U.S. Department of Homeland Security FEMA Region 6 800 N. Loop 288 Denton, TX 76209

April 10, 2025

Jennifer Charlton-Faia, Deputy State Hazard Mitigation Officer Texas Division of Emergency Management P.O. Box 285 Del Valle, TX 78617-9998

RE: Approval of the Austin County, Texas Multi-Jurisdiction Hazard Mitigation Plan

Dear Ms. Charlton-Faia:

This office has concluded its review of the referenced plan, and we are pleased to provide our approval of this plan in meeting the criteria set forth by 44 CFR § 201.6. FEMA approval does not include the review or approval of content that exceeds the applicable FEMA mitigation planning requirements. By receiving this approval, eligibility for the Hazard Mitigation Assistance Grants will be ensured for five years from the date of this letter, expiring on April 9, 2030.

This approval does not demonstrate approval of projects contained in the plan. This office has provided the enclosed Local Hazard Mitigation Planning Tool with reviewer's comments, to further assist the community in refining the plan going forward. Please advise the referenced community of this approval.

If you have any questions, please contact David Freeborn, HM Community Planner, at (940) 268-7602.

Sincerely,

Ronald C. Wanhanen Chief, Risk Analysis Branch

Toucloll. Mr. 1

Enclosures: Approved Participants

cc: Anne Lehnick

Approved Participants

Attached is the list of approved participating governments included in the April 10, 2025 review of the referenced Hazard Mitigation plan.

Community Name

- 1) Austin County
- 2) Bellville city
- 3) Bellville Independent School District
- 4) Brazos Country city
- 5) Brazos Independent School District
- 6) Industry city
- 7) San Felipe town
- 8) Sealy city
- 9) Sealy Independent School District
- 10) South Frydek city
- 11) Wallis city

Local Mitigation Plan Review Tool

Plan Information				
Title of Plan	Austin County			
Date of Plan	March 2024			
Local Point of Contact				
Title	Roy Mercer, Austin County Emerg	gency Management Coordinator		
Agency	Austin County Office of Emergence	cy Management		
Email	rmercer@ac-oem.com			
	Additional Point of Contact			
Title	Amanda Ashcroft, Planner			
Agency	H-GAC			
Email	Amanda.Ashcroft@H-GAC.com			
	Review Information			
	State Review			
State Reviewer(s)	Lucilla Salinas Dan johnson	01/14/2025 01/21/2025		
	FEMA Review			
FEMA Reviewer(s) and Title	David Freeborn Shanene Thomas	02/27/2025 3/3/2025		
Date Received in FEMA Region 6	January 21, 2025			
Plan Not Approved				
Plan Approvable Pending Adoption	April 10, 2025			
Plan Approved				

Multi-Jurisdictional Summary Sheet

		Requirements Met (Y/N)							
#	Jurisdiction Name	A. Planning Process	B. Risk Assessment	C. Mitigation Strategy	D. Plan Maintenance	E. Plan Update	F. Plan Adoption	G. HHPD Requirements	H. State Requirements
1	Austin County	Y	Y	Υ	Y	Y	Y	N/A	N/A
2	City of Bellville	Y	Υ	Υ	Υ	Υ	Υ	N/A	N/A
3	City of Brazos Country	Y	Y	Υ	Y	Y	Υ	N/A	N/A
4	City of Industry	Υ	Υ	Υ	Υ	Υ	Υ	N/A	N/A
5	City of San Felipe	Y	Y	Υ	Y	Y	Υ	N/A	N/A
6	City of Sealy	Y	Υ	Υ	Y	Υ	Υ	N/A	N/A
7	City of South Frydek	Y	Y	Υ	Y	Y	Υ	N/A	N/A
8	City of Wallis	Υ	Υ	Υ	Y	Y	Υ	N/A	N/A
9	Bellville ISD	Y	Y	Υ	Y	Y	Y	N/A	N/A
10	Sealy ISD	Y	Y	Υ	Y	Y	Υ	N/A	N/A
11	Brazos ISD	Υ	Υ	Υ	Υ	Υ	Y	N/A	N/A
12									
13									
14									
15									
16									
17									
18									
19									
20									

Plan Review Checklist

The Plan Review Checklist is completed by FEMA. States and local governments are encouraged, but not required, to use the PRT as a checklist to ensure all requirements have been met prior to submitting the plan for review and approval. The purpose of the checklist is to identify the location of relevant or applicable content in the plan by element/sub-element and to determine if each requirement has been "met" or "not met." FEMA completes the "required revisions" summary at the bottom of each element to clearly explain the revisions that are required for plan approval. Required revisions must be explained for each plan sub-element that is "not met." Sub-elements in each summary should be referenced using the appropriate numbers (A1, B3, etc.), where applicable. Requirements for each element and sub-element are described in detail in Section 4: Local Plan Requirements of this guide.

Plan updates must include information from the current planning process.

If some elements of the plan do not require an update, due to minimal or no changes between updates, the plan must document the reasons for that.

Multi-jurisdictional elements must cover information unique to all participating jurisdictions.

Element A: Planning Process

Element A Requirements	Location in Plan (section and/or page number)	Met Y/N
A1. Does the plan document the planning process, including how involved in the process for each jurisdiction? (Requirement 44 C		as
A1-a. Does the plan document how the plan was prepared, including the schedule or time frame and activities that made up the plan's development, as well as who was involved?	Pdf page numbers 21-28 Appendix 140-163, 228- 315	Y
A1-b. Does the plan list the jurisdiction(s) participating in the plan that seek approval, and describe how they participated in the planning process?	18, 21-25	Y
A2. Does the plan document an opportunity for neighboring comagencies involved in hazard mitigation activities, and agencies to development as well as businesses, academia, and other private involved in the planning process? (Requirement 44 CFR § 201.6)	hat have the authority to regularized and non-profit interests to b	
A2-a. Does the plan identify all stakeholders involved or given an opportunity to be involved in the planning process, and how each stakeholder was presented with this opportunity?	21-25	Y
A3. Does the plan document how the public was involved in the drafting stage and prior to plan approval? (Requirement 44 CFR		
A3-a. Does the plan document how the public was given the opportunity to be involved in the planning process and how their feedback was included in the plan?	21-22, 25-27 Appendix 317-351	Y
A4. Does the plan describe the review and incorporation of exist technical information? (Requirement 44 CFR \S 201.6(b)(3))	ing plans, studies, reports, an	ıd
A4-a. Does the plan document what existing plans, studies, reports and technical information were reviewed for the development of the plan, as well as how they were incorporated into the document?	28	Y

Element A Requirements	Location in Plan (section and/or page number)	Met Y/N
Element A Required Revisions		
Required Revision:		

Element B: Risk Assessment

Element B Requirements	Location in Plan (section and/or page number)	Met Y/N
B1. Does the plan include a description of the type, location, and that can affect the jurisdiction? Does the plan also include infor hazard events and on the probability of future hazard events? ($(201.6(c)(2)(i))$)	mation on previous occurrence	
B1-a. Does the plan describe all natural hazards that can affect the jurisdiction(s) in the planning area, and does it provide the rationale if omitting any natural hazards that are commonly recognized to affect the jurisdiction(s) in the planning area?	18, 59-183	Y
B1-b. Does the plan include information on the location of each identified hazard?	60-184 Appendix 67-104 Flooding, 61-77 Wildfire, 78-94 Severe Thunderstorms & Lightning, 95-106 Tornado/Microbursts, 107-116 Erosion, 117-123 Winter Weather, 124-135 Drought & Expansive Soils, 136-149 Windstorm, 150-159 Hail, 160-170 Hurricanes, Tropical Storms, & Depressions, 171-181 Extreme Heat, 182-190 Dam/Levee Failure, 191-195 Emerging Infectious Diseases, 196-199 Cybersecurity, 200-202	Y
B1-c. Does the plan describe the extent for each identified hazard?	Flooding, 66 Wildfire, 80 Severe Thunderstorms & Lightning, 97 Tornado/Microbursts, 108 Erosion, 120 Winter Weather, 124 Drought & Expansive Soils, 141 Windstorm, 151 Hail, 161 Hurricanes, Tropical Storms, & Depressions, 173 Extreme Heat, 183 Dam/Levee Failure, 192 Emerging Infectious Diseases, 196 Cybersecurity, 200	Y
B1-d. Does the plan include the history of previous hazard events for each identified hazard?	30-31, 64-185 Flooding, 67 Wildfire, 85 Severe Thunderstorms & Lightning, 99 Tornado/Microbursts, 110 Erosion, 121 Winter Weather, 127 Drought & Expansive Soils, 142 Windstorm, 152 Hail, 163	Y

Element B Requirements	Location in Plan (section and/or page number)	Met Y/N
	Hurricanes, Tropical Storms, & Depressions, 175 Extreme Heat, 183 Dam/Levee Failure, 193 Emerging Infectious Diseases, 196 Cybersecurity, 200	
B1-e. Does the plan include the probability of future events for each identified hazard? Does the plan describe the effects of future conditions, including climate change (e.g., long-term weather patterns, average temperature and sea levels), on the type, location and range of anticipated intensities of identified hazards?	Flooding, 72 Wildfire, 88 Severe Thunderstorms & Lightning, 102 Tornado/Microbursts, 112 Erosion, 121 Winter Weather, 127 Drought & Expansive Soils, 144 Windstorm, 154 Hail, 165 Hurricanes, Tropical Storms, & Depressions, 176 Extreme Heat, 185 Dam/Levee Failure, 193 Emerging Infectious Diseases, 197 Cybersecurity, 201	Y
B1-f. For participating jurisdictions in a multi-jurisdictional plan, does the plan describe any hazards that are unique to and/or vary from those affecting the overall planning area?	60-185 Erosion (pg 120). Expansive soils (pg 136) Dam/Levee Failure (pg 193-194)	Y
B2. Does the plan include a summary of the jurisdiction's vulne community from the identified hazards? Does this summary als structures that have been repetitively damaged by floods? (Require)	so address NFIP-insured	
B2-a. Does the plan provide an overall summary of each jurisdiction's vulnerability to the identified hazards?	43-185 Flooding, 73 Wildfire, 88 Severe Thunderstorms & Lightning, 102 Tornado/Microbursts, 112 Erosion, 121 Winter Weather, 128 Drought & Expansive Soils, 145 Windstorm, 154 Hail, 165 Hurricanes, Tropical Storms, & Depressions, 176 Extreme Heat, 187 Dam/Levee Failure, 194 Emerging Infectious Diseases, 198 Cybersecurity, 201	Y
B2-b. For each participating jurisdiction, does the plan describe the potential impacts of each of the identified hazards on each participating jurisdiction?	43-185	Y
B2-c. Does the plan address NFIP-insured structures within each jurisdiction that have been repetitively damaged by floods?	46-47, 67-68	Y
Element B Required Revisions		
Required Revision:		

Element C: Mitigation Strategy

Element C Requirements	Location in Plan (section and/or page number)	Met Y/N
C1. Does the plan document each participant's existing authorit resources and its ability to expand on and improve these existin (Requirement 44 CFR \S 201.6(c)(3))		
C1-a. Does the plan describe how the existing capabilities of each participant are available to support the mitigation strategy? Does this include a discussion of the existing building codes and land use and development ordinances or regulations?	37, 40, 53-55 Appendix 206-287	Y
C1-b. Does the plan describe each participant's ability to expand and improve the identified capabilities to achieve mitigation?	53-55	Y
C2. Does the plan address each jurisdiction's participation in the with NFIP requirements, as appropriate? (Requirement 44 CFR)		ance
C2-a. Does the plan contain a narrative description or a table/list of their participation activities?	46-48, 53, 66-69	Y
C3. Does the plan include goals to reduce/avoid long-term vulne (Requirement 44 CFR § 201.6(c)(3)(i))	erabilities to the identified ha	zards?
C3-a. Does the plan include goals to reduce the risk from the hazards identified in the plan?	195	Y
C4. Does the plan identify and analyze a comprehensive range of projects for each jurisdiction being considered to reduce the effective and existing buildings and infrastructure? (Requirement 44)	ects of hazards, with emphas	
C4-a. Does the plan include an analysis of a comprehensive range of actions/projects that each jurisdiction considered to reduce the impacts of hazards identified in the risk assessment?	196-211	Y
C4-b. Does the plan include one or more action(s) per jurisdiction for each of the hazards as identified within the plan's risk assessment?	196-211	Y
C5. Does the plan contain an action plan that describes how the		
prioritized (including a cost-benefit review), implemented, and a		
prioritized (including a cost-benefit review), implemented, and a jurisdiction?(Requirement 44 CFR § 201.6(c)(3)(iv)); (Requirement Does the plan describe the criteria used for prioritizing		Y
	ent §201.6(c)(3)(iii))	Y

Element D: Plan Maintenance

Element D Requirements	Location in Plan (section and/or page number)	Met Y/N
D1. Is there discussion of how each community will continue pul maintenance process? (Requirement 44 CFR § 201.6(c)(4)(iii))	olic participation in the plan	
D1-a. Does the plan describe how communities will continue to seek future public participation after the plan has been approved?	213	Y
D2. Is there a description of the method and schedule for keepir evaluating and updating the mitigation plan within a five-year cy $44 \text{ CFR } \S 201.6(c)(4)(i))$		g,
D2-a. Does the plan describe the process that will be followed to track the progress/status of the mitigation actions identified within the Mitigation Strategy, along with when this process will occur and who will be responsible for the process?	213-215	Y
D2-b. Does the plan describe the process that will be followed to evaluate the plan for effectiveness? This process must identify the criteria that will be used to evaluate the information in the plan, along with when this process will occur and who will be responsible.	213-215	Y
D2-c. Does the plan describe the process that will be followed to update the plan, along with when this process will occur and who will be responsible for the process?	213-215	Y
D3. Does the plan describe a process by which each community the mitigation plan into other planning mechanisms, such as co improvement plans, when appropriate? (Requirement 44 CFR §	mprehensive or capital	ts of
D3-a. Does the plan describe the process the community will follow to integrate the ideas, information and strategy of the mitigation plan into other planning mechanisms?	215-217	Y
D3-b. Does the plan identify the planning mechanisms for each plan participant into which the ideas, information and strategy from the mitigation plan may be integrated?	217	Y
D3-c. For multi-jurisdictional plans, does the plan describe each participant's individual process for integrating information from the mitigation strategy into their identified planning mechanisms?	215-216	Y
Element D Required Revisions		
Required Revision:		

Element E: Plan Update

Element E Requirements	Location in Plan (section and/or page number)	Met Y/N
E1. Was the plan revised to reflect changes in development? (Re	equirement 44 CFR § 201.6(c	1)(3))
E1-a. Does the plan describe the changes in development that have occurred in hazard-prone areas that have increased or decreased each community's vulnerability since the previous plan was approved?	37-41	Y
E2. Was the plan revised to reflect changes in priorities and progression priorities and priorities priorities priorities and priorities prior	gress in local mitigation effor	ts?

Element E Requirements	Location in Plan (section and/or page number)	Met Y/N
E2-a. Does the plan describe how it was revised due to changes in community priorities?	17-18	Y
E2-b. Does the plan include a status update for all mitigation actions identified in the previous mitigation plan?	204-221	Y
E2-c. Does the plan describe how jurisdictions integrated the mitigation plan, when appropriate, into other planning mechanisms?	225-227	Y
Element E Required Revisions		
Required Revision:		

Element F: Plan Adoption

<u>Licincii i i i i i i i au Auoption</u>		
Element F Requirements	Location in Plan (section and/or page number)	Met Y/N
F1. For single-jurisdictional plans, has the governing body of the plan to be eligible for certain FEMA assistance? (Requirement 4		the
F1-a. Does the participant include documentation of adoption?		N/A
F2. For multi-jurisdictional plans, has the governing body of each plan to be eligible for certain FEMA assistance? (Requirement 4	•	d the
F2-a. Did each participant adopt the plan and provide documentation of that adoption?	Appendix 353-370	Y
Element F Required Revisions		
Required Revision:		

Element G: High Hazard Potential Dams (Optional)

HHPD Requirements	Location in Plan (section and/or page number)	Met Y/N
HHPD1. Did the plan describe the incorporation of existing plans information for HHPDs?	s, studies, reports and technic	al
HHPD1-a. Does the plan describe how the local government worked with local dam owners and/or the state dam safety agency?		N/A
HHPD1-b. Does the plan incorporate information shared by the state and/or local dam owners?		N/A
HHPD2. Did the plan address HHPDs in the risk assessment?		
HHPD2-a. Does the plan describe the risks and vulnerabilities to and from HHPDs?		N/A
HHPD2-b. Does the plan document the limitations and describe how to address deficiencies?		N/A
HHPD3. Did the plan include mitigation goals to reduce long-term	m vulnerabilities from HHPDs	?
HHPD3-a. Does the plan address how to reduce vulnerabilities to and from HHPDs as part of its own goals or with other long-term strategies?		N/A
HHPD3-b. Does the plan link proposed actions to reducing long-term vulnerabilities that are consistent with its goals?		N/A

HHPD Requirements	Location in Plan (section and/or page number)	Met Y/N
HHPD4-a. Did the plan include actions that address HHPDs and reduce vulnerabilities from HHPDs?	prioritize mitigation actions to)
HHPD4-a. Does the plan describe specific actions to address HHPDs?		N/A
HHPD4-b. Does the plan describe the criteria used to prioritize actions related to HHPDs?		N/A
HHPD4-c. Does the plan identify the position, office, department or agency responsible for implementing and administering the action to mitigate hazards to or from HHPDs?		N/A
HHPD Required Revisions		
Required Revision:		

Element H: Additional State Requirements (Optional)

Element H Requirements	Location in Plan (section and/or page number)	Met Y/N
This space is for the State to include additional requirements		
		N/A

Plan Assessment

These comments can be used to help guide your annual/regularly scheduled updates and the next plan update.

Element A. Planning Process

Element B. Risk Assessment

- The plan combines drought and expansive soils. Although drought often makes the effect of expansive soils more apparent, they are not mutually dependent. Drought is a climatologic hazard and expansive soils is a geologic hazard. It is strongly recommended that the plan separate these hazards in the profile.
- The plan mentions in a few different places that there is no data collected for Expansive soil events. Assure that any revisions do not generate contradictions.

Element C. Mitigation Strategy

Element D. Plan Maintenance

Element E. Plan Update

Element G. HHPD Requirements (Optional)

Element H. Additional State Requirements (Optional)

Austin County Hazard Mitigation Plan 2024 Update

Approved: April 10, 2025 Expiration: April 9, 2030

Acknowledgements

Austin County Office of Emergency Management, The City of Bellville, The City of Brazos Country, The City of Industry, The Town of San Felipe, The City of Sealy, The City of South Frydek, The City of Wallis, Bellville ISD, Brazos ISD, and Sealy ISD

Prepared by: The Houston-Galveston Area Council
Amanda Ashcroft, AICP

Table of Contents

TABLE OF CONTENTS	2
LIST OF ACRONYMS	7
LIST OF TABLES AND FIGURES	g
LIST OF APPENDICES	
SECTION 1: INTRODUCTION	17
History	
Purpose of Plan	
Planning Need	
SCOPE OF THE PLAN	
PLAN ORGANIZATION	
SECTION 2: PLANNING PROCESS	21
OVERVIEW	
PLANNING TEAM	
HAZARD MITIGATION COMMITTEE	
OTHER INVITEES	
MEETING DATES & DETAILS	
March 22, 2023: Hazard Mitigation Kickoff Meeting	
June 21, 2023: Public Outreach Strategy	
July 19 & 20, 2023: Public Hearing Events	
October 4 & 25, 2023: Our Mitigation Strategy (Goals, Actions, and the Action Plan), Part I & II	
January 24, 2024: Draft Plan Review	27
PARTICIPATION & PUBLIC INPUT.	27
PLAN DEVELOPMENT RESOURCES	29
SECTION 3: COUNTY PROFILE	31
HISTORY OF HAZARD EVENTS	31
PLANNING AREA OVERVIEW	32
GEOGRAPHIC SETTING	34
Soil Composition	
Hydrologic Features	
LAND USE AND LAND COVER	37
Zoning	38
Building Codes	
Future Development	
POPULATION AND DEMOGRAPHICS	
VULNERABLE POPULATION	
HOUSING AND LIVING ARRANGEMENTS	46
HAZUS ANALYSIS- LOSS ESTIMATIONS	46
Debris Generation	
Shelter Requirements	
CRITICAL FACILITIES AND LIFELINES	
NATIONAL FLOOD INSURANCE PROGRAM (NFIP) PARTICIPATION	∆ C

THE COMMUNITY RATING SYSTEM (CRS)	50
Repetitive Loss and Severe Repetitive Loss Properties	51
NFIP Policies In-Force	
NFIP Claims	52
SECTION 4: RISK ASSESSMENT	54
RISK ASSESSMENT	54
HAZARDS RANKED BY RISK	55
SECTION 5: CAPABILITY ASSESSMENT	57
CAPABILITY ASSESSMENT	57
LIST OF EXISTING PLANS & REGULATIONS	57
CAPABILITY LIMITATIONS AND EXPANSION OPPORTUNITIES	57
SECTION 6: HAZARD IDENTIFICATION & RISK ANALYSIS	61
6.1 FLOODING	63
LOCATION	63
Extent	68
HISTORIC OCCURRENCES	77
Presidential Disaster Declarations	78
USDA Disaster Declarations	
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	83
National Risk Index	
CLIMATE CHANGE IMPACTS	86
6.2 WILDFIRE	89
LOCATION	89
Extent	91
HISTORIC OCCURRENCES	96
Presidential Disaster Declarations	98
USDA Disaster Declarations	99
PROBABILITY OF FUTURE OCCURRENCES	99
POPULATIONS AT RISK	99
National Risk Index	
CLIMATE CHANGE IMPACTS	104
6.3 SEVERE THUNDERSTORM & LIGHTNING	106
LOCATION	107
Extent	108
HISTORIC OCCURRENCES	111
Presidential Disaster Declarations	
USDA Disaster Declarations	
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	
National Risk Index	
CLIMATE CHANGE IMPACTS	118

6.4 TORNADO/ MICROBURST	120
LOCATION	
Extent	
HISTORIC OCCURRENCES	
Presidential Disaster Declarations	124
USDA Disaster Declarations	124
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	
National Risk Index	125
CLIMATE CHANGE IMPACTS	
6.5 EROSION	
LOCATION	131
Extent	
HISTORIC OCCURRENCES	
Presidential Disaster Declarations	
USDA Disaster Declarations	134
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	
CLIMATE CHANGE IMPACTS	
6.6 WINTER WEATHER	137
LOCATION	
Extent	
HISTORIC OCCURRENCES	
Presidential Disaster Declarations	
USDA Disaster Declarations	
PROBABILITY OF FUTURE OCCURRENCES.	
POPULATIONS AT RISK	
National Risk Index	
CLIMATE CHANGE IMPACTS	
6.7 DROUGHT & EXPANSIVE SOILS	151
LOCATION	
Extent	
HISTORIC OCCURRENCES	
Presidential Disaster Declarations	
USDA Disaster Declarations	
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	
National Risk Index	
CLIMATE CHANGE IMPACTS	
6.8 WINDSTORM	166
Location	
Extent	
HISTORIC OCCURRENCES	
DISTURIC UCCURRENCES	LOX

Presidential Disaster Declarations	170
USDA Disaster Declarations	170
PROBABILITY OF FUTURE OCCURRENCES	170
POPULATIONS AT RISK	171
National Risk Index	171
CLIMATE CHANGE IMPACTS	174
6.9 HAIL	177
LOCATION	178
Extent	178
HISTORIC OCCURRENCES	180
Presidential Disaster Declarations	182
USDA Disaster Declarations	182
PROBABILITY OF FUTURE OCCURRENCES	182
POPULATIONS AT RISK	182
National Risk Index	183
CLIMATE CHANGE IMPACTS	186
6.10 HURRICANES, TROPICAL STORMS, AND TROPICAL DEPRESSIONS	188
LOCATION	189
Extent	190
HISTORIC OCCURRENCES	192
Presidential Disaster Declarations	192
USDA Disaster Declarations	193
PROBABILITY OF FUTURE OCCURRENCES	193
POPULATIONS AT RISK	193
National Risk Index	
CLIMATE CHANGE IMPACTS	197
6.11 EXTREME HEAT	199
LOCATION	199
Extent	200
HISTORIC OCCURRENCES	201
Presidential Disaster Declarations	
USDA Disaster Declarations	201
PROBABILITY OF FUTURE OCCURRENCES	202
POPULATIONS AT RISK	
CLIMATE CHANGE IMPACTS	
CLIMATE CHANGE IMPACTS	203
6.12 DAM/LEVEE FAILURE	
LOCATION	
Extent	
HISTORIC OCCURRENCES	
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	210
CLIMATE CHANGE IMPACTS	210

