, 1-500<br>ml amber bottle<br>O <sub>3</sub> -N, F, Cl, Br, ( | fi<br>Iml plastic bott<br>for T-phos. & T<br>SOa | ae tor WQP an<br>TOC analysis. | alysis, 2                        | 40mi VOA bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ttes with 1:1 HK                         | 0, 1-500                                                    | mL plastic b              | stile acidified                                                                             | with<br>f Samples w                                                                                                                                                            | len Receive                                       | Malu<br>d at Lab                           | tic Water | Î                 |                    |
| Biol. Sar     | nples Relinquished By :                                         |                                                            |                                                                                 | iei<br>i                                                                       | Time:                                                                                   |                                                  |                                | Chem. Samp.                      | les Relinquis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thed By :                                |                                                             |                           | Date                                                                                        |                                                                                                                                                                                | <br>П та<br>Т                                     |                                            |           |                   |                    |
| 1010          | - Acrement of the                                               |                                                            | \$                                                                              |                                                                                | , and .                                                                                 |                                                  |                                | CURINE ORING                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ke                                       |                                                             |                           | 19761                                                                                       |                                                                                                                                                                                | - 1886 -                                          |                                            |           |                   |                    |

|                                                            |                                  | 4200                                  | <b>Leeland St</b><br>San Jacin <sup>:</sup> | treet, Ann<br>to River Aut<br>LAKE CON | thority - La<br>troe mon | ding, Ho<br>ake Conro<br>IITORING | <b>uston,</b><br>be Divisio               | <b>TX 7702</b>                                                             | ю                                                                          |                                                                            |                                                                                              |
|------------------------------------------------------------|----------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------|--------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Effective Date: 8/21/2019                                  |                                  |                                       |                                             |                                        |                          |                                   | Doc                                       | cument ID: 1                                                               | 50                                                                         | Version: 1.11                                                              |                                                                                              |
|                                                            |                                  |                                       |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| of Sampling:                                               |                                  |                                       |                                             |                                        |                          | Samples Col                       | lected By:                                |                                                                            |                                                                            |                                                                            |                                                                                              |
|                                                            |                                  |                                       |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
|                                                            |                                  |                                       |                                             |                                        |                          | Analy                             | ysis Reques                               | sted:                                                                      |                                                                            |                                                                            |                                                                                              |
| ole Station Name                                           | Watershed<br>ID                  | TCEQ                                  | Time                                        | Grab or<br>Composite                   | TSS                      | WQP *                             | Total<br>Coliform<br>& E.Coli             | T.Phos &<br>TOC                                                            | Ammonia                                                                    | Comme                                                                      | nts:                                                                                         |
| Walker County                                              | 23                               | 11344                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| T. James Creek                                             | 25                               | 16645                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Weir Creek                                                 | 3                                | 16644                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Caney Creek                                                | 9                                | 16643                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Tim Cude Creek                                             | 26                               | 16642                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Lost Lake Creek                                            | 33                               | 16640                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Lewis Creek                                                | 4                                | 16641                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| W.C. Clark Creek                                           | 27                               | 16639                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Atkin Creek                                                | 5                                | 16638                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| Intake Lake Conroe                                         | 24                               | 11342                                 |                                             |                                        |                          |                                   |                                           |                                                                            |                                                                            |                                                                            |                                                                                              |
| s used:                                                    | 1-1000mL plas<br>1-500ml plastic | stic botte for T.<br>c bottle for WC  | SS<br>2P analysis                           |                                        |                          |                                   |                                           | Matrix:                                                                    | Surface                                                                    | e Water                                                                    |                                                                                              |
|                                                            | 1-120ml steriliz                 | zed bottle for I<br>r bottle acidifie | Bacti analysis<br>ज्य with H2SO4 fo         | r T-nhos & TOC                         | C analysis               |                                   | .,                                        | Samples Rec                                                                | eived on Ice:                                                              | : YesNo                                                                    |                                                                                              |
|                                                            | 1-500 mL plast                   | tic bottle acidi                      | fied with H2SO4                             | for NH3 analysis                       | s<br>S                   |                                   |                                           | Temperature                                                                | of Samples v                                                               | when Received at Lab:                                                      |                                                                                              |
| analysis includes:                                         | pH, Cond., Alk                   | , Hard, NO <sub>2</sub> -N            | l, NO <sub>3</sub> -N, F, Cl, B             | r, SO <sub>4</sub>                     |                          |                                   |                                           | Sample Cond                                                                | lition Accepta<br>If no, explain                                           | able: YesNo                                                                |                                                                                              |
| gical Samples<br>quished By :                              | Date:                            |                                       | Time:                                       |                                        |                          | Chemical Sa<br>Relinquisheo       | amples<br>d By :                          |                                                                            |                                                                            | Date:Ti                                                                    | ne:                                                                                          |
| gical Samples<br>ved By :                                  | Date:                            |                                       | Time:                                       |                                        |                          | Chemical Sa<br>Received By        | amples<br>/ :                             |                                                                            |                                                                            | Date:T                                                                     | me:                                                                                          |
| gical Samples<br>quished By :<br>gical Samples<br>ved By : | Date:                            |                                       | Time:                                       |                                        |                          |                                   | Chemical S¢<br>Relinquishe<br>Chemical S¢ | Chemical Samples<br>Relinquished By :<br>Chemical Samples<br>Received By : | Chemical Samples<br>Relinquished By :<br>Chemical Samples<br>Received By : | Chemical Samples<br>Relinquished By :<br>Chemical Samples<br>Received By : | Chemical Samples<br>Relinquished By : Date: Ti<br>Chemical Samples<br>Received By : Date: Ti |