6.13 EMERGING INFECTIOUS DISEASES	212
LOCATION	212
Extent	212
HISTORIC OCCURRENCES	212
Presidential Disaster Declarations.	
USDA Disaster Declarations	
PROBABILITY OF FUTURE OCCURRENCES	213
POPULATIONS AT RISK	214
CLIMATE CHANGE IMPACTS	214
6.14 CYBERSECURITY	216
LOCATION	216
Extent	
HISTORIC OCCURRENCES	
Presidential Disaster Declarations.	
USDA Disaster Declarations.	
PROBABILITY OF FUTURE OCCURRENCES	
POPULATIONS AT RISK	
CLIMATE CHANGE IMPACTS	
SECTION 7: MITIGATION STRATEGY	219
MISSION STATEMENT	
GOALS	
OBJECTIVES	
MITIGATION ACTION PLAN	
ALL PARTICIPATING JURISDICTIONS MITIGATION ACTIONS	
JURISDICTION SPECIFIC MITIGATION ACTIONS	
Austin County	
Bellville	
Brazos Country	
Industry	220
Sealy	
South Frydek	
Wallis	
Bellville ISD	235
Brazos ISD	
Sealy ISD	237
SECTION 8: PLAN MAINTENANCE	239
Public Involvement	239
Procedures & Schedule	239
PLAN INTEGRATION	241
DEEEDENICES	244

List of Acronyms

ASDSO	The Association of State Dam Safety Officials
ASL	above sea level
ASTDR	The Agency for Toxic Substances and Disease Registry
CDC	The Centers for Disease Control and Prevention
CFM	Certified Floodplain Manager
COLE	Coefficient of Linear Extent
CRS	The Community Rating System
DBIR	Data Breach Investigations Report
DDoS	Distributed Denial of Service
DMA 2000	The Disaster Mitigation Act of 2000
EAL	Expected annual loss
EDT	Eastern Daylight Time
EID	Emerging Infectious Diseases
EM	Emergency
FDPO	Flood Damage Prevention Ordinance
FEMA	Federal Emergency Management Agency
FIRMs	Flood Insurance Rate Maps
FIS	Characteristic Fire Intensity Scale
FMA	Flood Mitigation Assistance
FPF	Federal Policy Fee
FSA	Farm Service Agency
GIS	Geographic Information Systems
H-GAC	The Houston-Galveston Area Council
HHPD	High Hazard Potential Dam
HMA	Hazard Mitigation Assistance
HMC	Hazard Mitigation Committee
HMP	Hazard Mitigation Plan
ICC	Increased Cost of Compliance
K	Susceptibility of the soil to water erosion
LEP	Linear Extensibility Percent
LS	Combined effects of slope length and steepness
NCC	The Network Control Center
NCDC	The National Climatic Data Center
NCEI	The NOAA National Center for Environmental Information
NDFD	The National Digital Forecast Database
NFIP	National Flood Insurance Program
NHC	National Hurricane Center
NLDN	The National Lightning Detection Network
nmi	nautical miles
NOAA	The National Oceanic and Atmospheric Administration
NOHRSC	National Operational Hydrologic Remote Sensing Center

NRI National Risk Index

NSSL NOAA's National Severe Storms Laboratory

NWS The National Weather Service

P probability

PMT Plan Maintenance Team

PT Planning Team

PVI Pandemic Vulnerability Index
R Rainfall and runoff factor

RHMP Regional Hazard Mitigation Plan

RL repetitive loss

RUSLE The Revised Universal Soil Loss Equation

S severity

SED State Executive Director
SFHA special flood hazard areas
SPC Storm Prediction Center
SRL severe repetitive loss

SVI Social Vulnerability Index

TCEQ The Texas Commission on Environmental Quality
TDEM The Texas Division of Emergency Management

TWDB Texas Water Development Board

List of Tables and Figures

Table 2.1: Austin County Planning Team Members	22
Table 2.2: Austin County Hazard Mitigation Committee Members	
Table 2.3: Other Invitees	23
Table 2.4: Participation Matrix	25
Table 3.1: Presidential Disaster Declarations	31
Table 3.2: Austin County Population Trends, 1970 to 2020	42
Table 3.3: Building Exposure by Occupancy Type for the Scenario	46
Table 3.4: Critical Facilities & Community Lifelines	48
Table 3.5: NFIP Participation	49
Table 3.6: Community Participation in the CRS Program	51
Table 3.7: RL and SRL Properties, Austin County	51
Table 3.8: NFIP Insured Properties by Community, Austin County ³²	52
Table 3.9: NFIP Claims, State of Texas ^{32,}	52
Table 5.1: Existing Plans and Regulations by Participating Jurisdictions	57
Table 5.2: Capability Limitations and Expansion Opportunities by Participating Jurisdictions	58
Table 6.1.1: NWS Flood Categories	68
Table 6.1.2: Austin County Flood Events (1950-2023)	77
Table 6.1.3: Federally Declared Disasters, Flood	78
Table 6.1.4: USDA Declared Disasters (2018-2023), Flood	79
As seen in Section 3- Table 3.10: Community Participation in the NFIP and CRS Program ²⁸	79
As seen in Section 3- Table 3.11: RL and SRL Properties, Austin County	81
Table 6.1.5: FMA RL and SRL Properties, Austin County	81
As seen in Section 3- Table 3.12: NFIP Insured Properties by Community, Austin County	82
As seen in Section 3- Table 3.13: NFIP Claims, Austin County	82
Table 6.1.6 Probability of Future Occurrence, Flooding	83
Table 6.1.7: Austin County Property Risk Levels	84
Table 6.1.8: Expected Annual Loss	84
Table 6.1.9: Climate Change Impacts, Flooding	87
Table 6.2.1: Characteristic FIS Descriptions	91
Table 6.2.2: Fire Intensity Scale Acreage, Austin County	91
Table 6.2.3: Fire Ignition Point Causes (2019-2021)	9 <i>6</i>
Table 6.2.4: Disaster Declarations, Wildfire	99
Table 6.2.5: USDA Declared Disasters (2018-2023), Wildfire	99
Table 6.2.6: Community Protection Zones, Austin County	100
Table 6.2.7: Expected Annual Loss, Wildfire	102
Table 6.2.8: Climate Change Impacts, Wildfire	104
Table 6.3.1: Types of Thunderstorms	106
Table 6.3.2: Types of Lightning	107
Table 6.3.3: NWS Lightning Threat Levels	109
Table 6.3.4: Austin County Severe Thunderstorm and Lightning Events (1950-2023)	111
Table 6.3.5: Federal Disaster Declarations, Severe Thunderstorm	
Table 6.3.6: USDA Declared Disasters (2018-2023), Severe Thunderstorm and Lightning	
Table 6.3.7: Expected Annual Loss Exposure Values, Severe Thunderstorms and Lightning	

Table 6.3.8: Expected Annual Loss Values, Severe Thunderstorms and Lightning	. 116
Table 6.3.9: Climate Change Impacts, Severe Thunderstorm and Lightning	. 118
Table 6.4.1: Enhanced Fujita Scale Descriptions	. 122
Table 6.4.2: EF-Scale Damage Indicators	. 122
Table 6.4.3:Tornado Occurrences, Austin County	. 124
Table 6.4.4: Federal Disaster Declarations, Tornado/ Microburst	. 124
Table 6.4.5: USDA Declared Disasters (2018-2023), Tornado/ Microburst	
Table 6.4.6: Expected Annual Loss Exposure Values, Tornado/ Microburst	
Table 6.4.7: Expected Annual Loss Values, Tornado/ Microburst	
Table 6.4.8: Climate Change Impacts, Tornado/ Microburst	
Table 6.5.1: Types of Erosion	. 130
Table 6.5.2: K Factor, Soil Erodibility Scores	. 131
Table 6.5.3: USDA Declared Disasters (2018-2023), Erosion	. 134
Table 6.5.4: Climate Change Impacts, Erosion	. 135
Table 6.6.1: Winter Storm Severity Index Datasets	. 137
Table 6.6.2: Winter Storm Severity Index Impact Classifications and Definitions	
Table 6.6.3: Winter Weather-Related Warnings, Watches, and Advisories	
Table 6.6.4: Historic Occurrences, Winter Weather	. 142
Table 6.6.5: Federal Disaster Declarations, Winter Weather	. 142
Table 6.6.6: USDA Disaster Declarations (2018-2023), Winter Weather	. 142
Table 6.6.7: Annualized Frequency Values, Cold Wave, Ice Storm, and Winter Weather	
Table 6.6.8: Expected Annual Loss Exposure Values, Cold Wave, Ice Storm, and Winter Weather	
Table 6.6.9: Expected Annual Loss Values, Cold Wave, Ice Storm, and Winter Weather	. 145
Table 6.6.10: Climate Change Impacts, Winter Weather	. 149
Table 6.7.1: Drought Classifications	. 151
Table 6.7.2: Linear Extensibility Percent & Coefficient of Linear Extent for Expansive Soils	. 156
Table 6.7.3: Austin County Drought Events (1950-2023)	. 157
Table 6.7.4: USDA Declared Disasters (2018-2023), Drought	. 158
Table 6.7.5: Expected Annual Loss, Drought	
Table 6.7.6: Climate Change Impacts, Drought & Expansive Soils	. 164
Table 6.8.1: Types of Damaging Winds	. 166
Table 6.8.2: Beaufort Wind Scale	. 167
Table 6.8.3: Wind-Related Warnings, Watches, and Advisories	. 167
Table 6.8.4: Austin County Wind Events (1950-2023)	. 168
Table 6.8.5: Federal Disaster Declarations, Tornado/ Microburst	. 170
Table 6.8.6: USDA Declared Disasters (2018-2023), Windstorms	. 170
Table 6.8.7: Expected Annual Loss Exposure Values, Strong Win	. 172
Table 6.8.8: Expected Annual Loss Values, Strong Wind	. 172
Table 6.8.9: Climate Change Impacts Summary, Windstorm	. 175
Table 6.9.1: Types of Frozen Precipitation	. 177
Table 6.9.2: Severe Hail Threat Levels and Descriptions	. 179
Table 6.9.3: TORRO Hail Intensity Scale	
Table 6.9.4: Austin County Hail Events (1950-2023)	. 180
Table 6.9.5: USDA Declared Disasters (2018-2023), Hail	. 182
Table 6.9.6: Expected Annual Loss Exposure Values, Hail	. 183
Table 6.9.7: Expected Annual Loss Values, Strong Wind	. 183

Table 6.9.8: Climate Change Impacts Summary, Hail	. 186
Table 6.10.1: Tropical Cyclone Classifications	. 188
Table 6.10.2: Tropical Watches and Warnings	. 188
Table 6.10.3: The Saffir-Simpson Hurricane Wind Scale	. 191
Table 6.10.4: Austin County Hurricane, Tropical Storms, and Tropical Depressions (1950-2023)	. 192
Table 6.10.5: Federal Disaster Declarations for Hurricane, Tropical Storms, and Tropical Depressions	. 192
Table 6.10.6: USDA Declared Disasters (2018-2023), Hurricane, Tropical Storms, and Tropical Depression	s193
Table 6.10.7: Expected Annual Loss Exposure Values, Hurricane	. 194
Table 6.10.8: Expected Annual Loss Values, Hurricane	. 195
Table 6.10.9: Climate Change Impacts Summary, Hurricane, Tropical Storms, and Tropical Depressions	. 197
Table 6.11.1: Heat Related Watches and Warnings	. 199
Table 6.11 2: Heat Index	
Table 6.11.3: Austin County Heat Events (1950-2023)	. 201
Table 6.11.4: USDA Declared Disasters (2018-2023), Extreme Heat	. 202
Table 6.11.5: Expected Annual Loss Exposure Values, Heat Wave	. 205
Table 6.11.6: Expected Annual Loss Values, Heat Wave	
Table 6.11.7: Climate Change Impacts Summary, Extreme Heat	
Table 6.12.1: Dam Failure Causes	. 207
Table 6.12.2: Dam Hazard Classifications	
Table 6.12.5: Austin County Dams and Hazard Potential Totals	. 209
Table 6.12.3: Climate Change Impacts Summary, Dam/Levee Failure	
Table 6.13.1: Historic Pandemic Occurrences in the US	. 212
Table 6.13.2: Federal Disaster Declarations for Emerging Infectious Diseases	. 212
Table 6.13.3: USDA Declared Disasters (2018-2023), Emerging Infectious Diseases	
Table 6.13.4: Climate Change Impacts Summary, Emerging Infectious Diseases	
Table 6.14.1:Key terms and definitions for Cybersecurity	
Table 7.1: 2018 HMP Action Items- Austin County and All Participating Jurisdictions	
Table 7.2: 2018 HMP Action Items- City of Bellville	. 223
Table 7.3: 2018 HMP Action Items- City of Brazos Country	
Table 7.4: 2018 HMP Action Items- Town of San Felipe	
Table 7.5: 2018 HMP Action Items- City of Sealy	
Table 7.6: 2018 HMP Action Items- City of Wallis	
Table 8.1.1: Plan Maintenance Team	
Table 8.1.2: Plan Maintenance: Evaluation & Monitoring Procedures	
Table 8.1.3: Adoption and Integration Procedures	
Table 8.1.4: Integration of HMP and Planning Mechanisms	. 243
Figure 3.1: Planning Area Map	
Figure 3.2: Austin County Boundaries, 3 Largest Cities Location	
Figure 3.3: Austin County Elevation	
Figure 3.4: Austin County Expansive Soils	
Figure 3.5: Austin County Hydrologic Features	
Figure 3.6: Austin County Land Cover, 2022	
Figure 3.7: Austin County Land Cover Change, 2001-2021 ¹⁴	
Figure 3.8: City of Bellville Zoning Map	39

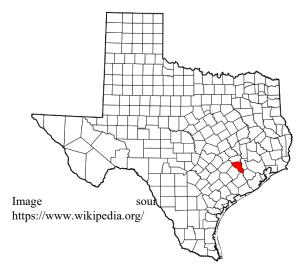
Figure 3.9: Population Distribution Map	42
Figure 3.10: Vulnerable Population Index	43
Figure 3.11: Austin County Overall CDC/ASTDR Social Vulnerability	44
Figure 3.12: Austin County Themes for CDC/ASTDR Social Vulnerability	45
Figure 3.13: Debris Breakdown in Tons	47
Figure 3.14: Displaced Population/Persons Seeking Short-Term Public Shelter	47
Figure 6.1.1: Floodplain Location, Austin County	64
Figure 6.1.2: Floodplain Location, City of Bellville	64
Figure 6.1.3: Floodplain Location, City of Brazos Country	65
Figure 6.1.4: Floodplain Location, City of Industry	65
Figure 6.1.5: Floodplain Location, Town of San Felipe	66
Figure 6.1.6: Floodplain Location, City of Sealy	66
Figure 6.1.7: Floodplain Location, City of South Frydek	67
Figure 6.1.8: Floodplain Location, City of Wallis	67
Figure 6.1.9: Flood Depth (1%), Austin County	69
Figure 6.1.10: Flood Depth (0.2%), Austin County	69
Figure 6.1.11: Flood Depth (1%), South Frydek	70
Figure 6.1.12: Flood Depth (0.2%), South Frydek	70
Figure 6.1.13: Flood Depth (0.2%), Industry	71
Figure 6.1.14: Flood Depth (1%), Industry	71
Figure 6.1.15: Flood Depth (1%), Bellville	72
Figure 6.1.16: Flood Depth (0.2%), Bellville	72
Figure 6.1.17: Flood Depth (1%), Sealy	73
Figure 6.1.18: Flood Depth (0.2%), Sealy	73
Figure 6.1.19: Flood Depth (1%), San Felipe	74
Figure 6.1.20: Flood Depth (0.2%), Sam Felipe	74
Figure 6.1.21: Flood Depth (1%), Brazos Country	75
Figure 6.1.22: Flood Depth (0.2%), Brazos Country	75
Figure 6.1.23: Flood Depth (1%), Wallis	76
Figure 6.1.24: Flood Depth (0.2%), Wallis	
Figure 6.1.25: Risk Index by Census Tract, Riverine Flooding	85
Figure 6.1.26: Social Vulnerability by Census Tract, Austin County	85
Figure 6.1.27: Community Resilience by Census Tract, Austin County	86
Figure 6.1.28: FEMA NRI Summary, Riverine Flooding	86
Figure 6.2.1: WUI Zones, Austin County	90
Figure 6.2.2: Wildfire Risk, Austin County	92
Figure 6.2.3: Wildfire Risk, City of Bellville	92
Figure 6.2.4: Wildfire Risk, City of Brazos Country	93
Figure 6.2.5: Wildfire Risk, City of Industry	93
Figure 6.2.6: Wildfire Risk, Town of San Felipe	94
Figure 6.2.7: Wildfire Risk, City of Sealy	94
Figure 6.2.8: Wildfire Risk, City of South Frydek	95
Figure 6.2.9: Wildfire Risk, City of Wallis	
Figure 6.2.10: Fire Ignition Points (2000-2023), Austin County	96
Figure 6.2.11: Wildfire Ignition Density, Austin County	98
Figure 6.2.12: Community Protection Zones, Austin County	100

Figure 6.2.13: Risk Index by Census Tract, Wildfire	102
Figure 6.2.14: Social Vulnerability by Census Tract, Austin County	103
Figure 6.2.15: Community Resilience by Census Tract, Austin County	103
Figure 6.2.16: FEMA NRI Summary, Wildfire	104
Figure 6.3.1: Annual Mean Thunderstorm Days (1993-2018)	107
Figure 6.3.2: Severe Thunderstorm Risk Categories	
Figure 6.3.3: Total Pulse Density, Austin County	110
Figure 6.3.5: Lightning Events per Year	114
Figure 6.3.6: Risk Index by Census Tract, Lightning	116
Figure 6.3.7: Social Vulnerability by Census Tract, Austin County	
Figure 6.3.8:: Community Resilience by Census Tract, Austin County	117
Figure 6.3.9: FEMA NRI Summary, Lightning	
Figure 6.4.1: Annual Tornadoes per State, 1993-2022	120
Figure 6.4.2: Tornadoes per County, 1950-2022	121
Figure 6.4.3: Tornado Paths, Austin County	123
Figure 6.4.4: Risk Index by Census Tract, Tornado	126
Figure 6.4.5: Social Vulnerability by Census Tract, Austin County	127
Figure 6.4.6: Community Resilience by Census Tract, Austin County	127
Figure 6.4.7: FEMA NRI Summary, Tornado	128
Figure 6.5.1: Soil Erodibility Scores, Austin County	132
Figure 6.5.2: Estimated Sheet and Rill Erosion Rate on Cropland within the U.S.	133
Figure 6.6.1: NWS Wind Chill Chart	139
Figure 6.6.2: Risk Index by Census Tract, Cold Wave	145
Figure 6.6.3: Risk Index by Census Tract, Ice Storm	146
Figure 6.6.4: Risk Index by Census Tract, Winter Weather	146
Figure 6.6.5: Social Vulnerability by Census Tract, Austin County	147
Figure 6.6.6: Community Resilience by Census Tract, Austin County	147
Figure 6.6.7: FEMA NRI Summary, Cold Wave	148
Figure 6.6.8: FEMA NRI Summary, Ice Storm	148
Figure 6.6.9: FEMA NRI Summary, Winter Weather	148
Figure 6.7.1: Expansive Soils, Austin County	
Figure 6.7.2: Expansive Soils, City of Bellville	152
Figure 6.7.3: Expansive Soils, City of Brazos Country	153
Figure 6.7.4 Expansive Soils, City of Industry	153
Figure 6.7.5 Expansive Soils, Town of San Felipe	154
Figure 6.7.6: Expansive Soils, City of Sealy	154
Figure 6.7.7: Expansive Soils, City of South Frydek	
Figure 6.7.8: Expansive Soils, City of Wallis	155
Figure 6.7.9: Drought Monitor Categories	156
Figure 6.7.10: U.S. Drought Monitor for Austin County (2000-2024)	157
Figure 6.7.11: Secretarial Disaster Designations for CY 2023, Primary and Contiguous	159
Figure 6.7.12: Risk Index by Census Tract, Drought	
Figure 6.7.13: Social Vulnerability by Census Tract, Austin County	162
Figure 6.7.14: Community Resilience by Census Tract, Austin County	163
Figure 6.7.15: FEMA NRI Summary, Drought	163
Figure 6.8.1: Risk Index by Census Tract, Strong Wind	173

Figure 6.8.2: Social Vulnerability by Census Tract, Austin County	173
Figure 6.8.3: Community Resilience by Census Tract, Austin County	174
Figure 6.8.4: FEMA NRI Summary, Strong Wind	174
Figure 6.9.1:Previous Occurrences of Hail Locations, Austin County	
Figure 6.9.2: Risk Index by Census Tract, Hail	184
Figure 6.9.3: Social Vulnerability by Census Tract, Austin County	185
Figure 6.9.4: Community Resilience by Census Tract, Austin County	185
Figure 6.9.5: FEMA NRI Summary, Hail	186
Figure 6.10.1: Historical Hurricane Tracks, Austin County	
Figure 6.10.2: Risk Index by Census Tract, Hurricane	195
Figure 6.10.3: Social Vulnerability by Census Tract, Austin County	196
Figure 6.10.4: Community Resilience by Census Tract, Austin County	196
Figure 6.10.5: FEMA NRI Summary, Hurricane	197
Figure 6.11.1: NOAA NWS Heat Index	200
Figure 6.11.2: Temperature Projections for 2050, Number of days per year above 90°F	202
Figure 6.11.3: Temperature Projection for 2050, Number of days per year warmer then the top 1%	203
Figure 6.12.1: Dam Locations in Austin County	208
Figure 6.13.2: Pandemic Vulnerability Index, Austin County	213
Figure 6.13.3: Pandemic Vulnerability Index Ranking Legend	214

List of Appendices

Appendix A	Hazus Results
Appendix B	H-GAC Maps
Appendix C	Critical Facilities


Meeting Documentation

Appendix E Appendix F Survey Results Plan Adoption

Section 1: Introduction

In 2011, Austin County's Hazard Mitigation Plan was updated as part of a seven-county Regional Hazard Mitigation Plan (RHMP) led by the Houston-Galveston Area Council (H-GAC). In 2018, due to new regulations and planning recommendations, Austin County prepared a countywide multi-jurisdictional Hazard Mitigation Plan (HMP). Austin County partnered with H-GAC for the 2006, 2011, and 2018 plans and continued this partnership during the development and adoption of this most recent HMP update for 2023/2024.

History

On April 28, 2006, the Federal Emergency Management Agency (FEMA) and the Texas Division of Emergency

Management (TDEM) approved the first RHMP which was later updated in 2011. These RHMPs were a collaboration between 85 local governments to identify regional hazards, vulnerabilities, and 300+ mitigation projects that could be implemented within the region. The 2018, due to new regulation and planning recommendations, Austin County prepared a new countywide multijurisdictional HMP that included a more robust assessment of natural hazards, newly uncovered vulnerabilities, more advanced analysis techniques, and a more effective and informed mitigation strategy. Austin County partnered with the H-GAC for both the 2006 and 2011 plans and continued this partnership during the development and adoption of the 2018 HMP. In this HMP update for 2024, Austin County is continuing its partnership with H-GAC.

Purpose of Plan

The purpose of Austin County's HMP is to reduce the loss of life and property within the county, lessen the negative impacts of natural disasters, and increase the resiliency of the county and communities within the county to hazards. Vulnerability to several natural hazards has been identified through a risk assessment, public input, research, and analysis. These hazards threaten the safety of residents and have the potential to damage or destroy both public and private property, disrupt the local economy, and impact the overall quality of life of individuals who live, work, and play in the county. While natural hazards cannot be eliminated, the effective reduction of a hazard's impact can be accomplished through thoughtful planning and action.

The concept and practice of reducing risks to people and property from known hazards is generally referred to as hazard mitigation. One of the most effective tools a community can use to reduce hazard vulnerability is developing, adopting, and updating a HMP as needed. A HMP establishes the broad community vision and guiding principles for reducing hazard risk, including the development of specific mitigation actions designed to eliminate or reduce identified vulnerabilities.

Planning Need

HMPs should serve as a living document that outlines the communities' long-term strategies to reducing damage to life, and property, and increasing the county and community's resilience to the natural hazards it is affected by. HMPs must be updated every 5 years per the Disaster Mitigation Act of 2000 (DMA 2000). This plan serves as the 2024 multijurisdictional HMP update to the 2018 Austin County HMP. The 2024 Austin County HMP adhered to the FEMA updated policy guide (FP-206-21-0002),

Released on April 19, 2022. The new policy guide became effective on April 19, 2023. Updates included but were not limited to expanding outreach efforts to include those from various community lifelines within the county in the planning process, extensive mapping updates to critical facilities, community lifelines, and other data to visually highlight vulnerabilities to identified hazards, updating the process for risk and capability assessments, and including new hazards to incorporate based on recent events such as winter storms and the Covid-19 Pandemic.

Scope of the Plan

This HMP update includes the following participating jurisdictions:

- Austin County (Unincorporated)
- City of Bellville
- City of Brazos Country
- City of Industry*
- Town of San Felipe
- City of Sealy
- City of South Frydek*
- City of Wallis
- Bellville ISD*
- Brazos ISD*
- Sealy ISD*

Jurisdictions that were added to this most recent HMP update are denoted with a *

The HMP profiles the following hazards:

- Flooding
- Wildfire
- Severe Thunderstorms & Lightning
- Tornado/Microbursts
- Erosion
- Winter Weather
- Drought & Expansive Soils
- Windstorm
- Hail
- Hurricanes, Tropical Storms & Depressions
- Extreme Heat
- Dam/Levee Failure
- Emerging Infectious Disease
- Cybersecurity

Plan Organization

The 2024 Austin County HMP contains 8 sections:

<u>Section 1</u> is the introduction of the plan. This section contains background context, the planning need, purpose, scope, and organization of the HMP.

<u>Section 2</u> identifies the planning process, which involves a description of the HMP methodology and development process, identifying Planning Team members, Hazard Mitigation Committee members, roles and responsibilities of those members, stakeholder involvement efforts, meeting dates and summaries, and plan development resources.

<u>Section 3</u> contains the county profile, which provides a history of hazard events, an overview of the planning area, geographic setting, land use and land cover, population demographics, vulnerable population information, housing and household arrangements, loss estimations, and critical facilities, repetitive loss, and severe repetitive loss properties, NFIP and CRS participants, and NFIP policies in force information can be found here.

<u>Section 4</u> outlines the risk assessment procedures, identifies hazards ranked by risk, and summarizes the hazards that affect Austin County and the history of hazard events for those identified risks within the county.

<u>Section 5</u> includes the capability assessment, which includes a summary and description of the existing plans, programs, and regulatory mechanisms that support hazard mitigation within the planning area.

<u>Section 6</u> is broken down into subsections for each hazard of concern to the county and participating jurisdictions identified during the risk assessment. It contains descriptions of identified hazards, hazard location, extent, history of events, probability of future events, and climate change impacts. Additionally, vulnerability is addressed for all hazards and includes a probable risk level, an estimate of property and crop damages, hazard ranking, number of events, fatalities and injuries, average annual events, changes in frequency, and estimated annualized losses where applicable.

<u>Section 7</u> is the mitigation strategy summary, which reviews changes in priorities, mitigation goals, and objectives in response to hazards of concern, evaluation of prior actions, progress in mitigation efforts, new actions, and the local mitigation strategy.

<u>Section 8</u> covers plan maintenance procedures which includes information on monitoring, evaluating, and updating the plan, and description of how this HMP will be incorporated into existing programs.

The appendices cover the county-level hazard summary data (Hazus), maps, A comprehensive list of critical facilities, meeting documentation, and plan adoption.

Appendix A- Hazus Results Appendix B- H-GAC Maps Appendix C- Critical Facilities Appendix D- Meeting Documentation Appendix E- Survey Results Appendix F- Plan Adoption

Section 2: Planning Process

This section summarizes the planning process, which involves a description of the HMP methodology and development process, identifying Planning Team members, Hazard Mitigation Committee members, roles and responsibilities of those members, stakeholder involvement efforts, meeting dates and summaries, and plan development resources.

Section 2: Planning Process

Overview

Hazard mitigation is any sustained action taken to reduce or eliminate the long-term risk to people and property from hazards and their effects. It includes long-term solutions that reduce the impact of disasters in the future. A core assumption of hazard mitigation is that pre-disaster investments will significantly reduce the demand for post-disaster assistance by alleviating the need for emergency response, repair, recovery, and reconstruction.

Hazard mitigation planning is the process of identifying natural hazards, assessing hazard vulnerability and risk, understanding community capabilities and resources, and determining how to minimize or manage those risks. In partnership with Austin County, H-GAC approached the hazard mitigation planning process by establishing a Planning Team (PT) and a Hazard Mitigation Committee (HMC) as outlined in the tables below. The PT included H-GAC staff and the point of contact for the County's Office of Emergency Management. The HMC was comprised of representatives from Austin County, including the participating jurisdictions of the City of Bellville, City of Brazos Country, City of Industry, Town of San Felipe, City of Sealy, City of South Frydek, City of Wallis, Bellville ISD, Sealy ISD, and Brazos ISD. Invitations were sent to a wide range of stakeholders within the County to participate in the HMC or attend an HMP meeting throughout the planning process via email, city websites, the H-GAC website, and social media postings. All meetings hosted for this plan update were open to the public.

HMC members were given a document titled "Hazard Mitigation Committee Expectations" to read and sign, which included the following:

- 1) Participate in the process.
 - a) It must be documented in the plan that each participating jurisdiction participates in the process that generated the plan. At each meeting of the HMC for this planning process, we will be documenting attendance, participation, and the collection of any handouts or worksheets provided to you. If you cannot attend the scheduled HMC meeting, attendance can be supplemented with a 1-1 meeting with H-GAC staff.
- 2) Consistency Review.
 - a) Review of existing documents pertinent to each jurisdiction
- 3) Action Review.
 - a) For plan updates, a review of the strategies from your prior action plan to determine those that have been accomplished and how they were accomplished; and why those that have not been accomplished were not completed.
- 4) Update Localized Risk Assessment.
 - a) Each jurisdiction will complete the Risk Identification/Risk Assessment by either working individually and averaging scores among all participating jurisdictions, working together as a group, or a combination of both to remove hazards not associated with the defined jurisdictional area or determining if any hazards need to be added or updated.
- *5) Capability assessment.*
 - a) Each planning partner must identify and review their individual regulatory, technical, and financial capabilities with regards to the implementation of hazard mitigation actions.
- 6) Personalize mitigation recommendations & create an Action Plan.
 - a) Identify and prioritize mitigation recommendations specific to each jurisdiction's defined area.
- 7) Incorporate Public Participation.
 - a) Representatives from a broad range of sectors, community lifelines, organizations that support underserved communities, the public and community-based organizations need to be given the

opportunity to provide input on, and participate in, the planning process. The HMC will assist with various tasks, when needed, for these types of events.

Planning Team

Austin County and H-GAC established the PT in February 2023 during a pre-kickoff meeting in preparation for the full kickoff meeting held on March 22, 2023. Members were asked to attend all public meetings either in person or online (if applicable). Meeting materials such as worksheets, forms, meeting notes, and documentation of events shared to the public are provided in Appendix D. Representatives from the County Office of Emergency Management served as liaisons between H-GAC and stakeholders, staff, and members of the public who were unable to attend the meetings.

Table 2.1: Austin County Planning Team Members

Representative Name & Position/Title	Jurisdiction
Roy Mercer, Emergency Management Coordinator	Austin County
Cheryl Mergo, Senior Manager	H-GAC
Amanda Ashcroft, AICP, Planner	H-GAC

Hazard Mitigation Committee

Austin County and H-GAC established the HMC in February 2023 in preparation for the kickoff meeting held on 3/22/2023. Members were asked to attend all public meetings either in person or online (if applicable). Meeting materials such as worksheets, forms, meeting notes, and documentation of events shared to the public are provided in Appendix D. Representatives from the County Office of Emergency Management served as liaisons between H-GAC and stakeholders, staff, and members of the public who were unable to attend the meetings.

Table 2.2: Austin County Hazard Mitigation Committee Members

Representative Name	Position/Title	Jurisdiction
Roy Mercer	Emergency Management Coordinator	Austin County
Chip Reed	County Commissioner	Austin County
Shannon Hanath	Precincts Administrative Assistant	Austin County
Jason Smalley	Police Chief / EMC	City of Bellville
Shawn Jackson	City Administrator	City of Bellville
ED. D. Michael Coopersmith	Executive Director of Administration	Bellville ISD
Bob Ray	Mayor	City of Brazos Country
Mary Lou Craig	City Secretary	City of Brazos Country
Scott C. Rogers	Chief Operations Officer	Brazos ISD
Maya Mable Meyers	Mayor	City of Industry
Bobby Byars	Mayor	Town of San Felipe
Sue Foley	Town Secretary	Town of San Felipe
Steven Silver	Fire Chief	Town of San Felipe
Brandon Lewis	Project Manager of Public Works	City of Sealy
Brooke Kaiser	Public Works Admin/GIS Tech.	City of Sealy
Josh Brothers	Planner	City of Sealy
Kimbra Hill	City Manager	City of Sealy
Stephen Bozich	Director of Parks, Recreation, Streets, Drainage & Buildings	City of Sealy

Representative Name	Position/Title	Jurisdiction
Travis Cochran	Wastewater Superintendent	City of Sealy
Patrick Parsons	Director of Public Works	City of Sealy
Jerry Ebers	Clerk	City of South Frydek
Julie Ebers	Commissioner	City of South Frydek
Laura Meyer	Mayor	City of South Frydek
Clay Engelbrecht	Fire Chief	City of Wallis
Shawn Hiatt	Executive Director of Human Resources & Operations	Sealy ISD
Cheryl Mergo	Senior Manager	H-GAC
Amanda Ashcroft, AICP	Planner	H-GAC

Other Invitees

The PT reached out to members of the public who signed up for the HMP mailing list, as well as members from a wide variety of community lifelines. These contacts are listed below in Table 2.3, but this is not an exhaustive list. The Austin County Emergency Management Coordinator meets regularly with neighboring county and community leaders and staff via monthly roundtables. These attendees were kept up to date on the HMP status and upcoming HMP meetings through updates that were shared with county staff and leadership at meetings, public events (Hurricane Preparedness Fairs, National Night Out, HMP Public Hearings), and in passing. Additionally, H-GAC staff serve as a voting member on the steering committee for the Harris County HMP update, as well as attend Regional Threat and Hazard Identification and Risk Assessment meetings to provide relevant information and plan updates for core capabilities. H-GAC staff shared plan updates at these meetings, invited interested parties to attend future meetings, and provided where more information about future meetings or plan updates could be found, via H-GAC's Hazard Mitigation webpage, since kickoff meetings began in 2023. The Regional Threat and Hazard Identification and Risk Assessment and Harris County HMP update meetings are heavily attended by municipal staff, typically emergency management, and other city and county leadership including nonprofits, volunteer organizations, and representatives from places of worship within the H-GAC region. H-GAC staff are simultaneously leading HMP update efforts for Liberty and Walker Counties, as well as HMP development for the City of Angleton. Updates, outreach events, survey results, and feedback/ideas from each HMP effort are shared and discussed by the HMCs when meetings were held.

Table 2.3: Other Invitees

Position/Title	Organization
Emergency Medical Services	Austin County
Emergency Services District #1	Austin County
Emergency Services District #2	Austin County
Road & Bridge	Austin County
Sheriff's Office	Austin County
Judge's Office	Austin County
Precinct 1	Austin County
Precinct 2	Austin County
Precinct 3	Austin County
Precinct 4	Austin County

Position/Title	Organization
Sheriff's Department	Austin County
Fire Department	City of Bellville
Police Department	City of Bellville
Fire Department	City of Bleiblerville
Citizen, Col. USA (Retired), Owner	City of Cat Spring, Cat Spring Vineyards
Citizen	City of Cat Spring
Volunteer Fire Department	City of Cat Spring
Volunteer Fire Department	City of Industry
Fire Department	City of New Ulm
Mayor	City of Sealy
Planning Commissioner	City of Sealy
Parks Board Member	City of Sealy
Economic Development Corporation, Board Member	City of Sealy
Parks Board Member	City of Sealy
Planning Commissioner	City of Sealy
Fire Department	City of Sealy
Police Department	City of Sealy
Economic Development Corporation, Deputy Executive Director	City of Sealy
Volunteer Fire Department	City of Shelby
Fire Department	City of Wallis
Police Department	City of Wallis
Economic Development Corporation, Secretary	City of Wallis
Representative	Enterprise Products
Alderman	Town of San Felipe
Alderman	Town of San Felipe
San Felipe-Frydek Volunteer Fire Department	Town of San Felipe, City of Frydek
Police Department	Town of San Felipe
Representative	Western International

Meeting Dates & Details

Members of the HMC, as well as stakeholders, met regularly to identify hazards, assess risks, review critical facilities, and assist at workshops or public events/hearings to organize, set-up, assist, and answer questions from the public. All members of the HMC had the opportunity to review the draft plan and assist with public outreach efforts and events. Table 2.4 below outlines the participation by each jurisdiction at various meetings held throughout the planning process. This does not reflect all planning activities conducted by the PT or HMC. There were various individual meetings between jurisdictions and the PT, phone calls, and other forms of correspondence that are not reflected here. All meeting materials, including agendas, notes, list of attendees, completed worksheets, and outreach notices for public meetings can be found in Appendix D- Meeting Documentation.

Table 2.4: Participation Matrix

Participating Jurisdiction	Kickoff Meeting 3/22	Risk & Capability Assessment 4/26	Public Outreach Strategy 6/21	Public Hearing #1 7/19	Public Hearing #2 7/20	Our Mitigation Strategy 10/4	Our Mitigation Strategy, Pt II 10/25	Plan Draft Review 1/24
Austin County	X	x	X	X	X	x	x	X
City of Bellville	X			X		x		
City of Brazos Country		X	X			x	х	x
City of Industry	Х	x	X			X	х	х
Town of San Felipe		x	X			x	х	х
City of Sealy	X	X	X		X	X	X	X
City of South Frydek		X			х	X	Х	X
City of Wallis	X	X	X			X	X	X
*Bellville ISD							X	X
*Sealy ISD							X	X
*Brazos ISD							Х	x

^{*}Entered the plan on 9/23/2023

March 22, 2023: Hazard Mitigation Kickoff Meeting

The PT hosted a kickoff meeting of the HMC on March 22, 2023, at the Sealy Fire Department located at 1207 Highway 90 W, Sealy, TX 77474. The purpose of the kickoff meeting was to introduce the hazard mitigation planning process and its importance to all attendees, to gather feedback and input about various hazards and local vulnerabilities, and to discuss the risk assessment for the county. The HMC was given a presentation covering the benefits of hazard mitigation, the planning process and timeline, updates to FEMA policies surrounding HMPs that took effect in April 2023, and expectations for those participating in the HMC. The committee discussed the next steps for the planning process, and the risk assessment, and used the remaining meeting time to work through and discuss the provided risk assessment worksheet to identify various natural and man-made hazards (both new and old) that could affect jurisdictions within the county. Before the meeting, community members and stakeholders were invited to attend and learn about the hazard mitigation planning process through meeting notices posted on social media, the H-GAC website, and participating jurisdictions' city websites.

April 26, 2023: Risk and Capability Assessment Meeting

The PT hosted a meeting to cover the risk and capability assessment worksheets and review topics, questions, and recap the kickoff meeting on April 26, 2023, at the Sealy Fire Department located at 1207 Highway 90 W, Sealy, TX 77474. The purpose of this meeting was to review risk assessment results from the kickoff meeting as well as worksheets that were turned in, compare those changes to the last plan update in 2017, and review the capability assessment worksheet and instructions. The HMC then reviewed the various sections of the capability assessment worksheet. The categories discussed were:

- 1) Prevention- Administrative or regulatory actions that influence the way land is developed and buildings are built. Examples include planning & zoning, building codes, open space preservation, and floodplain regulations.
- 2) Property Protection- Modification or removal of existing buildings to protect them from a hazard. Examples include purchase, relocation, raised elevation, and structural retrofits.
- 3) Natural Resource Protection- Preservation or restoration of the functions of natural systems while minimizing hazard losses. Examples include floodplain protection, forest management, and slope stabilization.
- 4) Structural Projects- Modification of the natural conditions for or progression of a hazard. Examples include dams, levees, seawalls, detention/retention basins, channel modification, retaining walls, and storm sewers.
- 5) Emergency Services- Protection of people and property during and immediately after a hazard event. Examples include warning systems, evacuation planning, emergency response training, and protection of emergency facilities.
- 6) Public Education and Awareness- Informing of citizens about hazards and the techniques they can use to protect themselves and their property. Examples include outreach, school education, library materials, and demonstration events.

The capability assessment also had areas where participants would be tasked with identifying opportunities to enhance local capabilities to better integrate hazard mitigation into their plans, programs, and day-to-day operations. The committee then discussed the online survey development that would be used to gather input from stakeholders within the county, the next steps for the planning process, the next meeting for public engagement event planning, and then used the remaining time to continue to work through the provided risk assessment worksheet to identify, rank, and categorize various natural and manmade hazards that could affect jurisdictions within the county. Before the meeting, community members and stakeholders were invited to attend and learn about the hazard mitigation planning process through meeting notices posted on social media, the H-GAC website, and participating jurisdictions' city websites.

June 21, 2023: Public Outreach Strategy

The PT hosted a meeting to discuss possible dates, locations, and timing for two public hearing events to solicit feedback on hazards, vulnerabilities, and other pertinent information to the HMP. The HMC decided public hearings should be held in the north and south portions of Austin County so that citizens could choose a location that was closer to them. Meeting times for these events were scheduled for 6:00-8:00 PM to accommodate the schedules of citizens outside of normal working hours. At the public hearings stakeholders will be introduced to the HMP, the update process, and be engaged in activities meant to gather public input on the plan. The HMC also overviewed survey results and website updates. All members agreed to push out the survey link and QR code flyers via their city websites, postings in City Hall, and via social media or citizen mailing lists. Flyers for the public hearing were also to be posted in the same methods after they were created and distributed to the HMC.

July 19 & 20, 2023: Public Hearing Events

Two public hearings were hosted on July 19th and July 20th, 2023, from 6:00- 8:00 PM. In order to be inclusive of the rural nature of the county and residents, these meetings were scheduled in the North and South of the County at times where those working a typical 9-5 could make plans to attend and were announced 1 month prior to their meeting date. These events were also advertised and shared by participating jurisdictions via multiple avenues including social media, citizen email lists, and posting flyers in public locations that see residents visiting frequently.

The purpose of these public hearings was to provide a hazard mitigation planning project overview from the PT and HMC members in attendance and solicit feedback and information from stakeholders. The July 19th public hearing was located at Austin County Fair and Expo Center located at 1076 TX-159, Bellville, TX 77418. Despite a low turnout for this public hearing with just two participants and two HMC members present, the conversations were robust and lasted for the entire duration of the allotted time. The public hearing on July 20th was hosted at the W.E. Hill Community Center located at 1000 Main St., Sealy TX 77474. This public hearing had 13 attendees in attendance. Feedback collected was done in a variety of formats from large, printed maps where participants could mark areas of concern within their community or add critical facilities to the map, an input exercise where participants had to assign dollars to mitigation project ideas, feedback worksheets that discussed how emergency notifications were received within the county and how these communications could be improved, and a dot exercise where participants had to notate their top three hazards of concern within the county using stickers. Public input helps the project team analyze potential hazards affecting residents and recommend possible actions to reduce their impact.

October 4 & 25, 2023: Our Mitigation Strategy (Goals, Actions, and the Action Plan), Part I & II

The PT hosted two meetings of the HMC and any members of the public that wished to attend regarding action items, plan goals, and the action plan. At these meetings a closing date for the online survey was set for October 31, 2023, a presentation was given discussing the action plan and how to form or update action items to go into this section of the HMP update, and H-GAC staff presented maps showcasing critical facilities and various risk data to all in attendance. During the Part II meeting the HMC updated language and finalized plan goals, H-GAC staff highlighted various resources to aid with the brainstorming of action items and presented those in attendance with printed packets containing all created maps, previous meeting notes, survey data, and public input collected. The HMC also discussed an online format to submit action items and an online SharePoint site for plan draft updates to be shared.

January 24, 2024: Draft Plan Review

The PT hosted a meeting of the HMC to discuss and provide feedback on draft sections of the plan that were completed. The HMC overviewed each section, changes since the last plan update, items needed, the BCA analysis, and next steps.

Participation & Public Input

The plan-making process was designed to be inclusive and tailored to individual communities in Austin County. Since the county is heavily rural, many avenues were used to gather public participation and input for this HMP update. Public input and participation are a crucial element of hazard mitigation planning.

Public input was solicited and gathered via the following ways for this plan update:

- 1) Hazards of Concern Public Input Survey
 - a) The online survey was open from May 8, 2023, to October 31, 2023. In total, there were 30 responses to the survey. Survey questions asked participants about hazards of concern, vulnerable community assets, how they receive information regarding hazards, what the county can do to better communicate about hazards, etc. A full list of survey results can be found in Appendix E.

2) Public Hearings

a) There were two public hearings hosted on July 19, 2023, and July 20, 2023, from 6-8 PM on the North and South sides of the County. The purpose of these public hearings was to provide a hazard mitigation planning project overview from the PT and HMC members in attendance and solicit feedback and information from stakeholders. The public hearings included many interactive activities meant to gather input from the public regarding hazards of concerns, critical facilities, action items, etc. Feedback collected was done in a variety of formats from large, printed maps where participants could mark areas of concern within their community or add critical facilities to the map, an input exercise where participants had to assign dollars to mitigation project ideas, feedback worksheets that discussed how emergency notifications were received within the county and how these communications could be improved, and a dot exercise where participants had to notate their top three hazards of concern within the county using stickers.

3) Draft Plan Public Input Survey

a) The online survey was open from March 8, 2024 to August 9, 2024 to gather public comments regarding the finished draft of the Austin County HMP update. Despite the online survey being heavily advertised in city halls, libraries, and other public spaces around the county and participating jurisdictions, there were no responses to the survey. A full list of survey results can be found in Appendix E, including documentation of the public survey postings.

Additionally, all HMC meetings were open to the public. Meeting announcements were shared via individual community email distribution lists, posted on city social media pages, shared to local Facebook groups for participating jurisdictions and Austin County, shared on county and city websites and event calendars. Flyers with information about the HMP update, including a QR code link, routed directly to public surveys prior to plan drafting and when there was a finished plan draft for review. All flyers were posted in city hall, libraries, and other public spaces that experience heavy foot traffic for participating jurisdictions.

Feedback and input from the public were used to identify vulnerabilities in each jurisdiction, identify valuable assets, identify critical facilities, and further develop the risk assessment. Additionally, H-GAC hosted all HMP-related materials online and advertised meeting information, presentations, and meeting notes for those who were unable to attend through this public-facing website: https://www.h-gac.com/regional-hazard-mitigation-planning. The HMC also had access to an online mitigation action portal for project submittal. This allowed jurisdictions to submit their proposed projects that were used to develop the mitigation strategy at any time in an easy-to-access format.

Plan Development Resources

The Austin County HMP was developed using existing plans, studies, reports, and technical information. Materials and historical data were used to inform participants throughout the planning process, evaluate and analyze hazards, and develop the mitigation strategy. For a full list of references, seen endnotes.

Plan Development Resources:	Existing Documents and Data
2023 Texas State Hazard Mitigation Plan	List of Reports and Publications 2022 Census of
2023 Texas State Hazard Willigation Flair	Agriculture USDA/NASS
2023 Data Breach Investigations Report Verizon	Losing Ground: Flood Data Visualization Tool
2023 Data Breach hivestigations Report Verizon	(nrdc.org)
2023 Texas State Hazard Mitigation Plan	Major Land Resource Area (MLRA) Natural
	Resources Conservation Service (usda.gov)
American Community Survey (ACS)	Mayo Clinic
(census.gov)	
Association of State Dam Safety	MRLC Viewer
Census.gov	National Centers for Environmental Information
	(NCEI) (noaa.gov)
FEMA 2013 Mitigation Ideas	National Institute of Allergy and Infectious
	Diseases (NIAID) (nih.gov)
FEMA 2021 Mitigation Action Portfolio	National Institute of Environmental Health
	Sciences: NIEHS Home page (nih.gov)
FEMA 2022 Local Mitigation Planning Policy	National Oceanic and Atmospheric
Guide	Administration (noaa.gov)
FEMA 2023 Local Mitigation Planning Handbook	National Weather Service
FEMA Declared Disasters	NOAA National Severe Storms Laboratory
	NOAA National Severe Storms Laboratory NOAA Storm Event Database
FEMA Flood Map Service Center	Office of the Texas State Climatologist
FEMA Hazardous Response Capabilities	(tamu.edu)
Flood Insurance Data and Analytics	
(floodsmart.gov)	Plan Ahead for Disasters Ready.gov
HEAT.gov - National Integrated Heat Health	Texas A&M Forest Service Wildfire Risk
Information System	Assessment Portal
H-GAC 2011 Regional Hazard Mitigation Plan	TSHA (tshaonline.org)
H-GAC 2018 Multijurisdictional Hazard	
Mitigation Plan	USGS HIFLD Open Data
	Vaisala National Lightning Detection Network
H-GAC Regional Demographic Snapshot	(NLDN) Flash Data (Restricted) (noaa.gov)
H-GAC Regional Flood Information	Web Soil Survey - Home (usda.gov)

Section 3: County Profile

This section contains the county profile, which provides a history of hazard events, an overview of the planning area, geographic setting, land use and land cover, population demographics, vulnerable population information, housing and household arrangements, loss estimations, critical facilities, repetitive loss, and severe repetitive loss properties, NFIP and CRS participants, and NFIP policies in force information can be found here.