|                                            |                                        | DEPODT TO.                                                                                                                     |                 |           |                      |          |        |          |               |             | TIC              | -OE                                                          |
|--------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------------|----------|--------|----------|---------------|-------------|------------------|--------------------------------------------------------------|
|                                            |                                        | NEFURI 10:                                                                                                                     |                 |           |                      |          | ;      | 17. 24   |               |             | BILI             | C 10:                                                        |
| Jary                                       |                                        |                                                                                                                                |                 |           |                      |          | Name   | : Kaitle | ary           |             |                  |                                                              |
| ED Aquatics Laborato                       | JIY                                    |                                                                                                                                |                 |           |                      |          | Com    | sany:    | KLES Aquati   | cs Laborato | 2                |                                                              |
| Sam Houston Avenue                         | s, Suite B-8                           |                                                                                                                                |                 |           |                      |          | Addr   | ess: 242 | 4 Sam Hous    | ton Avenue  | , Suite B        | -8                                                           |
| Huntsville, Tx 77340                       | 0                                      |                                                                                                                                |                 |           |                      |          | City,  | State, Z | ip: Huntsvill | e, TX 7732  | 0                |                                                              |
| 1-2501                                     | Fax                                    | Email: kpgary(                                                                                                                 | Øshsu.edu       |           | Phone:               | 936-294  | -2501  |          |               | Fax:        |                  | Email: kpgary@shsu.edu                                       |
|                                            | 5                                      | Sampler Signature:                                                                                                             |                 |           |                      |          |        |          | Analysis Re   | quired      |                  | TRES Log #                                                   |
| Time Matrix<br>Collected Code              | C G                                    | Sample<br>Description/Location                                                                                                 | Hd<br>Bottle ID | ç         | Preservation<br>Code | CI, SO4, | TSS    | T PO4    |               |             | Sample<br>Number | TRIES Use Only<br>Sample Receipt Checklist:                  |
| AQ                                         | X                                      |                                                                                                                                | B1              |           | U                    | ×        | +      | +        |               |             |                  | Shipped:                                                     |
| AQ                                         | X                                      |                                                                                                                                | B2              |           | U                    | -        | ×      |          |               |             |                  | - Container Tape:                                            |
| AQ                                         | X                                      |                                                                                                                                | B3              |           | A                    |          |        |          |               |             |                  | Present: Intact                                              |
| AQ                                         | X                                      |                                                                                                                                | B4              |           | D                    |          |        | ×        |               |             |                  |                                                              |
|                                            |                                        |                                                                                                                                |                 |           |                      |          |        | _        |               |             |                  | Cooler Temp: (°C)                                            |
|                                            |                                        |                                                                                                                                |                 |           |                      |          |        |          |               |             |                  | Broken: Y N Leaking: Y N                                     |
|                                            |                                        |                                                                                                                                |                 |           |                      |          |        |          |               |             |                  | Preserved: Y N<br>Acid type:                                 |
| xT: Matr<br>ys) WW=W<br>ays) AQ=w<br>SW=sc | rix Code:<br>Vastewater<br>ater<br>Jid | Preservation $C = < 6^{\circ} C$ $C = < 6^{\circ} L$ $A = pH < 2 HNO_3$ $B = pH < 2 HC1$ $D = pH < 2 H_2SO_4$ $E = Na_2S_2O_3$ | Samp            | ole Rece  | siving/L             | ab Cor   | aments |          | -             | -           |                  | Acid lot:<br>COC Seals:<br>Present: Intact:<br>Y N NA Y N NA |
|                                            |                                        |                                                                                                                                |                 |           |                      |          |        |          |               |             |                  | COC & Labels Match: Y N                                      |
|                                            |                                        |                                                                                                                                |                 |           |                      |          |        |          |               |             |                  | Sufficient Quantity: Y N                                     |
|                                            |                                        | Date/Time:                                                                                                                     | Relinquished B  | y:        |                      |          |        |          |               | Date/Tir    | ne:              |                                                              |
|                                            |                                        | Date/Time:                                                                                                                     | Received By:    |           |                      |          |        |          |               | Date/Tir    | le:              |                                                              |
| ä                                          | pH stri                                | ps Lot:                                                                                                                        | Projec          | tt: Clear | I Rivers             | Progra   | E      |          |               |             |                  |                                                              |

2424 Sam Houston Ave. Suite B8  $\cdot$  Huntsville, Texas 77340  $\cdot$  (936)294-3715  $\cdot$  Fax (936)294-3822

# Texas Research Institute for Environmental Studies (TRIES) Analytical Laboratory Sam Houston State University