Section 3: County Profile

History of Hazard Events

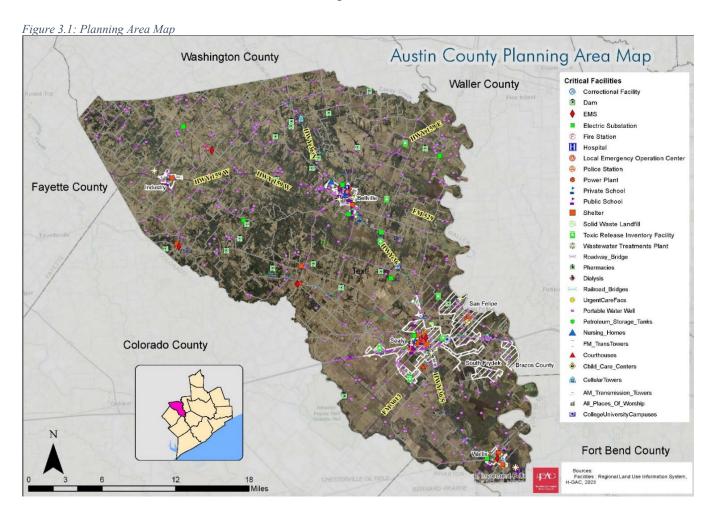
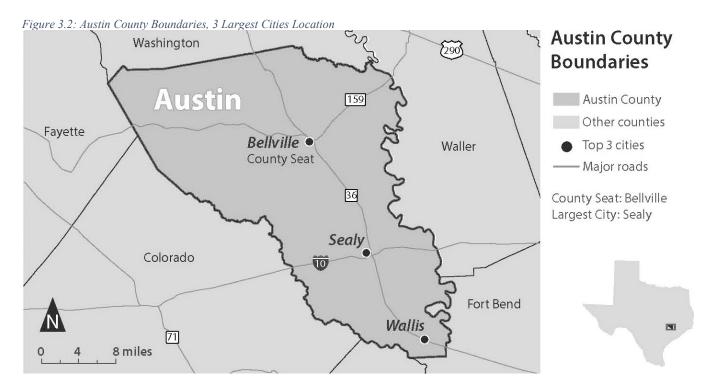
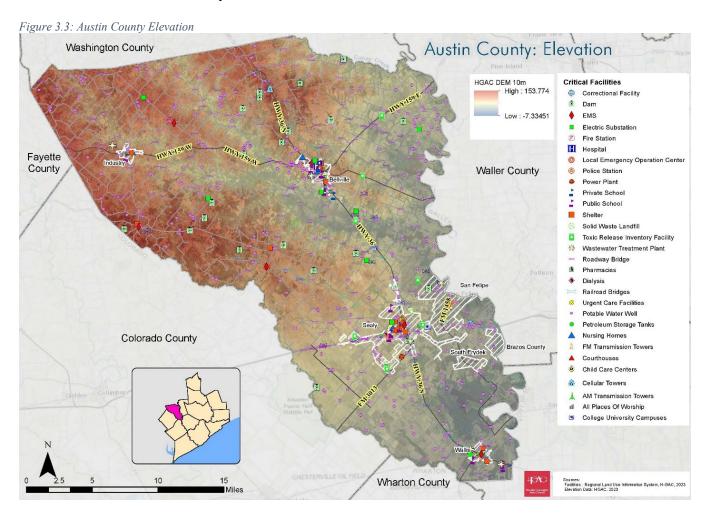

Austin County has persevered through many natural disasters. Table 3.1 below lists the presidentially declared emergency and major disaster declarations that the county has experienced since 1991. Each disaster is costly and challenging. Presidential disaster declarations are issued for hazard events that cause more damage than state and local governments can handle without assistance from the federal government. A presidential disaster declaration mobilizes federal recovery programs to assist disaster victims, businesses, and public entities. A review of these presidential disaster declarations helps establish the probability of reoccurrence and assists in identifying targets for risk reduction through potential mitigation actions.

Table 3.1: Presidential Disaster Declarations¹

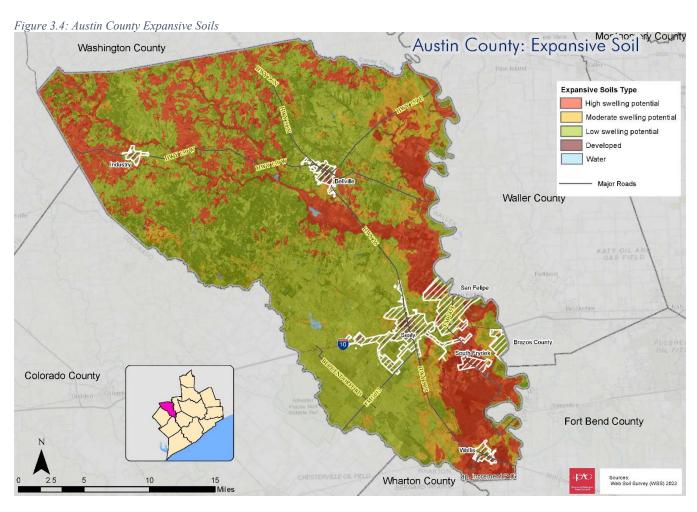
Declaration Date	Disaster No.	Declaration Type	Incident Type	Title
12/26/1991	930	Major Disaster Declaration	Flood	Severe Thunderstorms
9/10/1993	3113	Emergency Declaration	Drought	Extreme Fire Hazard
10/18/1994	1041	Major Disaster Declaration	Flood	Severe Thunderstorms and Flooding
8/26/1998	1239	Major Disaster Declaration	Severe Storm	Tropical Storm Charley
10/21/1998	1257	Major Disaster Declaration	Flood	TX-Flooding 10/18/98
9/1/1999	3142	Emergency Declaration	Fire	Extreme Fire Hazards
9/2/2005	3216	Emergency Declaration	Hurricane	Hurricane Katrina Evacuation
9/21/2005	3261	Emergency Declaration	Hurricane	Hurricane Rita
9/24/2005	1606	Major Disaster Declaration	Hurricane	Hurricane Rita
1/11/2006	1624	Major Disaster Declaration	Fire	Extreme Wildfire Threat
3/14/2008	3284	Emergency Declaration	Fire	Wildfires
8/29/2008	3290	Emergency Declaration	Hurricane	Hurricane Gustav
9/10/2008	3294	Emergency Declaration	Hurricane	Hurricane Ike
9/13/2008	1791	Major Disaster Declaration	Hurricane	Hurricane Ike
5/29/2015	4223	Major Disaster Declaration	Severe Storm	Severe Storms, Tornadoes, Straight- Line Winds and Flooding
4/25/2016	4269	Major Disaster Declaration	Flood	Severe Storms and Flooding
6/11/2016	4272	Major Disaster Declaration	Flood	Severe Storms and Flooding
8/25/2017	4332	Major Disaster Declaration	Hurricane	Texas Hurricane Harvey
3/13/2020	3458	Emergency Declaration	Biological	COVID-19
3/25/2020	4485	Major Disaster Declaration	Biological	COVID-19 Pandemic
2/14/2021	3554	Emergency Declaration	Severe Ice Storm	Severe winter storm
2/19/2021	4586	Major Disaster Declaration	Severe Ice Storm	Severe winter storms
5/17/2024	4781	Major Disaster Declaration	Flood	Severe Storms, Straight-Line Winds, Tornadoes, and Flooding
7/9/2024	4798	Major Disaster Declaration	Hurricane	Hurricane Berryl


Planning Area Overview

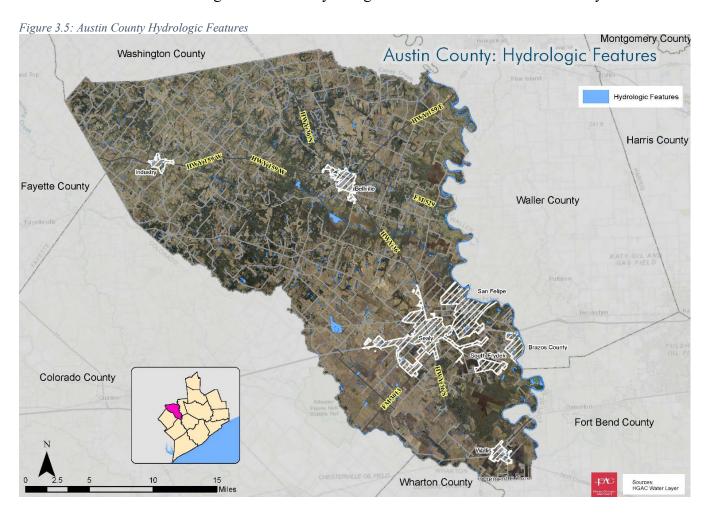
The largest industries in Austin County, TX are Retail Trade (2,268 people), Construction (1,807 people), and Manufacturing (1,408 people), and the highest-paying industries are Mining, Quarrying, & Oil & Gas Extraction (\$92,691), Agriculture, Forestry, Fishing & Hunting, & Mining (\$77,500), and Finance & Insurance (\$68,393). The most common job groups, by number of people living in Austin County, TX, are Office & Administrative Support Occupations (1,646 people), Sales & Related Occupations (1,449 people), and Construction & Extraction Occupations (1,334 people). The county's unemployment rate in 2022 was 3.9%, the same as the national average. 4,5


According to the 2020 US Census data, Austin County's population was 30,167 which is expected to expand due to Houston's continued westward growth. The most recent data available shows the Austin County population at 31,097 as of July 1, 2022. The annual median household income within the county was reported at \$73,556, just above the \$73,035 median income for the State of Texas.⁶

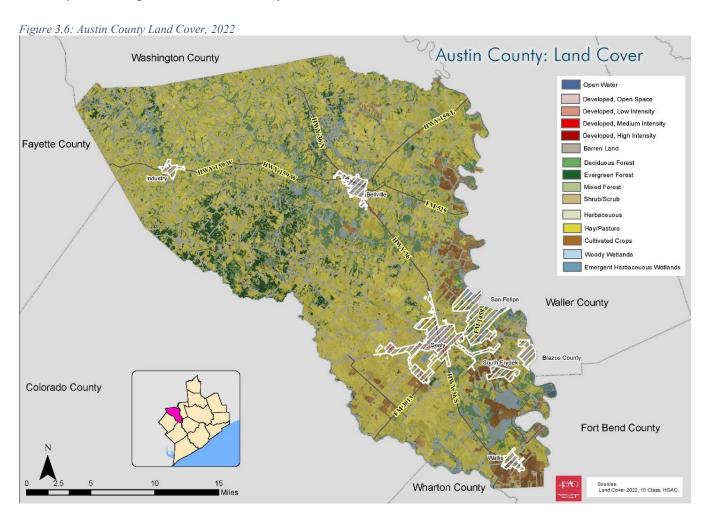
The three largest cities within the county are Sealy, Bellville, and Wallis. Sealy is at the crossroads of Interstate 10 and Highway 36, with 6,956 residents, Bellville, the county seat, boasts 4,108 residents and Wallis has around 1,296 residents. ^{7,8,9}


Geographic Setting

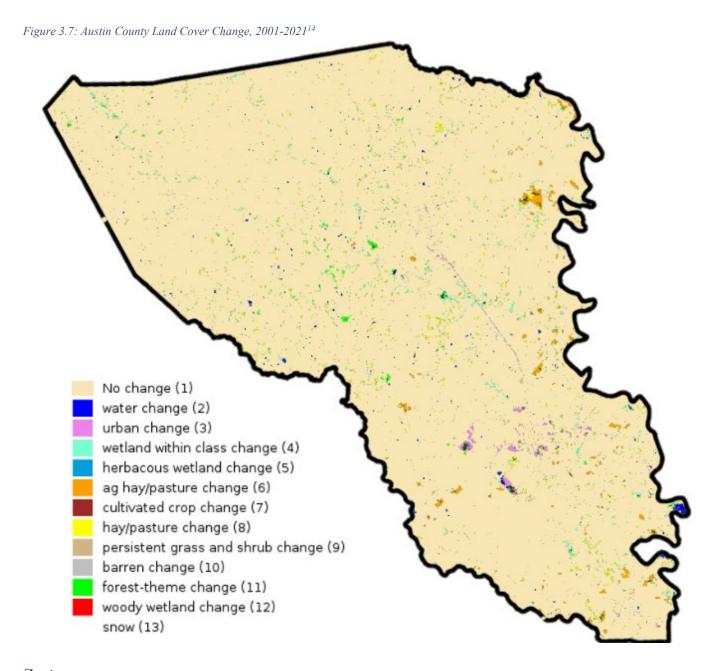
Austin County sits between the San Bernard River on the west and the Brazos River on the east and is located 35 miles west of Houston. State Highway 36 runs north-south through the center of the county, while Interstate 10 and State Highway 159 both cut across Austin County east-west. The county is largely rural and covered in prairie land and pastureland, with flat coastal prairies in the county's southern tip and hills to the north. Elevations range from 460 feet above sea level (ASL) in the northwest area of the county, to 120 feet ASL in the southeast. Figure 3.3 shows the elevation of the county. Neighboring counties include Washington County to the north, Waller and Fort Bend counties to the east, Wharton County to the south, and Colorado and Fayette counties to the west. ¹⁰


Soil Composition

Austin County soils range from dark clays, clay loams, and sandy loams from within the major land resource areas of the Coast Prairie and Post Oak/Claypan Area. Expansive soils refer to those that are clay rich. Due to their clay content, these soils can absorb large quantities of water that cause them to expand, whereas in dry periods the soils will contract and cause the ground to shrink and crack. In areas where development exists, these soils can cause issues with slab-on-grade foundations and infrastructure due to the potential uneven change in volume. This can cause subsidence, cracked foundations, broken pipes, or other detrimental effects to buried infrastructure. Austin County is covered primarily with low swell potential soils, followed closely by soils with high swelling potential. Figure 3.4 below shows the expansive soils and shrink-swell potential for Austin County and participating jurisdictions. Full-size maps developed by H-GAC can be found in Appendix B.

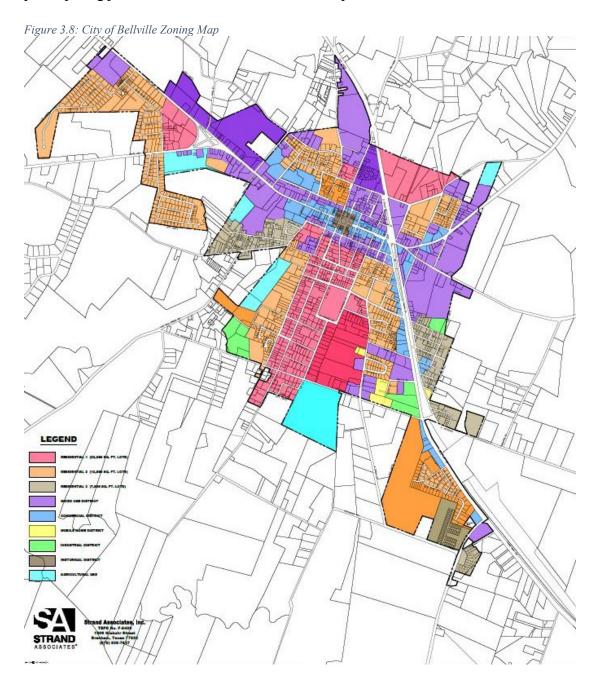

Hydrologic Features

9.9 square miles or 1.5% of Austin County is covered by surface water in rivers, creeks, and other hydrologic features. Most of the 656 square miles that comprise Austin County lie within the drainage basin of the Brazos River. ¹⁰ Figure 3.5 shows hydrologic features located across the county.



Land Use and Land Cover

Land cover is primarily hay/pasture, wetlands, evergreen, and deciduous forest. Figure 3.6 shows the land cover composition of Austin County. The county hopes to preserve its rural character despite new development along the outskirts of the city brought in by the expansion seen from a growing City of Houston population. Citizens are worried this new development will bring in various land use patterns that may be incompatible with the county's current character.


Land cover change from 2001-2021, as seen in Figure 3.7, has seen some urban expansion within the City of Sealy and along major thoroughfares such as HWY 36 heading towards the City of Bellville. An increase in agricultural uses and forest-themed/ tree cover makes up the remaining land use changes seen within the last 20 years.¹⁴

Zoning

Zoning refers to the process by which a municipality divides its geographic area into different zones or districts, each with its own set of regulations governing land use, building heights, density, and other characteristics. The authority for Texas municipalities to regulate land use through zoning is found in Chapter 211 of the Texas Local Government Code. Specifically, Section 211.001 provides: "A municipality may regulate the use of land within its boundaries by establishing zoning districts for the municipality and by regulating the location, use, and construction of buildings, structures, and other improvements within those zoning districts." Zoning regulations are intended to promote orderly development, protect property values, and ensure that land uses are compatible with their surrounding areas. Zoning regulations can be used to accomplish a variety of goals, such as promoting residential, commercial, or industrial development in certain areas; protecting natural resources or historic landmarks and separating incompatible land uses such as industrial and residential areas. The City of Bellville adopted their Zoning Ordinance in May 2023. Figure 3.8 below is the current City of Bellville Zoning

Map which was last updated in January 2024. There is currently no zoning within the remaining participating jurisdictions included in this HMP update. ¹⁶

Building Codes

Building codes are the minimum design and construction requirements to ensure safe and resilient structures. These codes reduce casualties, costs, and damage by creating stronger buildings designed to withstand disasters. They also help communities get back on their feet faster by minimizing indirect costs such as business interruptions and lost income. Up-to-date building codes protect from a wide range of hazards such as safe wiring, fire prevention, or stronger structural integrity. The participating jurisdictions of this plan update have adopted the following building codes or ordinances to guide development within their city limits and ETJ.

Austin County utilizes its 2021 Subdivision Regulations to guide development within unincorporated areas of the county.

The City of Bellville utilizes their code of ordinances and the following building codes to guide development within the city limits and ETJ:

- 2018 International Building Code
- 2018 International Energy Conservation Code
- 2018 International Fuel Gas Code
- 2018 International Existing Building Code
- 2018 International Fire Code
- 2018 International Mechanical Code
- 2020 National Electric Code
- 2012 International Plumbing Code
- 2018 International Residential Code

The City of Brazos Country utilizes their 2019 Subdivision Ordinance to guide development within the city limits and ETJ. The City of Industry utilized the Austin County 2021 Subdivision Regulations to guide development within the city limits and ETJ. The Town of San Felipe utilizes their 2005 Subdivision Ordinance to guide development within the city limits and ETJ.

The City of Sealy utilizes their code of ordinances, development standards (2019) and the following building codes to guide development within the city limits and ETJ:

- 2018 International Building Code
- 2018 International Energy Code
- 2018 International Fuel Gas Code
- 2018 International Fire Code
- 2018 Property Maintenance Code

- 2018 International Mechanical Code
- 2017 National Electric Code
- 2018 International Plumbing Code
- 2018 Pool and Spa Code

2018 International Residential Code

The City of South Frydek utilizes their 2019 Subdivision Ordinance to guide development within the city.

The City of Wallis utilizes their code of ordinances and the following building codes to guide development within the city limits and ETJ:

- 2015 International Building Code
- 2015 International Energy Code
- 2015 International Fuel Gas Code
- 2015 International Fire Code
- 2015 Property Maintenance Code

- 2015 International Mechanical Code
- 2014 National Electric Code
- 2015 International Plumbing Code
- 2015 International Residential Code

Future Development

The changes in development since the last plan update, and how they have increased or decreased the community's vulnerability are referenced in each hazard profile under "Populations at Risk" and is

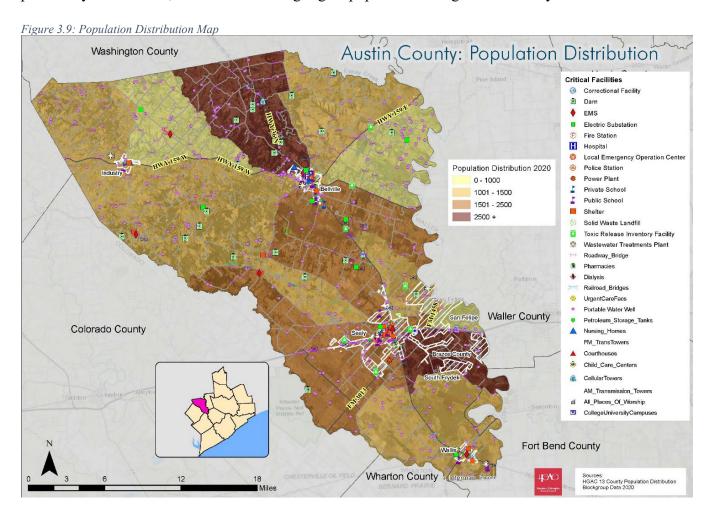
summarized below. The information and figures below highlight areas of future development within the county and participating jurisdictions. Jurisdictions that had no future development updates for this HMP were omitted.

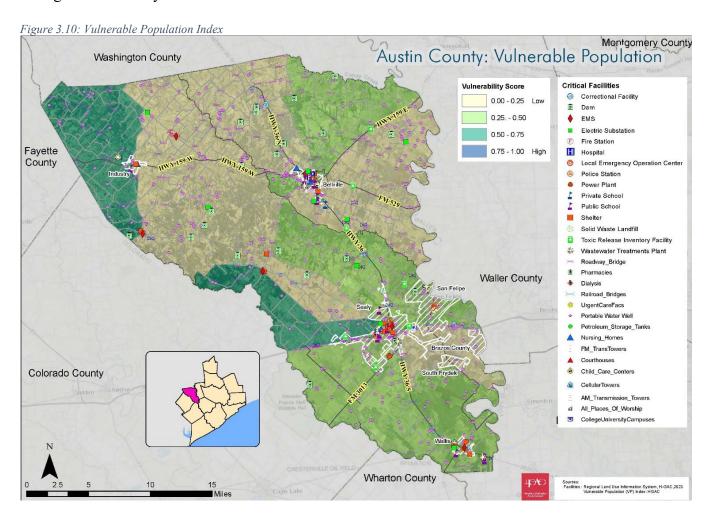
Austin County has seen slower growth in population since the last plan update, with a 6% increase from 2010 to 2020. Previous growth within the county was 20% from 1990-2000 and 19% from 2000 to 2010. Despite population growth slowing, future development areas will increase the vulnerability of Austin County and participating jurisdictions to the impacts of certain hazards. For the entire planning area increases in development have increased the vulnerability to flooding from added impervious surface areas. The vulnerability to wildfire has increased within all participating jurisdictions since the last plan update due to new developments expanding into wildland urban interface areas. There is also increased vulnerability from impacts due to various types of natural hazards and severe weather that can affect the entire planning area as they have no set geographic boundaries such as thunderstorms, lightning, tornados, hurricanes, tropical storms, tropical depressions, windstorms, hailstorms, extreme heat, and severe winter weather. Additionally, impervious surfaces added over expansive soil areas, like slab-on-grade foundations from new developments, are more vulnerable and at risk for impacts within the planning area.

Since the last plan update, development within Austin County unincorporated areas has occurred along major throughfares near Sealy, Bellville, Cat Spring, and Shelby. The City of Bellville has seen new developments that include the expansion of TLD Ramp facilities along HWY 36 and a residential neighborhood, Bluebonnet Village, along HWY 36 and FM 2429. The City of Sealy is expecting renovations and building additions at the TxDOT facility located off FM 2187, a Fuel Maxx and retail center on HWY 36, and additional sections of a residential neighborhood, Westward Pointe, located off HWY 36 and I10. The City of Wallis is focusing efforts to revitalize their downtown through blight elimination and growth promotion. The city expects to acquire land in strategic locations to add or improve parking in the downtown area, specifically along both sides of 1st and 2nd street from Commerce Street to Gresham Street, as well as add or improve sidewalks, lighting, planters, and other furnishings along these areas. There were no future development areas identified for the City of Brazos Country, City of Industry, Town of San Felipe, or City of South Frydek.

Population and Demographics

Austin County has seen its population grow steadily since 1970, with an average of a 1.6% increase per year. Population growth slowed from 2010 to 2020 at only 6% compared to other 10-year periods. Austin County saw population increases for 46 out of the 51 years where data is available. The projected population for 2040 is expected to reach 50,000. Figure 3.9 shows the population distribution per 1000 persons by census tract, while Table 3.2 highlights population change in the county since 1970.




Table 3.2: Austin County Population Trends, 1970 to 2020

Year	Population Count	Population Change	Percent (%) Change
1970	14,160		
1980	17,859	3,699	26%
1990	19,891	2,032	11%
2000	23,836	3,945	20%
2010	28,372	4,536	19%
2020	30,131	1,759	6%

Austin County's population demographics, per the 2020 census, consists of 86.8% White population, a 28.9% Hispanic or Latino population, 9.4% African American population, 1% American Indian and Alaska Native population, and 1% Asian population. 20% of the population in Austin County is 65 or older, this is higher than the State average of 13.4%. The poverty rate for the County is 11.9%, less than the State average of 14%.²⁰

Vulnerable Population

The Vulnerable Population Index, a dataset developed by H-GAC, identifies areas throughout Austin County that may not have the means or the resources to act when a natural disaster occurs. For this plan, vulnerable populations include any households without a car, single female households with a child or children in the home, individuals living below the poverty line, individuals who are disabled, Hispanic individuals, individuals who are non-Hispanic, and non-white, and individuals who are 65 years and older. The areas in the county with the greatest proportion of these individuals are defined as the most vulnerable areas in Austin County, denoted by a higher vulnerability score in the figure below. Defining and mapping vulnerable populations provides the opportunity to demonstrate where the most need is throughout the county.

While age and income have been traditional indicators of vulnerable populations, the Centers for Disease Control and Prevention (CDC) in partnership with the Agency for Toxic Substances and Disease Registry (ASTDR) has developed a Social Vulnerability Index (SVI) that can be generated at the county level. This is a more recent tool used to identify socially vulnerable populations with additional risk factors. The CDC and ASTDR define socially vulnerable populations using factors such as poverty, lack of access to transportation, and crowded housing, to name a few. These factors may weaken a community's ability to prevent human suffering and financial loss in a disaster. The SVI uses U.S. Census data to determine the social vulnerability of every census tract. The SVI ranks each tract on a total of 16 social factors and groups them into four related themes. Figure 3.11 below depicts the social vulnerability of communities in Austin County by census tract.²¹ Factoring in these additional aspects of social vulnerability and grouping them by themes gives the county a bigger picture of vulnerable populations. Austin County's social vulnerability score is 0.7613 overall. Scores range from 0-1, with 1 being the highest level of vulnerability within the nation.²²

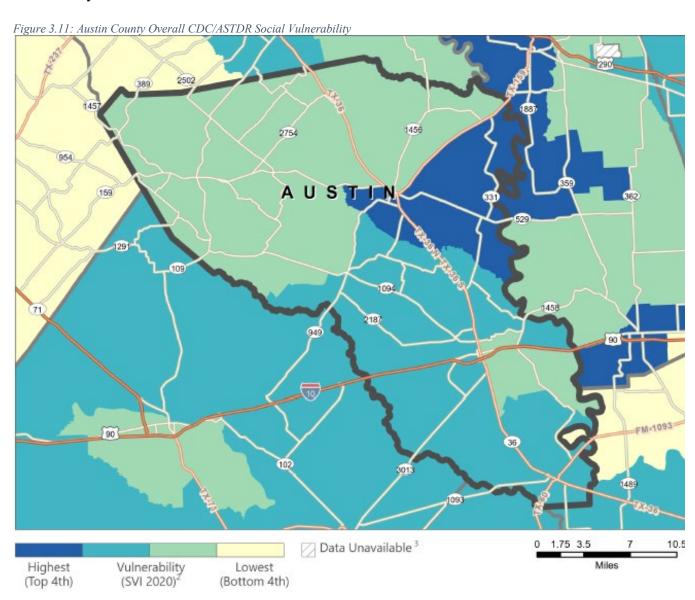
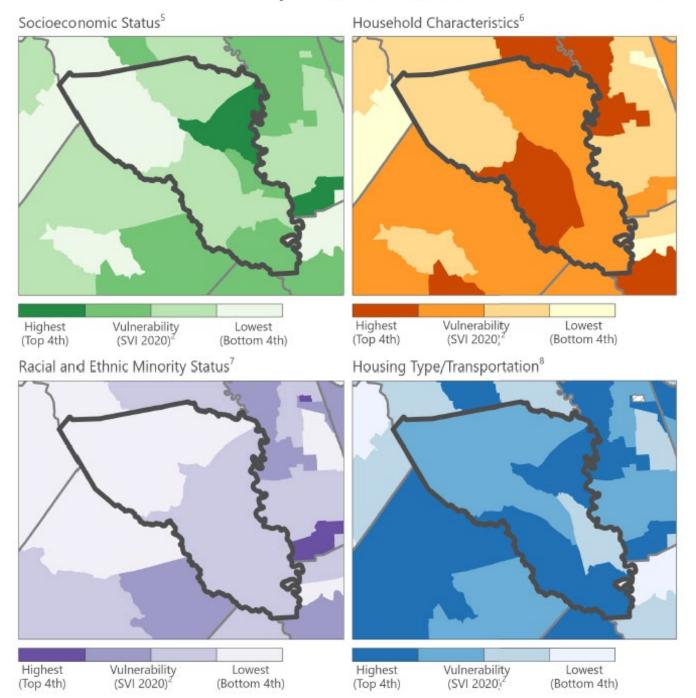



Figure 3.12: Austin County Themes for CDC/ASTDR Social Vulnerability

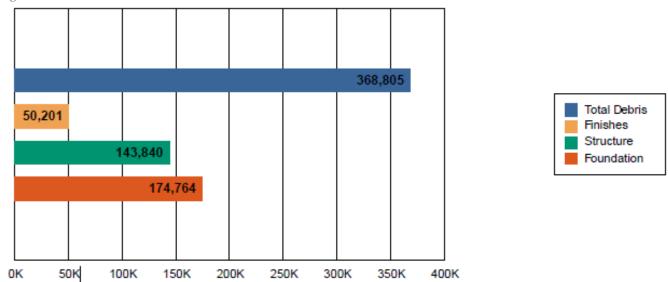
CDC/ATSDR SVI Themes

Housing and Living Arrangements

As of July 1, 2022, there were 14,198 housing units in Austin County, with 11,913 households. A household is defined by the U.S. Census Bureau as all the persons who occupy a housing unit and a housing unit as a house, an apartment, a mobile home, a group of rooms, or a single room that is occupied (or if vacant, is intended for occupancy) as separate living quarters. The median price of a single-family home in Austin County was listed at \$240,000 from 2018-2021.⁶

Hazus Analysis- Loss Estimations

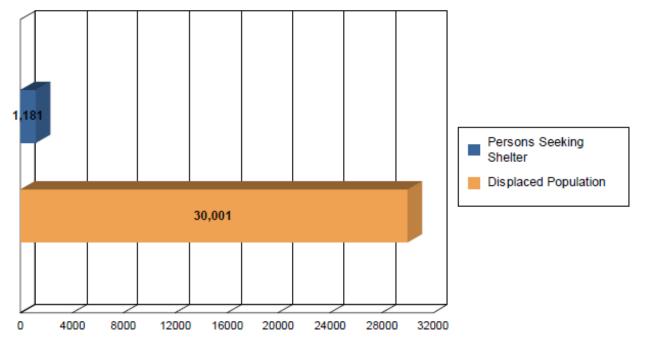
A Hazus analysis was conducted for 4 scenarios within Austin County: a 100-year flood scenario, a 500-year flood scenario, a 100-year hurricane scenario, and a 500-year hurricane scenario. Hazus is a regional multi-hazard loss estimation model that was developed by FEMA and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state, and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.²³ For this section, the 100-year flood scenario will be highlighted regarding potential losses of building stock, debris generation, and shelter requirements. The full Hazus analysis for all scenarios can be found in Appendix A.


Table 3.3: Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	\$3,230,826	45.4%
Commercial	\$1,391,083	19.5%
Industrial	\$573,273	8.1%
Agricultural	\$1,591,429	22.4%
Religion	\$67,882	1.0%
Government	\$44,675	0.6%
Education	\$218,254	3.1%
Total	\$7,117,422	100%

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (drywall, insulation, etc.), 2) Structural (wood, brick, etc.), and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris. The model estimates that a total of 368,805 tons of debris will be generated. Of the total amount, Finishes comprises 14% of the total, Structure comprises 39% of the total, and Foundation comprises 47%. If the debris tonnage is converted into an estimated number of truckloads, it will require 14,753 truckloads (estimating 25 tons/truck) to remove the debris generated by the flood.


Figure 3.13: Debris Breakdown in Tons

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 10,000 households (or 30,001 people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 1,181 people (out of a total estimated population of 30,013) will seek temporary shelter in public shelters.

Figure 3.14: Displaced Population/Persons Seeking Short-Term Public Shelter

Critical Facilities and Lifelines

H-GAC maintains a database of critical facilities that was greatly expanded for this plan update to include more community lifelines and additional critical facilities that were not considered in the 2017 HMP. The HMC provided additional critical facility data when available at meetings hosted by H-GAC. The PT also collected critical facility information from stakeholders at the public hearings hosted in July. It was determined that there are 232 facilities are considered critical or valuable assets, a summary of these facilities is provided below in Table 3.4.^{7,24} A full list of critical facilities can be found in Appendix C.

Table 3.4: Critical Facilities & Community Lifelines

Asset Description	Quantity	Amount within a Floodplain
AM Transmission Tower	2	0
Cellular Tower	12	0
Childcare Facility	11	0
College	1	0
Correctional Facility	1	0
Courthouse	1	0
Dam	21	4
Dialysis Center	1	0
Distribution Center	1	0
Elder Care Facility	8	0
Electric Substation	9	0
EMS	6	0
Fire Station	8	1
FM Transmission Tower	3	0
Hospitals/Urgent Care	1	0
Local Emergency Operation Center	2	0
Petroleum Storage Tank	35	4
Pharmacy	6	0
Place of Worship	22	0
Police Station	7	1
Potable Water Well	323	44
Power Plant	2	0
Private Schools	2	0
Public Schools	14	0
Railroad Bridge	28	17
Roadway Bridge	204	152
Shelters	13	0
Solid Waste Landfill	2	0
Toxic Release Inventory Facility	7	0
Urgent Care	2	0
Wastewater Outfall	16	4
Wastewater Treatment Plant	6	3
Residential Units	14,198	
Commercial Units	677	

National Flood Insurance Program (NFIP) Participation

The NFIP is a federal program administered through FEMA that enables property owners in participating communities to purchase insurance as a protection against flood losses. Communities must maintain eligibility in the NFIP by adopting and enforcing floodplain management regulations intended to prevent unsafe development in the floodplain, thus reducing future flood damage. FEMA creates flood maps, or Flood Insurance Rate Maps (FIRMs) to support the NFIP. 25,26 These flood maps are periodically updated and outline special flood hazard areas (SFHA). The SFHA is the area where the NFIP floodplain management regulations must be enforced and the area where the mandatory purchase of flood insurance applies.²⁷ The NFIP provides affordable flood insurance for property owners, renters, and businesses in participating communities. This reduces the socio-economic impacts of flooding on communities through risk reduction via flood insurance and reduces the physical impacts of flooding through beneficial floodplain regulation. Each of the participating jurisdictions has a floodplain manager on staff, and/or functions under the regulatory umbrella of Austin County. The cities of Industry and South Frydek are not currently participants in the NFIP and are new participants to this HMP. The cities of Industry and South Frydek do not currently participate in the NFIP because they are both located primarily outside of the floodplain, have populations under 300, and are staffed by volunteers. Joining the NFIP and adopting a FDPO is listed in capability expansion opportunities for both cities in Section 5.

Table 3.5: NFIP Participation²⁸

Jurisdiction	NFIP Participation	Date Joined	Current Effective FIRM Date	FDPO Adoption Date	Designee for NFIP Requirements
Austin County	Y	02/25/77	10/18/19	10/14/2019	Floodplain Administrator, Environmental Protection Coordinator
City of Bellville	Y	11/19/76	10/18/19	9/21/2021	Floodplain Administrator, City Administrator
City of Brazos Country	Y	02/25/77	10/18/19	8/15/2019	Floodplain Administrator, Planning & Development Director
City of Industry	N	N/A	N/A	N/A	N/A
Town of San Felipe	Y	01/03/86	10/18/19	10/8/2019	Floodplain Administrator, Mayor
City of Sealy	Y	12/17/73	10/18/19	10/15/2019	Floodplain Administrator, Director of Planning
Town of South Frydek	N	N/A	N/A	N/A	N/A
City of Wallis	Y	05/24/74	10/18/19	7/21/2010	Floodplain Administrator, Director of Public Works

N/A- Not Applicable

Each jurisdiction, as part of their FDPO, manages substantial damage or improvements using the same language provided by the model FDPO available through the Texas Water Development Board (TWDB. An excerpt from this outlining these standards can be seen below:

Flood Damage Prevention Court Order
ARTICLE 5 PROVISIONS FOR FLOOD HAZARD REDUCTION, SECTION A - GENERAL STANDARDS

In all areas of special flood hazards the following provisions are required for all new construction and substantial improvements:

- (1) All new construction or substantial improvements shall be designed (or modified) and adequately anchored to prevent flotation, collapse or lateral movement of the structure resulting from hydrodynamic and hydrostatic loads, including the effects of buoyancy;
- (2) All new construction or substantial improvements shall be constructed by methods and practices that minimize flood damage;
- (3) All new construction or substantial improvements shall be constructed with materials resistant to flood damage;
- (4) All new construction or substantial improvements shall be constructed with electrical, heating, ventilation, plumbing, and air conditioning equipment
- (5) All new and replacement water supply systems shall be designed to minimize or eliminate infiltration of floodwaters into the system;
- (6) New and replacement sanitary sewage systems shall be designed to minimize or eliminate infiltration of floodwaters into the system and discharge from the systems into floodwaters; and
- (7) On-site waste disposal systems shall be located to avoid impairment to them or contamination from them during flooding.

SECTION B. SPECIFIC STANDARDS

In all areas of special flood hazards where base flood elevation data has been provided as set forth in section 3.06.003(b), section 3.06.004(b)(8), or subsection (c)(3) of this section, the following provisions are required:

- (1) Residential construction. New construction and substantial improvement of any residential structure shall have the lowest floor (including basement), elevated to or above the base flood elevation. A registered professional engineer, architect, or land surveyor shall submit a certification to the floodplain administrator that the standard of this subsection as proposed in section 3.06.004(c)(1)(A), is satisfied.
- (2) Nonresidential construction. New construction and substantial improvements of any commercial, industrial or other nonresidential structure shall either have the lowest floor (including basement) elevated to or above the base flood level or together with attendant utility and sanitary facilities, be designed so that below the base flood level the structure is watertight with walls substantially impermeable to the passage of water and with structural components having the capability of resisting hydrostatic and hydrodynamic loads and effects of buoyancy. A registered professional engineer or architect shall develop and/or review structural design, specifications, and plans for the construction, and shall certify that the design and methods of construction are in accordance with accepted standards of practice as outlined in this subsection. A record of such certification which includes the specific elevation (in relation to mean sea level) to which such structures are floodproofed shall be maintained by the floodplain administrator.

The City of Bellville's FDPO can be found within Chapter 3, Article 6 of their Code of Ordinances. The City of Brazos Country's FDPO can be found on the city website under their Code of Ordinances, page 3, Ordinance 2019-03. This ordinance was further amended in 2022 to increase minimum construction elevations above base flood elevation by 2 feet. The Town of San Felipe's FDPO can be found on the city website under their Ordinance Index, Ordinance 2019-6. The City of Sealy's FDPO can be found within their Code of Ordinances, Chapter 38 – Floods, Article II- Flood Damage Prevention, Division 3- Flood Hazard Reduction. The City of Wallis' FDPO can be found within their Code of Ordinances on the city website, Ordinance 110-B.

The Community Rating System (CRS)

The CRS is a voluntary incentive program that recognizes and encourages community floodplain management practices that exceed the minimum requirements of the NFIP. Participation in the CRS

program is voluntary and includes many benefits for a community, such as discounted flood insurance premiums that relate to the community's level of efforts that reduce risk from flooding and strengthen floodplain management. Currently, there are no communities within Austin County, including the County itself, that participate in the CRS Program.^{29, 30}

Table 3.6: Community Participation in the CRS Program

Jurisdiction	CRS Participation
Austin County	N
Bellville	N
Brazos Country	N
Industry	N
San Felipe	N
Sealy	N
South Frydek	N
Wallis	N

Repetitive Loss and Severe Repetitive Loss Properties

FEMA defines a repetitive loss (RL) structure as "a structure covered under an NFIP flood insurance policy that:

- (1) Has incurred flood-related damage on 2 occasions, in which the cost of repair, on average, equaled or exceeded 25% of the value of the structure at the time of each such flood event; and
- (2) At the time of the second incidence of flood-related damage, the contract for flood insurance contains increased cost of compliance coverage."³¹

A severe repetitive loss (SRL) property is defined as "a structure that is covered under an NFIP flood insurance policy and has incurred flood-related damage:

- (1) For which 4 or more separate claims payments have been made under flood insurance coverage under subchapter B of this chapter, with the amount of each claim (including building and contents payments) exceeding \$5,000, and with the cumulative amount of such claims payments exceeding \$20,000; or
- (2) For which at least 2 separate flood insurance claims payments (building payments only) have been made, with a cumulative amount of such claims exceeding the value of the insured structure.³²

According to available data from 2023, Austin County has a total of 54 RL properties, of which 8 are designated as SRL properties.³³ This does not include RL or SRL properties that have already been mitigated. Table 3.6 outlines the jurisdiction, structure type (residential, commercial, institutional, etc.), and number of records for RL and SRL properties within the county, including the number of those properties that were insured under the NFIP.

Table 3.7: RL and SRL Properties, Austin County (FEMA Region 6, Floodplain Management and Insurance Branch, Personal Communication, January 12, 2023)

Jurisdiction Name		Non-Residential RLPs	Total RLPs	SRL Properties	Number of NFIP Insured Properties
Austin County	37	1	38	7	25
Bellville	0	0	0	0	0
Brazos Country	2	0	2	0	2
Industry	0	0	0	0	0
San Felipe	1	1	2	0	0

Jurisdiction Name	Residential RLPs	Non-Residential RLPs	Total RLPs	SRL Properties	Number of NFIP Insured Properties
Sealy	9	0	9	0	6
South Frydek	0	0	0	1	0
Wallis	2	1	3	0	2
TOTALS:	51	3	54	8	35

NFIP Policies In-Force

Table 3.7 summarizes the NFIP policies in force for Austin County by jurisdiction. An "In-force" policy means that the contract between the insurer and the policyholder is active, and the insurance company is liable to pay the benefits as defined in the policy agreement if the insured event occurs. In total, there are 582 NFIP insured properties within the county.

Table 3.8: NFIP Insured Properties by Community, Austin County³²

Community Name (Number)	Policies In-Force	Total Coverage	Total Written Premium + FPF
AUSTIN COUNTY (480704)	331	\$94,643,000	\$244,722
BELLVILLE (481095)	27	\$8,537,000	\$17,681
BRAZOS COUNTRY (481693)	40	\$12,905,000	\$24,406
INDUSTRY			
SAN FELIPE (480705)	23	\$7,843,000	\$21,966
SEALY (480017)	126	\$38,027,000	\$103,851
SOUTH FRYDEK			
WALLIS (480018)	35	\$10,360,000	\$25,033

Community Name- The official NFIP name of the community in which the policy resides.

Community Number- The 6-character community ID in which the policy resides.

Total Coverage- The total building and contents coverage for the policies in force.

Total Written Premium + FPF (Federal Policy Fee)- This represents the sum of the premium and FPF for the policies in force.

NFIP Claims

FEMA Guidance specifies that NFIP flood insurance claim information is subject to The Privacy Act of 1974, as amended. The Act prohibits public release of policyholder names, or names of financial assistance recipients and the amount of the claim payment or assistance. After flooding events, local officials are responsible for inspecting flood-damaged structures in the SFHA to determine if they are substantially damaged (50% or more damaged). If so, the property owner is required to bring a non-conforming structure into compliance with the local floodplain ordinance. In Austin County, the County Judge and individual jurisdictions' Floodplain Administrators are responsible for handling these NFIP claims. Over 314 NFIP claims have been submitted, with nearly \$13,911,588 in payments for Austin County. Compared to NFIP Claims within the entire State of Texas, Austin County made up 13.32% of total NFIP claim records. Table 3.8 shows NFIP claim records and estimated payment totals for the State of Texas as compared to Austin County.

Table 3.9: NFIP Claims, State of Texas^{32,35}

State	Number of Records	Total Payments
TEXAS	2,357	\$75,598,418
AUSTIN COUNTY	314	\$13,911,588

Total Payments- The total amount of payments for all claims, including building, contents, and Increased Cost of Compliance (ICC) coverage payments.

Section 4: Risk Assessment

This section outlines the risk assessment procedures, identifies hazards ranked by risk, and summarizes the hazards that affect Austin County and the history of hazard events for those identified risks within the county.

Section 4: RISK ASSESSMENT

The 2023 Texas State HMP identified 11 major natural hazards that affect the region. These include hurricanes, floods, wildfires, drought, and tornados. The local PT identified 15 natural hazards which could affect the county and local jurisdictions.

Risk Assessment

The HMC was provided with a Risk Assessment worksheet prepared by H-GAC staff. The worksheet outlined the purpose of the Risk Assessment, important items to keep in mind while completing the worksheet, probability, and severity scores, including characteristics for those scores that were relatable, and a guide for how to calculate hazard rankings determined by the probability and severity scores. The Risk Assessment ranked the hazards identified by scoring the probability and severity of each hazard. A risk score was then determined by multiplying the probability (P) by the severity (S). Tables including scores and associated characteristics can be found below. Appendix D includes completed worksheets and a summary of hazard ranking scores from participating jurisdictions.

Probability	Characteristics			
4 – Highly Likely	Event is probable within the next calendar year			
	These events have occurred, on average, once every 1-2 years in the past			
3 – Likely	Event is probable within the next 10 years			
	Event has a 10-50% chance of occurring in any given year			
	These events have occurred, on average, once every 3-10 years in the past			
	Event is probable within the next 50 years			
2 – Possible	Event has a 2-10% chance of occurring in any given year			
	These events have occurred, on average, once every 10-50 years in the past			
1 – Unlikely	Event is probable within the next 200 years			
	Event has a 0.5-2% chance of occurring in any given year			
	These events have occurred, on average, once every 50-200 years in the past			

Severity	Characteristics			
8 – Catastrophic	Multiple deaths			
	Complete shutdown of facilities for 30 or more days			
	More than 50% of property is severely damaged			
4 – Critical	Injuries and/or illnesses result in permanent disability			
	Complete shutdown of critical facilities for at least 14 days			
	More than 25% of property is severely damaged			
	Injuries and/or illnesses do not result in permanent disability			
2 – Limited	Complete shutdown of critical facilities for more than seven days			
	More than 10% of property is severely damaged.			
1 – Negligible	Injuries and/or illnesses are treatable with first aid			
	Minor quality of life lost			
	Shutdown of critical facilities and services for 24 hours or less			
	Less than 10% of property is severely damaged			

Hazards Ranked by Risk

Each identified hazard in the table below poses a risk to Austin County. Ranking the hazards from greatest to lowest risk allows the communities to prioritize their resources and focus efforts where they are most needed. Identified hazards were given a risk score as determined by participating jurisdictions and the HMC, those hazards were then categorized with a risk rating of High, Moderate, or Low.

Risk Rating	Ranking	Hazards						
Uiah	1	Flooding						
High	2	Wildfire						
	3	Severe Thunderstorms & Lightning						
	4	Tornado/Microburst						
Moderate	5	Erosion						
Moderate	6	Winter Weather						
	7	Drought & Expansive Soils						
	8	Windstorm						
	9	Hail						
	10	Hurricanes, Tropical Storms, & Depressions						
Low	11	Extreme Heat						
	12	Dam/Levee Failure						
	13	Emerging Infectious Diseases						
	14	Cybersecurity						

Section 5: Capability Assessment

This section includes the capability assessment, which includes a summary and description of the existing plans, programs, and regulatory mechanisms that support hazard mitigation within the planning area.

Section 5: CAPABILITY ASSESSMENT

Capability Assessment

A Capability Assessment is a process of evaluating the existing capabilities, including resources such as staff time, funding, and infrastructure, that the county currently has at its disposal to utilize for hazard risk reduction. The participating jurisdictions completed local capability and risk assessment surveys to collect data on hazards that affect communities, the communities' ability to mitigate damages from these hazards, and current plans or programs in place to help mitigate natural hazards. The jurisdictions also identified factors impacting their capabilities to address hazards in their communities. The PT used the information to assess the overall risk within each community and to determine a strategy to integrate the HMP into their current planning mechanisms. A condensed version of the information is provided below. The full capability assessment worksheets and responses can be found in Appendix D.

List of Existing Plans & Regulations

CIP: Capital Improvements Plan FPO: Floodplain Ordinance COMP: Comprehensive Land Use Plan HMP: Hazard Mitigation Plan

COOP: Continuity of Operations Plan NHSO: Natural Hazard Specific Ordinance

DRP: Disaster Recovery Plan

EDP: Economic Development Plan

REP: Radiological Emergency Plan

SMP: Stormwater Management Plan

EOP: Emergency Operations Plan

FMP: Floodplain Management Plan

SO: Subdivision Regulation

TP: Transportation Plan

FDPO: Flood Damage Prevention Ordinance ZO: Zoning Ordinance

Table 5.1: Existing Plans and Regulations by Participating Jurisdictions

Jurisdiction	CIP	COMP	COOP	DRP	EDP	EOP	FMP	FDPO	FPO	HMP	NHSO	REP	SMP	so	TP	ZO
Austin County				X		X	X	X		X				X		
Bellville	X					X		X		X				X		X
Brazos Country							X	X	X	X				X		
Industry																
San Felipe			X	X		X	X	X		X						
Sealy	X	X						X		X				X		
South Frydek														X		
Wallis								X		X				X		
Bellville ISD	X	X	X	X		X									X	
Brazos ISD	X	X	X	X		X									X	
Sealy ISD	X	X	X	X		X	X								X	

Capability Limitations and Expansion Opportunities

Participating jurisdictions examined their existing authorities, policies, programs, and resources. Participating jurisdictions then identified ways to improve upon and expand their existing authorities to support the mitigation strategy.

 Table 5.2: Capability Limitations and Expansion Opportunities by Participating Jurisdictions

	ations and Expansion Opportunities by Participating Jurisdictions
Jurisdiction	Capability Limitations and Expansion Opportunities
Austin County	Identified the local budget as a factor that decreases their capability to implement
	mitigation actions and reduce future damages. Austin County will apply for state
	and federal funding to help fund mitigation actions that reduce the impact of
	natural hazards.
	Overall capability assessment score is: Limited
Bellville	Identified a need for technical staff and larger budget as factors that decreases
	their capability to implement mitigation actions and reduce future damages. The
	city will apply for state and federal funding to help fund mitigation actions that
	reduce the impact of natural hazards.
	Overall capability assessment score is: Moderate
Brazos Country	Identified a need for technical staff and larger budget as factors that decreases
-	their capability to implement mitigation actions and reduce future damages. The
	city will apply for state and federal funding to help fund mitigation actions that
	reduce the impact of natural hazards.
	Overall capability assessment score is: Limited
Industry	Identified a low local budget and lack of technical staff as factors that decreases
·	their capability to implement mitigation actions and reduce future damages. The
	city will apply for state and federal funding to help fund mitigation actions that
	reduce the impact of natural hazards. Additionally, capabilities could be expanded
	by joining the NFIP and adopting a FDPO.
	Overall capability assessment score is: Limited
San Felipe	Identified a low local budget as a factor that decreases their capability to
-	implement mitigation actions and reduce future damages. The city will apply for
	state and federal funding to help fund mitigation actions that reduce the impact of
	natural hazards.
	Overall capability assessment score is: Limited
Sealy	Identified low local funding as a barrier for implementing projects within the
·	mitigation action plan. The city will apply for state and federal funding to help
	fund mitigation actions that reduce the impact of natural hazards.
	Overall capability assessment score is: Moderate
South Frydek	Identified a low local budget and technical staff as a factor that decreases their
v	capability to implement mitigation actions and reduce future damages.
	Additionally, capabilities could be expanded by joining the NFIP and adopting a
	FDPO.
	Overall capability assessment score is: Limited
Wallis	Identified low local budget as a barrier for implementing projects within the
	mitigation action plan. The city will apply for state and federal funding to help
	fund mitigation actions that reduce the impact of natural hazards.
	Overall capability assessment score is: Moderate
	o retain capacitity assessment score is, inforcerate

Jurisdiction	Capability Limitations and Expansion Opportunities					
Bellville ISD	Identified a low local budget as a factor that decreases their capability to					
	implement mitigation actions and reduce future damages. The district will apply					
	for state and federal funding to help fund mitigation actions that reduce the impact					
	of natural hazards, when applicable.					
	Overall capability assessment score is: Limited					
Brazos ISD	Identified a low local budget as a factor that decreases their capability to					
	implement mitigation actions and reduce future damages. The district will apply					
	for state and federal funding to help fund mitigation actions that reduce the impact					
	of natural hazards, when applicable.					
	Overall capability assessment score is: Limited					
Sealy ISD	Identified a low local budget as a factor that decreases their capability to					
	implement mitigation actions and reduce future damages. The district will apply					
	for state and federal funding to help fund mitigation actions that reduce the impact					
	of natural hazards, when applicable.					
	Overall capability assessment score is: Limited					

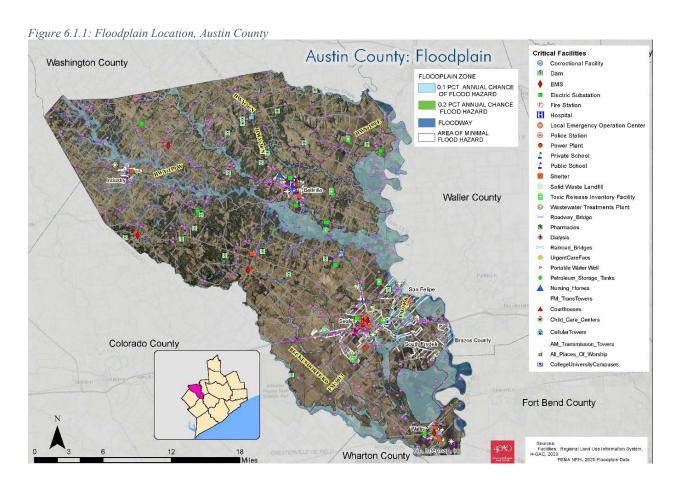
Section 6: Hazard Identification & Risk Analysis

This section is broken down into subsections for each hazard of concern to the county and participating jurisdictions identified during the risk assessment. It contains descriptions of identified hazards, hazard location, extent, history of events, probability of future events, and climate change impacts. Additionally, vulnerability is addressed for all hazards and includes a probable risk level, an estimate of property and crop damages, hazard ranking, number of events, fatalities and injuries, average annual events, changes in frequency, and estimated annualized losses where applicable.

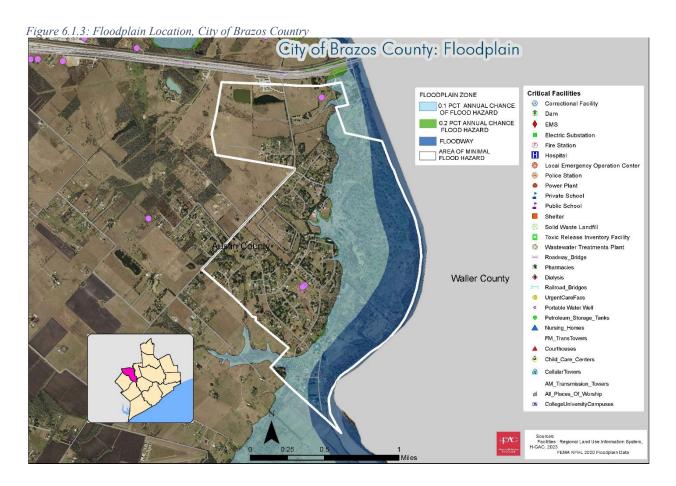
Section 6: HAZARD IDENTIFICATION & RISK ANALYSIS

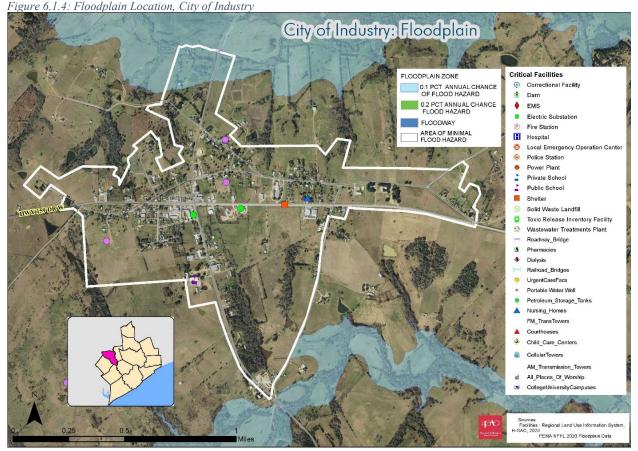
- 6.1 Flooding
- 6.2 Wildfire
- 6.3 Severe Thunderstorms & Lightning
- 6.4 Tornado/Microbursts
- 6.5 Erosion
- 6.6 Winter Weather
- 6.7 Drought & Expansive Soils
- 6.8 Windstorm
- 6.9 Hail
- 6.10 Hurricanes, Tropical Storms, & Depressions
- 6.11 Extreme Heat
- 6.12 Dam/Levee Failure
- 6.13 Emerging Infectious Diseases
- 6.14 Cybersecurity

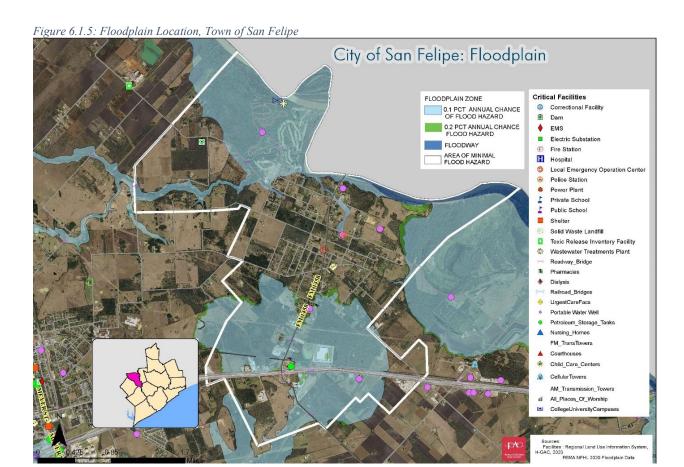
Section 6.1: Flooding

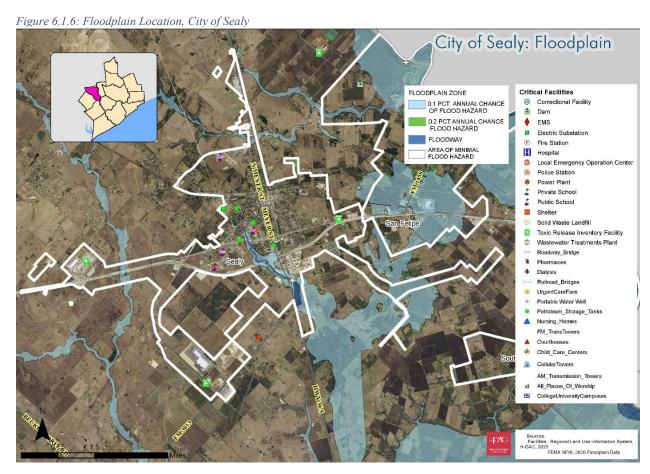

6.1 Flooding

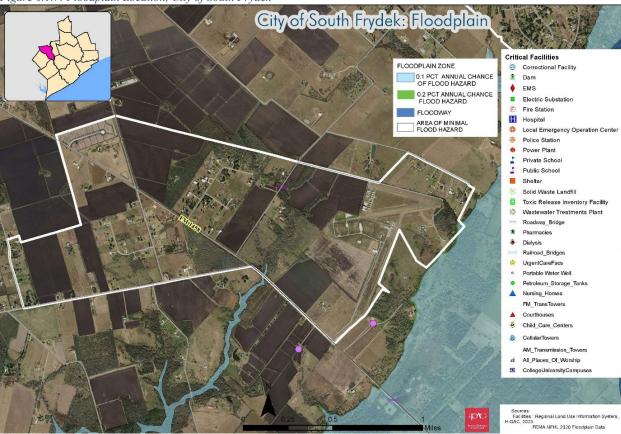
Floodplains are the primary tool used by FEMA to determine areas at risk of flooding. The periodic flooding of lands adjacent to rivers, streams, and shorelines is a natural and inevitable occurrence that can be expected based on established recurrence intervals. The recurrence interval of a flood is the average time interval, in years, that can be anticipated between flood events of a certain magnitude. Using the recurrence interval with land and precipitation modeling, forecasters can estimate the probability and likely location of flooding. These are expressed as floodplains. The most used floodplain measurements are the 100-year floodplain and the 500-year floodplain. The 100-year floodplain is a SFHA that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The 1-percent (1 in 100) annual chance flood is also referred to as the base flood. The 500-year floodplain, or the 0.2% annual chance flood, is a flooding event that has a 0.2 percent (1 in 500) chance of occurring in any given year at any given location.

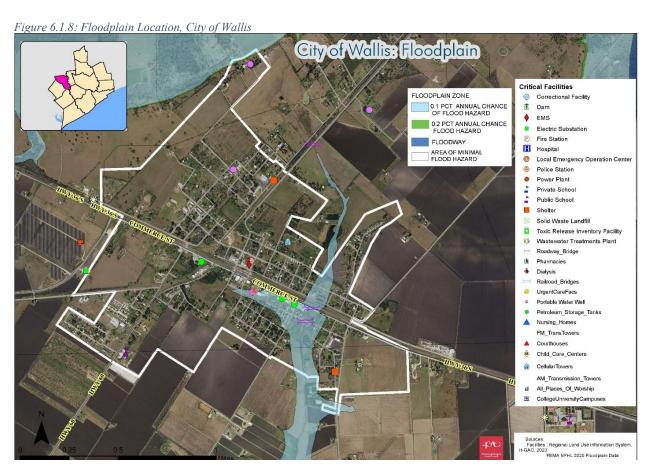

Four different types of flooding can affect an area: coastal, riverine, flash flooding, and groundwater flooding. For this HMP update the flooding section focuses on riverine and flash flooding as those are historically the types of floods that have occurred within the county. Riverine Flooding is when streams and rivers exceed the capacity of their natural or constructed channels to accommodate water flow and water overflows the banks, spilling out into adjacent low-lying, dry land.³⁷ Riverine flooding can occur during heavy periods of rain that cause rivers and streams to crest their banks and can take days, weeks, to months to subside back to normal levels. Flash Flooding is defined by the National Weather Service (NWS) as "A rapid and extreme flow of high water into a normally dry area or a rapid water level rise in a stream or creek above a predetermined flood level. Ongoing flooding can intensify to flash flooding in cases where intense rainfall results in a rapid surge of rising flood waters. Commonly it occurs within six hours of a heavy rain event. However, flash floods can also occur within hours or even minutes if a dam or levee fails or rapid ponding of water caused by torrential rainfall."³⁸


Location


Figure 6.1.1 below shows the location of floodplains within Austin County and participating jurisdictions. Figures 6.1.2 through 6.1.8 show the floodplains within each participating jurisdiction of this plan. Areas depicted by differentiating colors on the map show the locations of the 100-year and 500-year floodplains, as well as the floodway.

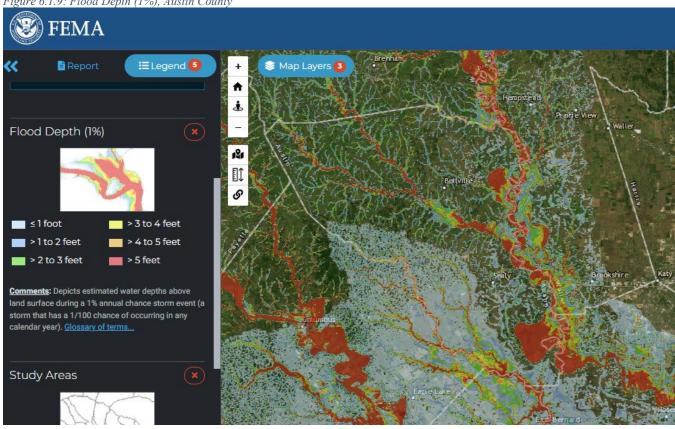




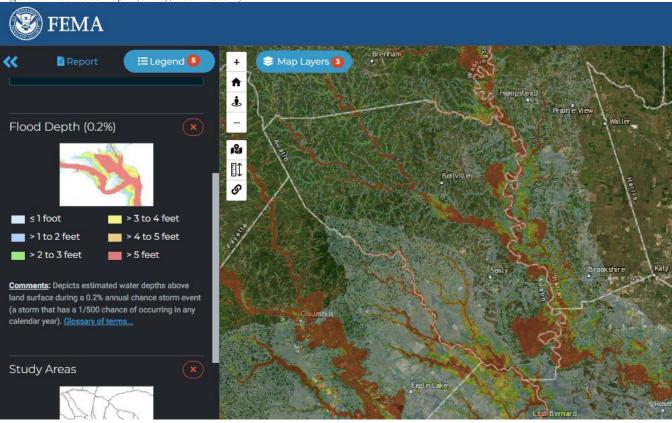


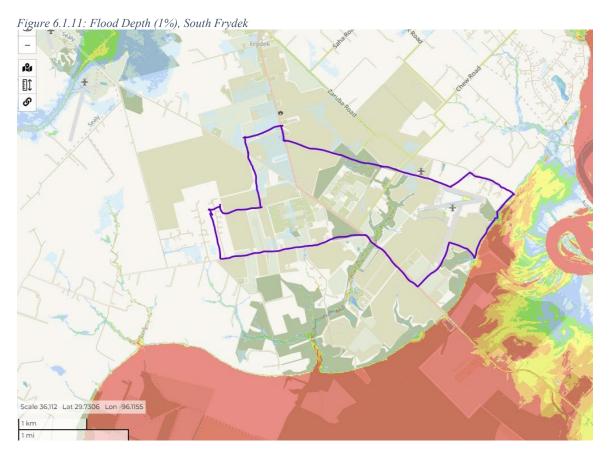
Extent

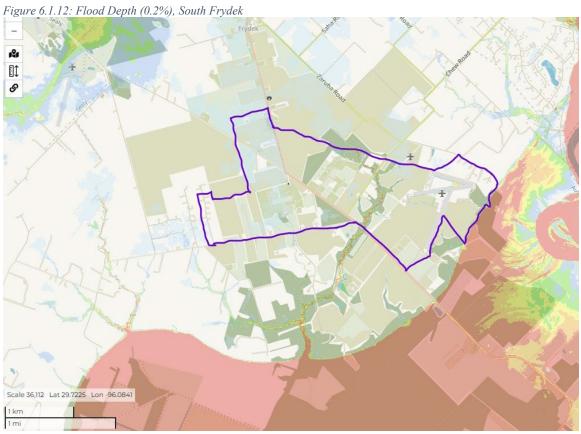
The NWS categorizes riverine flooding levels into four categories, minor, moderate, major, and record flooding. Table 6.1.1 below outlines these categories and their descriptions. Once a river reaches flood stage, an established gage height for a given location in which a rise in surface water begins to create a hazard to lives, property, or businesses, the NWS utilizes these categories to describe flood severity.

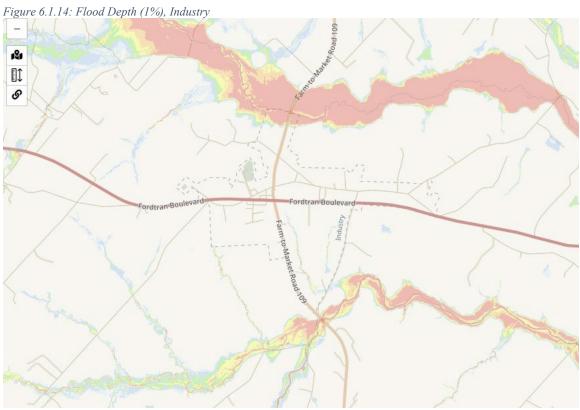

Table 6.1.1: NWS Flood Categories

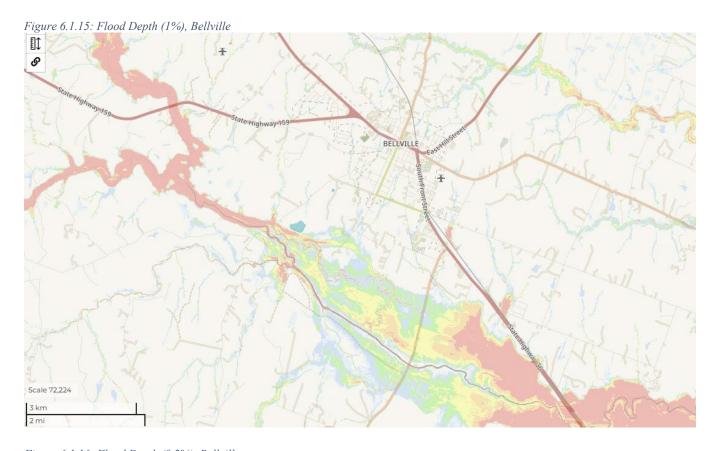
Flood Category	Description
Minor Flooding	Minimal or no property damage is expected, but the flooding could possibly
Willion Flooding	cause some public threat or inconvenience.
	Some inundation of structures and roads near streams is expected. Some
Moderate Flooding	evacuations of people and or a transfer of property to higher elevations are
	necessary.
	Extensive inundation of structures and roads in addition to the possible
Major Flooding	significant evacuations of people and/or transfer of property to higher
	elevations.
Record Flooding	Flooding which equals or exceeds the highest stage or discharge observed at a
Kecoru Flooding	given site during the period of record.


Flash Floods can be caused by several things, but they are most often caused due to extremely heavy rainfall from thunderstorms. The intensity of the rainfall, the location and distribution of the rainfall, the land use and topography, vegetation types and growth/density, soil type, and soil water content all determine how quickly flooding may occur, and influence where it may occur.³⁹


Flooding causes widespread and varying degrees of damage. The magnitude or extent of flood damage is expressed by using the maximum depth of flood water during a specific flood event. Structures inundated by 4 feet or more of flood water are considered an absolute loss. Other forms of loss include damage to roads and bridges, agriculture damages, loss of services, injury, or death. Flooding can also cut off access to utilities, emergency services, and transportation, and may impact the overall economic well-being of an area. Within the planning area, especially along the Brazos River and the various creeks that run through Austin County, communities could see flood depths of over 5 feet for both the 1% and 0.2% annual chance storm events based on best available data. The figures below depict these estimated water depths of 5+ feet over land surfaces within city limits for most participating jurisdictions and in various unincorporated areas of the county.


Figure 6.1.9: Flood Depth (1%), Austin County





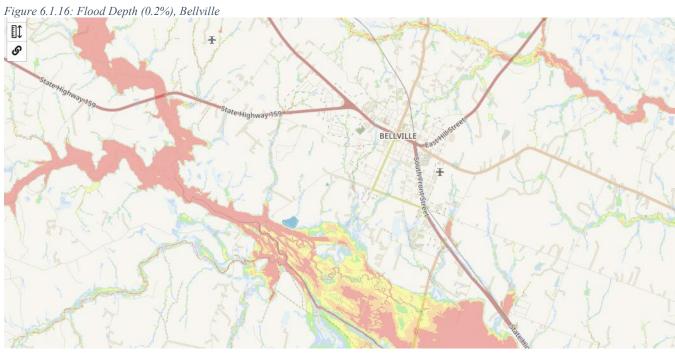


Figure 6.1.17: Flood Depth (1%), Sealy

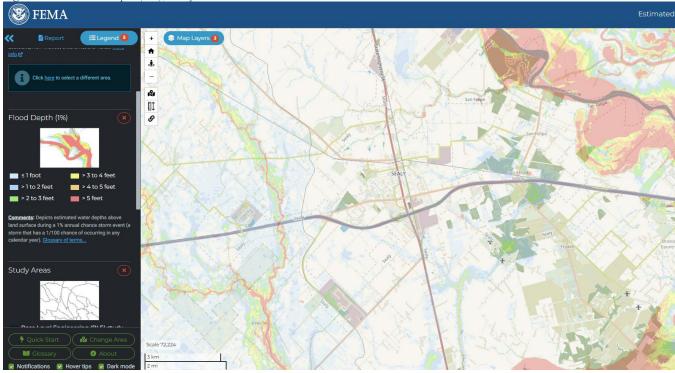
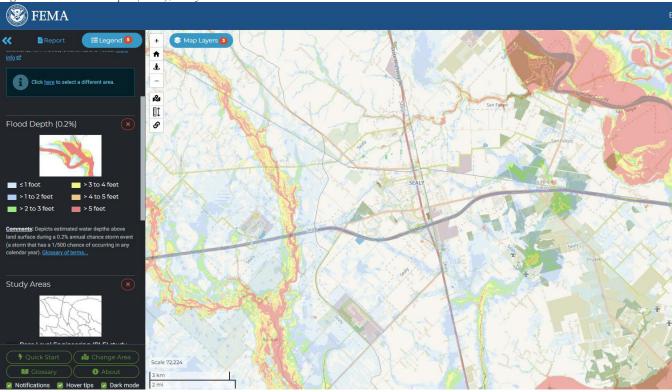
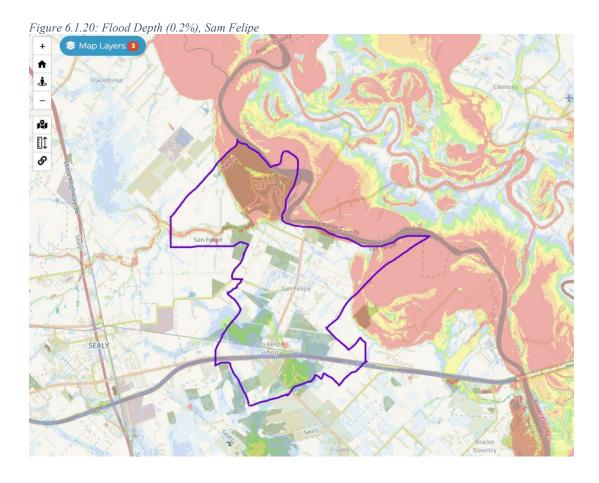
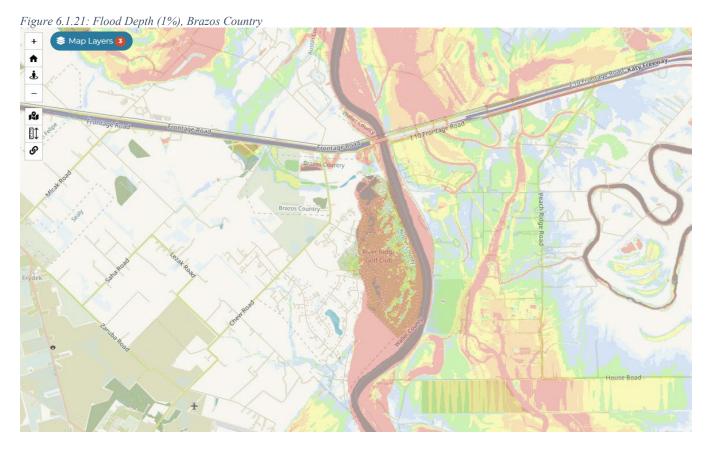
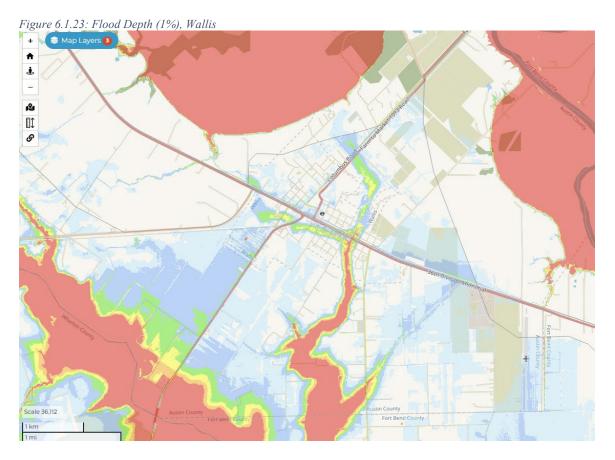


Figure 6.1.18: Flood Depth (0.2%), Sealy


Figure 6.1.19: Flood Depth (1%), San Felipe

**Map Layers 3


**Macedonis


**San Felipe

Previous occurrences of flooding within the county and participating jurisdictions have seen historic flooding, highwater rescues of stranded residents, roads, bridges, and railroads washed out, surrounding rivers reaching major flood stage, and the destruction of critical facilities and infrastructure.

A worst-case scenario for this hazard would include a 0.2% (500-year storm) event that results in dangerous, life-threatening, historic-level riverine and flash flooding. A storm of this severity would see flood depths of 5+ feet above land surfaces throughout the planning area and in a majority of participating jurisdictions, inundated roadways cutting off access to neighborhoods, emergency services, and critical facilities. Hazardous travel conditions via roads and bridges being washed out, especially at low water crossings. This would be similar to heavy rain events that occurred in April and May 2024 (not yet recorded in the National Centers for Environmental Information (NCEI) flood events data seen in the table below). Additionally, a hazard of this magnitude could damage critical infrastructure and lead to a prolonged power outage. If this occurs during a heat event or a drought and disrupts power supply, secondary hazards will pose increased risks to citizens due to the heat and the inability to keep homes and buildings cool. This scenario is similar to what occurred within the region during the 2024 derecho and Hurricane Beryl. Power lines were destroyed by debris and falling trees due to the severe thunderstorms and associated winds. This event occurred in July when the region was under an excessive heat advisory. Power line restoration and infrastructure repairs took 10+ days to restore in some areas. This resulted in the multi-day activation of cooling centers.

Historic Occurrences

The National Oceanic and Atmospheric Administration (NOAA) collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the National Climatic Data Center (NCDC) storm events database. A condensed version of the Austin County flood events data from 1950-2023 is provided in the table below.⁴⁰

Table 6.1.2: Austin County Flood Events (1950-2023)

Event Date	Fatalities	Property Damage Estimate	Crop Damage Estimate
9/20/1996	0	\$15,000.00	\$-
2/20/1997	0	\$5,000.00	\$-
5/21/1997	0	\$10,000.00	\$-
6/7/1997	0	\$5,000.00	\$-
10/13/1997	0	\$5,000.00	\$-
2/26/1998	0	\$1,000.00	\$-
10/17/1998	0	\$50,000.00	\$-
10/18/1998	0	\$15,000.00	\$-
10/18/1998	0	\$-	\$-
11/12/1998	0	\$-	\$-
11/12/1998	0	\$10,000.00	\$-
11/12/1998	0	\$5,000.00	\$-
11/12/1998	0	\$10,000.00	\$-
11/12/1998	0	\$20,000.00	\$-
11/13/1998	0	\$10,000.00	\$-
11/14/1998	0	\$5,000.00	\$-

Event Date	Fatalities	Property Damage Estimate	Crop Damage Estimate
11/4/2002	0	\$20,000.00	\$-
4/25/2004	0	\$5,000.00	\$-
6/24/2004	0	\$25,000.00	\$-
11/22/2004	0	\$-	\$-
11/22/2004	0	\$-	\$-
1/13/2007	2	\$8,000.00	\$-
1/13/2007	0	\$-	\$-
4/30/2007	0	\$-	\$-
5/27/2007	0	\$-	\$-
11/17/2007	0	\$60,000.00	\$-
10/13/2013	0	\$20,000.00	\$-
5/18/2015	0	\$-	\$-
5/26/2015	0	\$-	\$-
5/27/2015	0	\$-	\$-
4/18/2016	1	\$2,300,000.00	\$-
8/27/2017	0	\$100,000.00	\$50,000.00
8/28/2017	0	\$-	\$-
5/24/2021	0	\$-	\$-
5/24/2021	0	\$-	\$-
5/24/2021	0	\$-	\$-
5/24/2021	0	\$-	\$-
4/7/2023	0	\$-	\$-
9/15/2023	0	\$-	\$-
1/23/2024	0	\$-	\$-
1/24/2024	0	\$-	\$-
1/24/2024	0	\$-	\$-
TOTALS:	3	\$2,704,000.00	\$50,000.00

Presidential Disaster Declarations

There have been seven federally declared flood disasters in Austin County since 1950. These events are considered the most significant flood events in Austin County's recent history.¹

Table 6.1.3: Federally Declared Disasters, Flood

Declaration Year	Title	Disaster Number
1991	SEVERE THUNDERSTORMS AND FLOODING	930
1994	SEVERE THUNDERSTORMS AND FLOODING	1041
1998	TX-FLOODING 10/18/98	1257
2016	SEVERE STORMS AND FLOODING	4269
2016	SEVERE STORMS AND FLOODING	4272
2017	TX-HURRICANE HARVEY	4332
2024	TX- HURRICANE BERYL	4798

USDA Disaster Declarations

The United States Department of Agriculture (USDA) authorizes the Secretary of Agriculture to designate counties as disaster areas to make emergency (EM) loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as Farm Service Agency (FSA) disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader or by an FSA State Executive Director (SED). The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴¹

Table 6.1.4: USDA Declared Disasters (2018-2023), Flood

Crop Disaster Year	Disaster Description	Designation Number
2018	Excessive moisture and flooding	S4476
2021	Excessive moisture and excessive rainfall	S5053
2021	Excessive Moisture	S5088
2021	Excessive Moisture	S5089
2021	Excessive Moisture	S5105

National Flood Insurance Program

The NFIP is a federal program administered through FEMA that enables property owners in participating communities to purchase insurance as a protection against flood losses. Communities must maintain eligibility in the NFIP by adopting and enforcing floodplain management regulations intended to prevent unsafe development in the floodplain, thus reducing future flood damage. FEMA creates flood maps, or FIRMs to support the NFIP.^{24,25} These flood maps are periodically updated and outline SFHA. The SFHA is the area where the NFIP floodplain management regulations must be enforced and the area where the mandatory purchase of flood insurance applies.²⁶ For more information regarding NFIP participation, see Section 3, County Profile, NFIP Participation. A table summarizing participating jurisdiction's participation in both the NFIP and CRS programs can be found below.

The Community Rating System

The CRS is a voluntary incentive program that recognizes and encourages community floodplain management practices that exceed the minimum requirements of the NFIP. Participation in the CRS program is voluntary and includes many benefits for a community, such as discounted flood insurance premiums that relate to the community's level of efforts that reduce risk from flooding and strengthen floodplain management. Currently, there are no communities within Austin County, including the County itself, that participate in the CRS Program.²⁷

As seen in Section 3- Table 3.10: Community Participation in the NFIP and CRS Program²⁸

Jurisdiction	Participating	Date Joined	Current Effective FIRM Date	CRS Participation
Austin County	Y	02/25/77	10/18/19	N
Bellville	Y	11/19/76	10/18/19	N
Brazos Country	Y	02/25/77	10/18/19	N
Industry	N			N

Jurisdiction	Participating	Date Joined	Current Effective FIRM Date	CRS Participation
San Felipe	Y	01/03/86	10/18/19	N
Sealy	Y	12/17/73	10/18/19	N
South Frydek	N			N
Wallis	Y	05/24/74	10/18/19	N

Repetitive Loss and Severe Repetitive Loss Properties

FEMA defines a RL structure as "a structure covered under an NFIP flood insurance policy that:

- (1) Has incurred flood-related damage on 2 occasions, in which the cost of repair, on average, equaled or exceeded 25% of the value of the structure at the time of each such flood event; and
- (2) At the time of the second incidence of flood-related damage, the contract for flood insurance contains increased cost of compliance coverage."²⁹

A SRL property is defined as "a structure that is covered under an NFIP flood insurance policy and has incurred flood-related damage:

- (1) For which 4 or more separate claims payments have been made under flood insurance coverage under subchapter B of this chapter, with the amount of each claim (including building and contents payments) exceeding \$5,000, and with the cumulative amount of such claims payments exceeding \$20,000; or
- (2) For which at least 2 separate flood insurance claims payments (building payments only) have been made, with a cumulative amount of such claims exceeding the value of the insured structure.³⁰

According to available data from 2023, Austin County has a total of 54 RL properties, of which 8 are designated as SRL properties.³¹ This does not include RL or SRL properties that have already been mitigated. Over 314 NFIP claims have been submitted, with nearly \$13,911,588 in paid RL claims. Compared to NFIP Claims within the entire State of Texas, Austin County made up 13.32% of total NFIP claim records.^{31,32} Tables 3.5 outlines the jurisdiction, structure type (residential, commercial, institutional, etc.), and number of records for RL and SRL properties within the county, including the number of those structures that were insured under the NFIP. Table 3.6 depicts NFIP claim records and estimated payment totals for the State of Texas and Austin County.

Jurisdiction Name	Residential RLPs	Non-Residential RLPs	Total RLPs	SRL Properties	Number of NFIP Insured Properties
Austin	37	1	38	7	25
County	37	1	36	/	23
Bellville	0	0	0	0	0
Brazos	2	0	2	0	2
Country	2	U	<u> </u>	U	2
Industry	0	0	0	0	0
San Felipe	1	1	2	0	0
Sealy	9	0	9	0	6
South Frydek	0	0	0	1	0
Wallis	2	1	3	0	2
TOTALS:	51	3	54	8	35

Flood Mitigation Assistance Repetitive Loss and Severe Repetitive Loss Properties

FEMA supports a handful of Hazard Mitigation Assistance (HMA) programs that support mitigation activities by providing funding that helps support mitigation projects. One such program is Flood Mitigation Assistance (FMA), this competitive program provides funding to states, local communities, federally recognized tribes, and territories that can be used for projects that reduce or eliminate the risk of repetitive flood damage to structures insured by the NFIP. While individual homeowners are not eligible to apply for FMA grant funds, a community in good standing (those that have a FEMA-approved HMP and are in good standing with the NFIP) can apply on their behalf. Homeowners who do receive FMA grant funds are required to have active NFIP flood insurance policies, and the NFIP flood insurance policy must be maintained for the life of the structure. Table 3.6 outlines the jurisdiction, structure type (residential, commercial, institutional, etc.), and number of records for RL and SRL properties under the FMA program within the county.

Table 6.1.5: FMA RL and SRL Properties, Austin County (Source: FEMA, Floodplain Management and Insurance Branch) 33

Jurisdiction Name	Residential FMA RLPs	Non-Residential FMA RLPs	Total FMA RLPs	FMA SRL Properties
Austin County	10	0	10	7
Bellville	0	0	0	0
Brazos Country	0	0	0	0
Industry	0	0	0	0
San Felipe	0	0	0	0
Sealy	2	0	2	1
South Frydek	0	0	0	0
Wallis	0	0	0	0
TOTALS:	12	0	12	8

NFIP Policies in Force

Table 3.7 summarizes the NFIP policies in force for Austin County by jurisdiction. An "In-force" policy means that the contract between the insurer and the policyholder is active, and the insurance company is

liable to pay the benefits as defined in the policy agreement if the insured event occurs. In total, there are 2,205 NFIP insured properties within the county.³²

As seen in Section 3- Table 3.12: NFIP Insured Properties by Community, Austin County

Community Name	Policies in	Total	Total Written Premium +
(Number)	Force	Coverage	FPF
AUSTIN COUNTY (480704)	331	\$94,643,000	\$244,722
BELLVILLE (481095)	27	\$8,537,000	\$17,681
BRAZOS COUNTRY (481693)	40	\$12,905,000	\$24,406
INDUSTRY			
SAN FELIPE (480705)	23	\$7,843,000	\$21,966
SEALY (480017)	126	\$38,027,000	\$103,851
SOUTH FRYDEK			
WALLIS (480018)	35	\$10,360,000	\$25,033

Community Name- The official NFIP name of the community in which the policy resides.

Community Number- The 6-character community ID in which the policy resides.

Total Coverage- The total building and contents coverage for the policies in force.

Total Written Premium + FPF - This represents the sum of the premium and FPF for the policies in force.

NFIP Claims

FEMA Guidance specifies that NFIP flood insurance claim information is subject to The Privacy Act of 1974, as amended. The Act prohibits public release of policyholder names, or names of financial assistance recipients and the amount of the claim payment or assistance. After flooding events, local officials are responsible for inspecting flood-damaged structures in the SFHA to determine if they are substantially damaged (50% or more damaged). If so, the property owner is required to bring a non-conforming structure into compliance with the local floodplain ordinance. In Austin County, the County Judge and individual jurisdictions' Floodplain Administrators are responsible for handling these NFIP claims. There have been 314 NFIP claims submitted, with over \$13 million in payments for Austin County, as seen in Table 3.8.

As seen in Section 3- Table 3.13: NFIP Claims, Austin County

(Source: FEMA Region 6, Floodplain Management and Insurance Branch, Personal Communication, January 12, 2023)

State	Number of Records	Total Payments
AUSTIN COUNTY	314	\$13,911,588

Total Payments- The total amount of payments for all claims, including building, contents, and ICC payments.

Probability of Future Occurrences

Flooding and flash floods will continue to occur within Austin County. For this HMP update, the most recent available data was collected to determine the probability of future flood occurrences. These probabilities are based on the 39 flooding events (Table 6.1.2) over a 73-year timeframe (1950-2023) reported in the NCDC Storm Events Database. It is important to note not all flood events that occurred between 1954 and 1996 are accounted for within federally declared disasters due to limitations in data availability at the time. The HMC rated flooding as having a high probability of occurrence and a high level of severity.

Table 6.1.6 Probability of Future Occurrence, Flooding

Hazard Type	Number of Occurrences (1996-2023)	% Chance of Occurring Per Year
Flood	1	
Flash Flood	38	53.4%
Total	39	

Additionally, The FEMA National Risk Index (NRI) utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions. According to the FEMA NRI for riverine flooding, the risk index rating average for the county is relatively moderate. Annualized frequency values are 1.1 events per year over 24 years of record 1996-2019, with 26 events on record

Populations at Risk

All populations within or near a 100-year, 500-year floodplains, and the floodway are at risk of a flood event. Socially vulnerable populations and those in underserved communities are at risk of disproportionate impacts from an event. The National Center for Healthy Housing (NCHH) summarizes at-risk populations for several hazards. For flooding these include older adults, children, people experiencing homelessness, people with disabilities, and people with chronic health conditions. In addition to the dangers listed above, older adults can face social isolation, lack of electricity needed to run medical equipment, lack of access to a vehicle for evacuation, and lack of access to other critical supplies. In younger populations, flood events can disrupt schooling and the normal day-to-day routines children thrive on. This can not only jeopardize their academic success but can also cause mental and emotional stress. Children are more at risk and vulnerable to certain medical conditions like asthma, lead poisoning, allergies, and bacterial infections which can be caused by the resulting flood damage and increased moisture. For people experiencing homelessness, adequate shelter is critical in keeping populations safe during flood events. People with disabilities may require additional assistance to stay safe and prepare for these hazards such as creating a support network, finding accessible transportation to evacuate or get medical attention, and loss of power for needed medical equipment. Likewise, those with chronic health conditions may need similar assistance as those with disabilities. People with chronic health conditions also face exposure to diseases or illnesses from standing water and increased exposure to these illnesses when utilizing a shelter or evacuation center to escape the flood. Additionally, flooding of homes and businesses can cause mold to thrive if not treated promptly. This can exacerbate illness among the general population but especially among those with chronic health conditions.⁴³

2,814 properties in Austin County have greater than a 26% chance of being severely affected by flooding over the next 30 years. This represents 22% of all properties in Austin County. Residential homes face a moderate flood risk with 1,966 out of 10,592 homes at risk. Commercial properties and roads face a major risk of flooding, and social facilities have a minor risk. Table 6.1.7 below summarizes these risk levels and estimated affected buildings or infrastructure.⁵

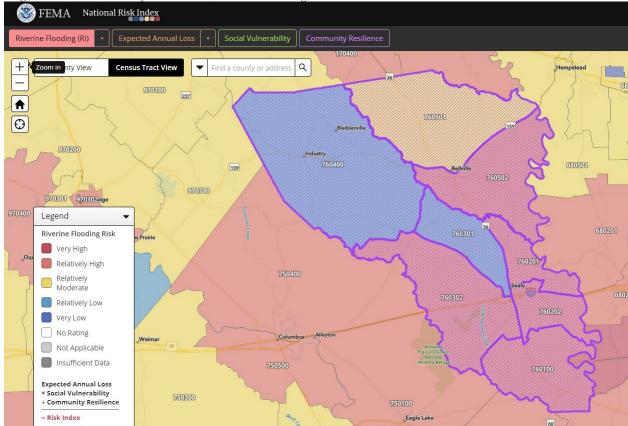
Table 6.1.7: Austin County Property Risk Levels

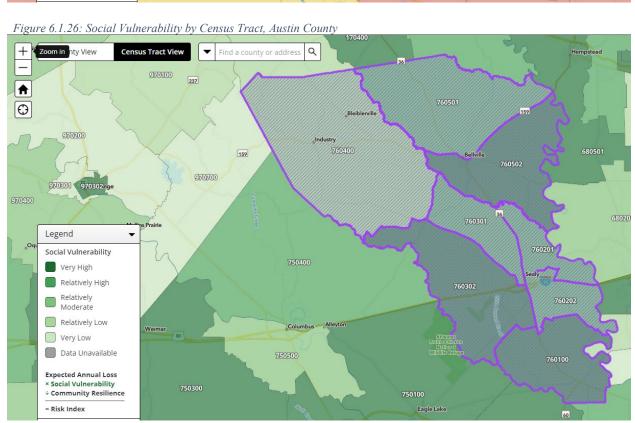
Property Type	Risk Level	Properties Affected
Residential	Moderate	1,966 out of 10,592
Commercial	Major	131 out of 680
Critical Infrastructure	Moderate	11 out of 243 facilities
Roads	Major	644 out of 2,049 miles
Social Facilities	Minor	8 out of 109

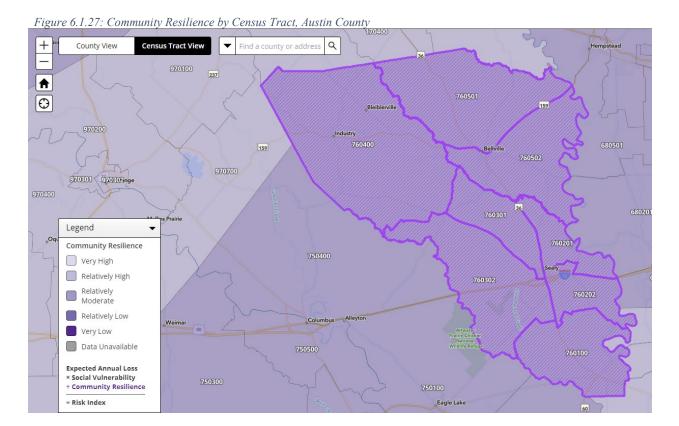
National Risk Index

The FEMA National Risk Index (NRI) is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions. The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts.

The NRI risk equation includes 3 components. Expected annual loss (EAL) represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.


EAL for Austin County each year for riverine flooding is listed as relatively low. EAL for various factors can be found in Table 6.1.8 below. 44


Table 6.1.8: Expected Annual Loss


Expected Annual	Expected Annual Loss (\$)	Expected Annual Loss Rate
Loss Type		
Building	\$3,806,245.40	\$1 per \$1.87K of building value
Agriculture	\$154,772.59	\$1 per \$245.43 of agriculture value
Population	0.26 fatalities (\$3,002,983.02)	1 per 115.93K people
TOTALS:	\$6,964,001.01	52.2%

The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.

Figui	re 6.1.28: FEM.	A NRI Summary,	Riverine Floodin	g			
Rank	Community	Social Ommunity Vulnerability	Community	Hazard Type: Riverine Flooding			
Karik	Community		Resilience	Risk Index Rating	Risk Index Score	Natio	National Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively High	95.47	0	100
2	Census tract 48015760302	Very High	Relatively Low	Relatively High	94.33	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively High	94.28	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively High	93.36	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively High	92.96	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	76.12	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively Low	65.98	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Low	61.3	0	100

Climate Change Impacts

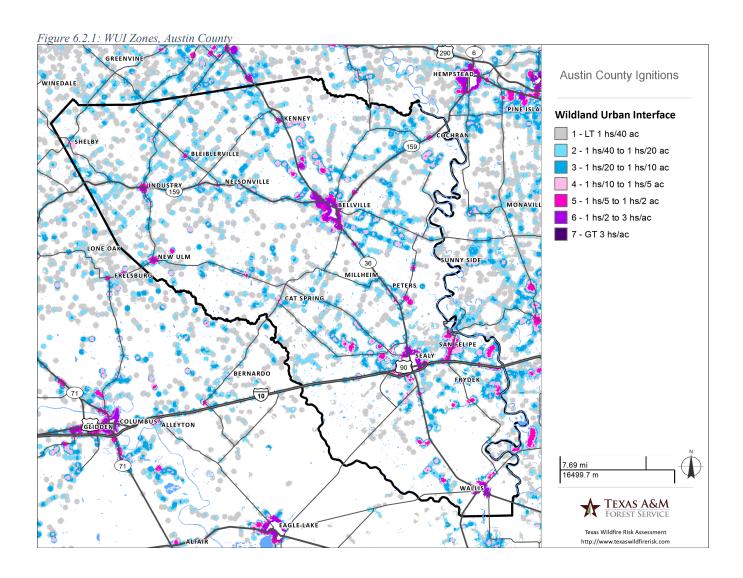
Climate-driven changes like increasing precipitation and warmer sea surface temperatures could affect the probability of future floods within Austin County to occur more often. Precipitation changes within the next 15 to 30 years are expected to be 10%-15% heavier due to increased surface temperatures. These increased temperatures cause more evaporation, making more water available in the atmosphere for rain events. Increased sea surface temperatures can cause a greater intensity of hurricanes and precipitation. Storms are also likely to be more severe. Riverine flooding in Texas is projected to have no substantial change through 2036. This is due to the construction of dams and reservoirs for flood management that occurred and continues to occur within the 20th century. There is a mixture of historical trends categorized by season, but there is no one clear trend to project future flood probabilities. In addition, meteorological

drivers of riverine flooding (increased rainfall intensity and decreased soil moisture) are projected to have competing influences. If there is an increasing trend present in riverine flooding, it will be at the most extreme flood events or in the wettest parts of the state where there is so much rainfall that a decrease in soil moisture would have little mitigating impact. ⁴⁵ Table 6.1.9 below summarizes the expected climate change impacts of flooding.

Table 6.1.9: Climate Change Impacts, Flooding

Location	The location of floods is not expected to change	
Extent/Intensity	The extent and intensity of flooding within the County may change due to	
Extend Intensity	increased precipitation, stronger storms, and rising surface temperatures.	
Evaguaray	There are no clear trends in flood frequency due to considerable variability,	
Frequency	flood management measures, and competing meteorological drivers.	
Duration The duration of flood events is not likely to change.		

Section 6.2: Wildfire


6.2 Wildfire

Wildfire refers to any non-structure fire that occurs in the wildland, an area in which development is essentially nonexistent except for roads, railroads, power lines, and similar transportation or utility structures. This definition does not refer to fires that are conducted via prescribed burns. Hill Wildfires typically occur more often in the summer during dry months and can be exacerbated by droughts or drought-like conditions when plants and other brush contain less moisture and easily ignite. In Texas nearly 85 percent of wildfires occur within two miles of a community. Wildfires can be ignited by a variety of causes from lightning strikes, downed powerlines, smoking (or improper disposal of cigarettes), debris burning, and fireworks.

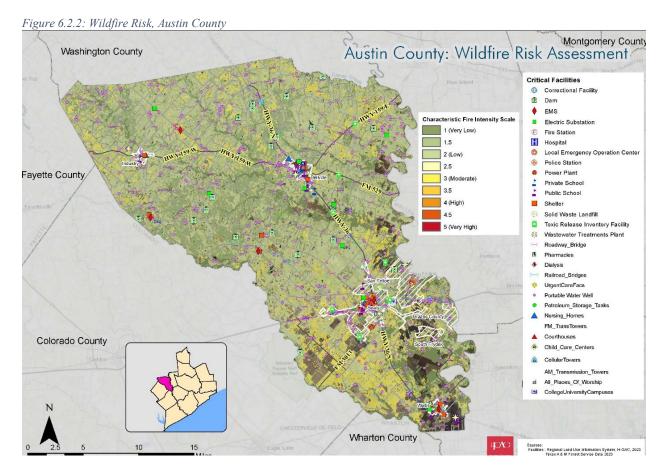
Location

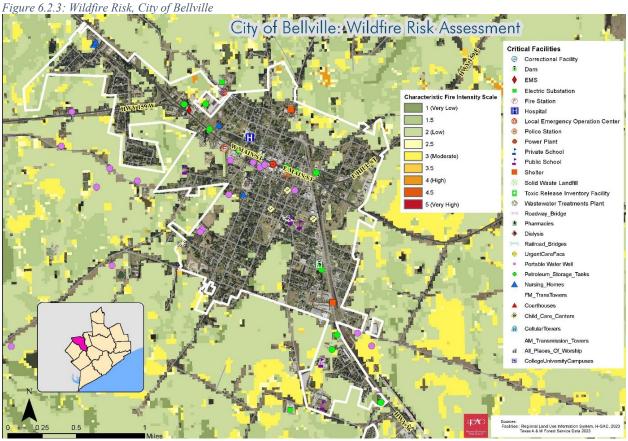
This is a reoccurring natural hazard in every Texas county and has no geographic boundary. The Texas Wildfire Risk Assessment (TWRA) Explorer is the primary mechanism for Texas A&M Forest Service (TFS) to deploy wildfire risk information and create awareness about wildfire issues across the state.⁴⁷ The Texas Wildfire Risk Assessment Portal, or TxWRAP, allows users to easily view their wildfire risk online. TxWRAP uses a variety of factors such as wildfire threat, wildland urban interface, surface fuels, historic wildfire ignitions, fire behavior, and much more to determine the fire potential of a specific land areas and depicts through a set of ratings areas that are most prone to wildfires.⁴⁸ Particularly vulnerable are the Wildland Urban Interface (WUI) areas.

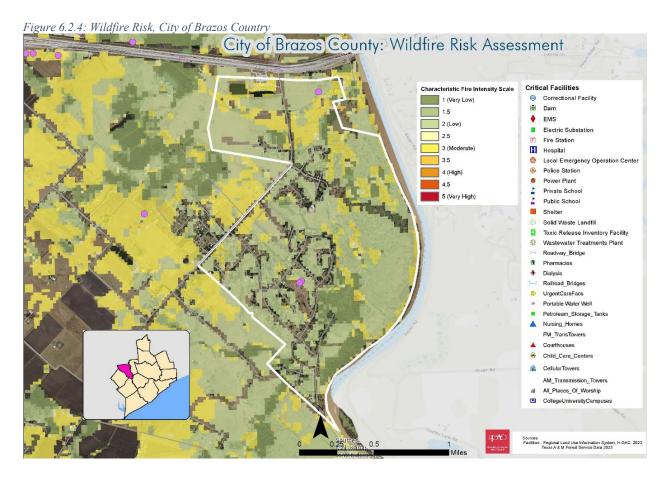
The WUI is the area where development, people, and homes, mix with areas of wildland or other vegetation. It is within these areas that wildfire risks substantially increase. With continued population growth throughout the county, the WUI zones will become more abundant. Since most wildfires are caused by human activities, the intersection of WUI and drought are particularly dangerous. Wildfires and their size can vary greatly depending on a variety of factors such as location, fire intensity, and duration. It is estimated that 23,146 people or 84.9 % percent of the Austin County population (27,248) live within the WUI. Figure 6.2.1 depicts WUI zones within Austin County, which closely follow housing density.

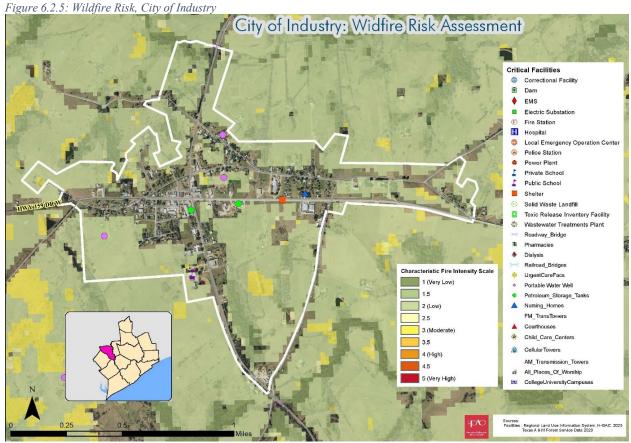
Extent

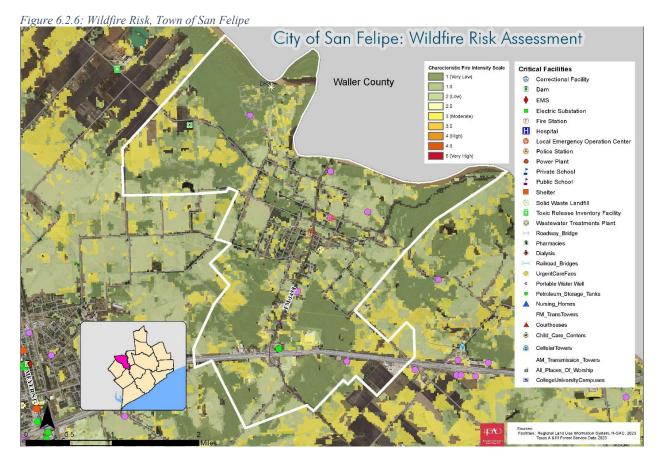
Characteristic Fire Intensity Scale (FIS) specifically identifies areas where significant fuel hazards and associated dangerous fire behavior potential exist based on weighted average of four percentile weather categories. This is similar to the Richter scale for earthquakes. FIS provides a standard scale to measure potential wildfire intensity. FIS consist of 5 classes where the order of magnitude between classes is tenfold. The minimum class, Class 1, represents very low wildfire intensities and the maximum class, Class 5, represents very high wildfire intensities. The Characteristic FIS is described in Table 6.2.1.


Table 6.2.1: Characteristic FIS Descriptions

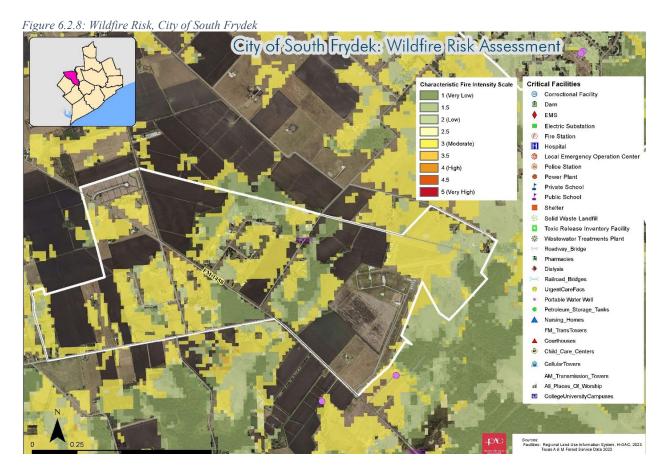

Wildfire Intensity Class	Description	
1- Very Low	Very small, discontinuous flames, usually less than 1 foot in length; very low rate of spread; no spotting. Fires are typically easy to suppress by firefighters with basic training and non-specialized equipment.	
2- Low	Small flames, usually less than two feet long; small amount of very short-range spotting possible. Fires are easy to suppress by trained firefighters with protective equipment and specialized tools.	
3- Moderate	Flames up to 8 feet in length; short-range spotting is possible. Trained firefighters will find these fires difficult to suppress without support from aircraft or engines, but dozer and plows are generally effective. Increasing potential for harm or damage to life and property.	
4- High	Large Flames, up to 30 feet in length; short-range spotting common; medium range spotting possible. Direct attack by trained firefighters, engines, and dozers is generally ineffective, indirect attack may be effective. Significant potential for harm or damage to life and property.	
5- Very High	Very large flames up to 150 feet in length; profuse short-range spotting, frequent long-range spotting; strong fire-induced winds. Indirect attack marginally effective at the head of the fire. Great potential for harm or damage to life and property.	


The table below show the class, acreage, and percent within each class within Austin County. The figures below show these wildfire intensity areas from TxWrap in relation to critical facilities within the county and participating jurisdictions.


Table 6.2.2: Fire Intensity Scale Acreage, Austin County


Class	Acres	Percent
Non-Burnab	le 69,868	16.6 %
1 (Very Lov	y) 34,653	8.3 %
1.5	52,340	12.5 %
2 (Low)	192,066	45.7 %
2.5	6,107	1.5 %
3 (Moderate	63,970	15.2 %
3.5	638	0.2 %
4 (High)	263	0.1 %
4.5	73	0.0 %
5 (Very Hig	h) 0	0.0 %
Totals:	419,978	100.0 %





A worst-case scenario for this hazard would be a wildfire sparked during a drought or a heat event where temperatures are high, the ground and vegetation are dry, and water supplies may already be in high demand. Similar events occurring within counties bordering Walker County or near urban areas would further exacerbate the risks to life and property. Large-scale events could also affect transportation and evacuation corridors, power supply, and access to critical facilities, and lead to degraded air quality and health impacts.

Historic Occurrences

The Texas A&M Forest Service tracks wildfire events, acres destroyed, and the initial ignition cause of the fire. Table 6.2.3 shows the historical data associated with burns that caused recorded damage since the last plan update, 2019 to 2021. Figure 6.2.10 shows the point location of all fire ignitions from 2005-2024, symbolized by color to depict the cause of the fire.

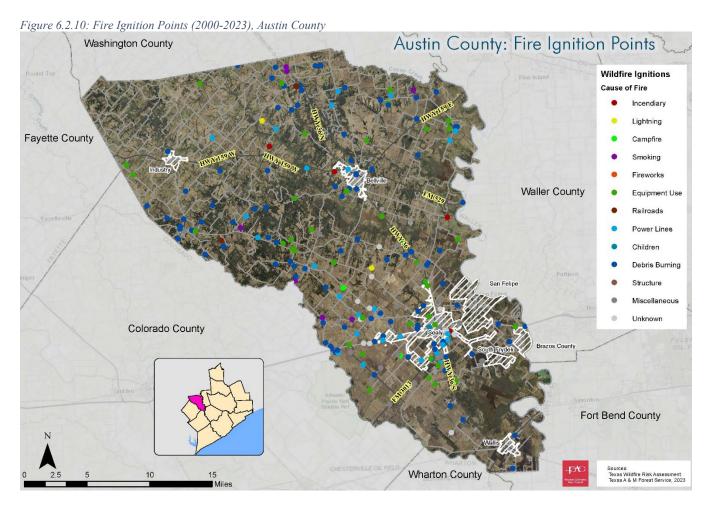


Table 6.2.3: Fire Ignition Point Causes (2019-2021)

Cause of Fire	Damaged Acres	Start Date
Power Lines	1	3/15/2019
Debris Burning	1	6/14/2019
Power Lines	1	6/21/2019
Debris Burning	25	7/25/2019
Equipment Use	5	8/11/2019

Cause of Fire	Damaged Acres	Start Date
Unknown	1	1/4/2020
Unknown	1	1/15/2020
Debris Burning	1	2/1/2020
Debris Burning	1	2/2/2020
Children	1	2/3/2020
Debris Burning	5	2/7/2020
Equipment Use	1	2/15/2020
Equipment Use	1	5/9/2020
Debris Burning	2	7/14/2020
Unknown	2	7/23/2020
Equipment Use	1	8/7/2020
Debris Burning	1	8/9/2020
Debris Burning	1	8/12/2020
Unknown	1	8/17/2020
Lightning	2	8/18/2020
Unknown	1	8/23/2020
Unknown	20	9/1/2020
Debris Burning	2	9/30/2020
Equipment Use	1	10/3/2020
Debris Burning	1	10/4/2020
Unknown	1	10/12/2020
Power Lines	3	10/13/2020
Debris Burning	1	11/3/2020
Unknown	1	11/25/2020
Unknown	1	12/1/2020
Unknown	1	12/3/2020
Unknown	175	12/7/2020
Unknown	1	12/8/2020
Miscellaneous	2	1/16/2021
Equipment Use	85	1/17/2021
Miscellaneous	5	1/17/2021
Miscellaneous	90	3/6/2021
Miscellaneous	2	3/18/2021
Equipment Use	0.3	3/26/2021
Equipment Use	1	3/28/2021
Lightning	2.5	6/27/2021
Debris Burning	2	9/2/2021
Miscellaneous	1	9/10/2021
Equipment Use	30	10/5/2021
Debris Burning	0.25	10/28/2021

The measure of wildfire occurrence used in the TWRA is called the Wildfire Ignition Density. Wildfire Ignition Density is the likelihood of a wildfire starting based on historical ignition patterns. Occurrence is derived by modeling historic wildfire ignition locations to create an average ignition rate map. The ignition rate is measured in the number of fires per year per 1000 acres. Five years of historic fire report data was used to create the ignition points for all Texas fires. Data was obtained from federal, state and local fire department report data sources for the years 2005 to 2009. The compiled wildfire occurrence database was cleaned to remove duplicate records and to correct inaccurate locations. The database was then modeled to create a density map reflecting historical fire ignition rates. The Ignition Density map, below, is derived at a 30-meter resolution. This scale of data was chosen to be consistent with the accuracy of the primary surface fuels dataset used in the assessment. While not appropriate for site specific analysis, it is appropriate for regional, county, or local planning efforts. ⁴⁹

Presidential Disaster Declarations

There have been 3 disaster declarations for fire/wildfire within Austin County since 1953, as depicted in Table 6.2.3 below.¹

Table 6.2.4: Disaster Declarations, Wildfire

Declaration Date	Title	Disaster Number
9/1/1999	Extreme Fire Hazards	3142
1/11/2006	Extreme Wildfire Threat	1624
3/13/2008	Wildfires	3284

USDA Disaster Declarations

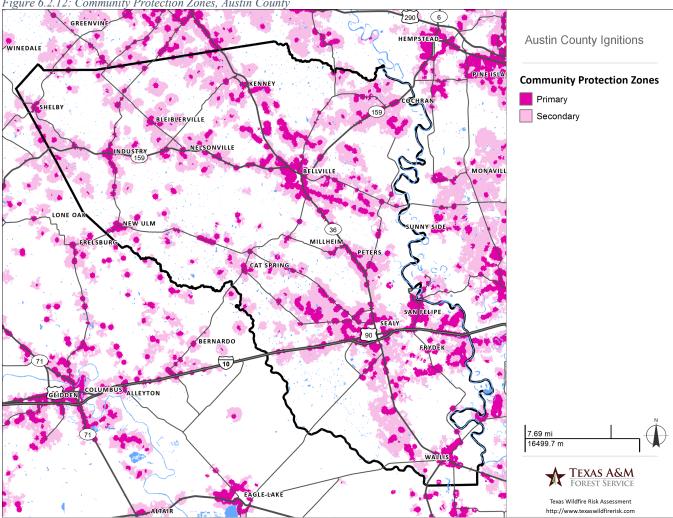
The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.2.5: USDA Declared Disasters (2018-2023), Wildfire

Crop Disaster Year	Disaster Description	Designation Number
	None	

Probability of Future Occurrences

As jurisdictions across the state move into wildland and increase the WUI areas, the potential for wildfires substantially increases. Wildfire probability depends on a variety of factors such as local weather conditions, topographic factors, and existing fuels within a given area (natural vegetation or wildlands). A variety of activities can spark wildfires, most of which are human induces such as camping, debris burning, and smoking can affect the number and the extent of wildfires within a given year. Wildfires can occur at any time of the year under the right conditions. Wildfires can be exacerbated by droughts, which are more likely to occur in summer months when temperatures are higher, and precipitation is less frequent. according to the FEMA NRI for drought Annualized frequency values for drought are 27.9 events per year over a 22-year period of record for Austin County (2000-2021), while annualized frequency values for wildfires is 0.055% chance per year based on the 2021 dataset. The probability of future occurrences of wildfires for the county, per FEMA's NRI, is relatively low. 42


Populations at Risk

The TFS outlines Community Protection Zones (CPZ), areas that are outlined as primary and secondary and should be the highest priority for mitigation planning activities. CPZs are based on where population and housing density is highest using data regarding surrounding fire potential and fire behavior. Per the TFS "General consensus among fire planners is that for fuel mitigation treatments to be effective in reducing wildfire hazard, they must be conducted within a close distance of a community. In Texas, the WUI housing density has been used to reflect populated areas in place of community boundaries. This ensures that CPZs reflect where people are living in the wildland, not jurisdictional boundaries." ⁵⁰ The table and figure below outline these primary and secondary CPZs and their acreage within the county.

Table 6.2.6: Community Protection Zones, Austin County

Class	Acres	Percent	
Primar	y 44,081	27.7 %	
Second	lary 115,220	72.3 %	
Total	159,301	100.0 %	

Figure 6.2.12: Community Protection Zones, Austin County

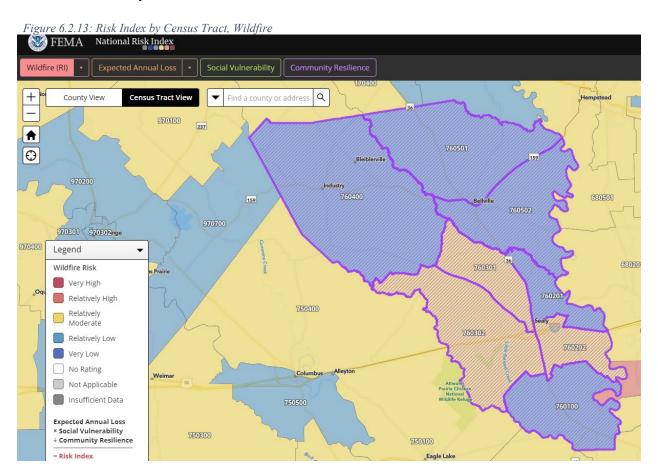
Populations at risk from wildfire within Austin County are those that live within WUI zones, especially vulnerable population areas (as outlined in the County Profile). It is estimated that 23,146 people or 84.9 % percent of the Austin County population live within the WUI. Residential and commercial property loss throughout the county may lead to a financial loss for residents and jurisdictions.

Wildfires negatively impact air quality impacting the surrounding areas and areas further away depending on how wind direction and the fire intensity distribute the smoke. This smoke exposure can put certain vulnerable populations at greater risk of adverse effects from this hazard event. According to the Environmental Protection Agency, these vulnerable populations include People with asthma and other respiratory diseases, people with cardiovascular disease, children (18 years of age or younger), pregnant people older adults, people of low socio-economic status, and outdoor workers.

Underlying respiratory diseases result in compromised health status that can result in the triggering of severe respiratory responses by environmental irritants, such as wildfire smoke. Underlying circulatory diseases result in compromised health status that can result in the triggering of severe cardiovascular events by environmental irritants, such as wildfire smoke. In younger populations, children's lungs are still developing, and there is a greater likelihood of increased exposure to wildfire smoke resulting from more time spent outdoors, engagement in more vigorous activity, and inhalation of more air per pound of body weight compared to adults. Pregnancy-related physiologic changes (e.g., increased breathing rates) may increase vulnerability to environmental exposures, such as wildfire smoke. In addition, during critical development periods, the fetus may experience increased vulnerability to these exposures. In older populations, there is a higher prevalence of pre-existing lung and heart disease and a decline of physiologic processes, such as defense mechanisms. This can lead to exacerbation of heart and lung diseases and can lead to emergency department visits, hospital admissions, and even death. Those of low socioeconomic status are vulnerable to these types of hazards as they have less access to health care which could lead to a higher likelihood of untreated or insufficient treatment of underlying health conditions (asthma, diabetes), and greater exposure to wildfire smoke resulting from less access to measures to reduce exposure such as air conditioning. Outdoor workers can be more vulnerable to this hazard due to increased exposure to smoke.⁵¹ Loss of agriculture land throughout the county may lead to an economic loss for the county, local farmers, businesses, and residents that rely on agriculture.

National Risk Index

FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.


The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.

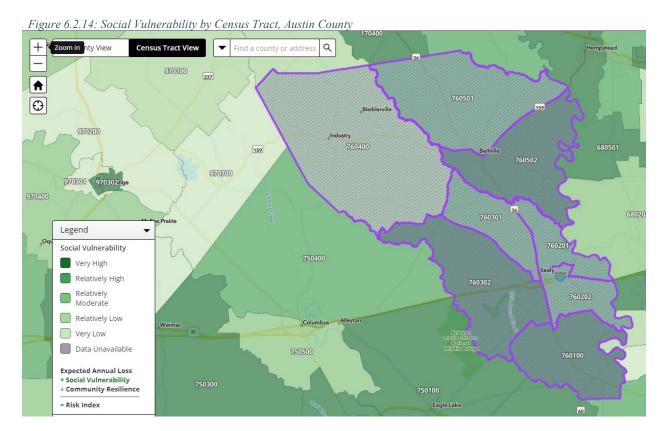

EAL for Austin County each year according to the FEMA NRI for wildfire is listed as relatively low. The FEMA NRI social vulnerability score for this hazard is relatively low. ⁵² EAL for various factors can be found in the Table below. ⁴⁸

Table 6.2.7: Expected Annual Loss, Wildfire

Expected Annual Loss Type	Expected Annual Loss (\$)	Expected Annual Loss Rate
Building	\$91,923	\$1 per \$77.44K of building value
Agriculture	\$3	\$1 per \$13.37 million of agriculture value
Population	0.00 fatalities (\$5,537)	1 per 62.88 million people
TOTALS:	\$97,463	EAL Score- Wildfire: 63.8

The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.

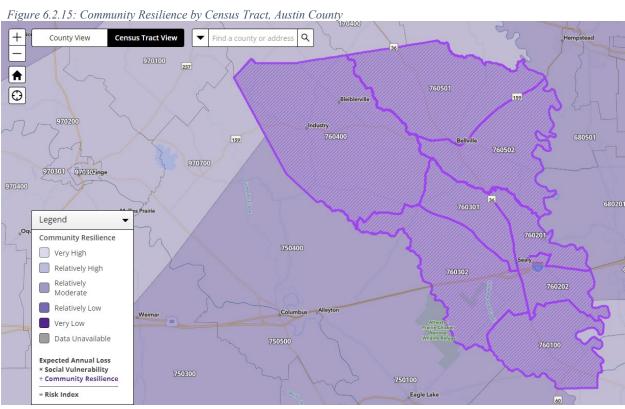


Figure 6.2.16: FEMA NRI Summary, Wildfire

Rank	Community	Social Vulnerability	Community Resilience	Hazard Type: Wildfire Risk Index Rating	Risk Index Score	N	ational Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	91.67	0	100
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	87.21	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	86.75	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Low	84.73	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Low	83.44	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Low	83.15	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively Low	82.55	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Low	81.78	0	100

Climate Change Impacts

Wildfires are often a natural phenomenon and part of the normal cycle of the natural environment that help keep ecosystems healthy. Weather conditions often affect the duration of a wildfire and how it will gro. These factors are lower precipitation, high temperatures, wind, and more.⁵³ Wildfires are more likely to occur during summer months and during periods of drought. According to the Office of the Texas State Climatologist, drivers of wildfire risk are projected to increase the risk of wildfires throughout the state, primarily due to increased rates of drying and increased fuel load.⁴⁵

Table 6.2.8: Climate Change Impacts, Wildfire

Location	The location of wildfires is not expected to change. Areas within or near the
Location	WUI are at the greatest risk.
	The extent and intensity of wildfires within the county may change (increase)
Extent/Intensity	due to rising surface temperatures, heat events, and increases in drought
	severity.
Ewagyanay	Weather and other factors that lead to wildfires are expected to increase
Frequency	throughout the state, thus the frequency of wildfires is expected to increase.
Duration	There is no clear trend regarding the duration of wildfire events.

Section 6.3: Severe Thunderstorms & Lightning

6.3 Severe Thunderstorm & Lightning

The NWS defines a thunderstorm as "A local storm produced by a cumulonimbus cloud and accompanied by lightning and thunder." A severe thunderstorm is defined as "A thunderstorm that produces a tornado, winds of at least 58 mph (50 knots), and/or hail at least 1" in diameter." Thunderstorms form when certain factors are present. These are moisture, instability, lifting, and in the case of severe thunderstorms wind shear. The difference between thunderstorms and severe thunderstorm formation resides in the wind field or wind sheer. There are different types of thunderstorms with varying characteristics and degrees of severity. Descriptions of these can be found in Table 6.3.1.

Table 6.3.1: Types of Thunderstorms

Table 6.3.1: Types of Thunderstorms	
Type of Thunderstorm	Description
Ordinary Cell (Pulse Thunderstorm)	A one-time updraft and one-time downdraft. The rising updraft will suspend growing raindrops until the point where the weight of the water is greater than what can be supported. Drag between the air and the falling drops begins to diminish the updraft, which allows more raindrops to fall. While hail and gusty wind can develop, these occurrences are typically not severe. However, if atmospheric conditions are right and the ordinary cell is strong enough, more than one cell can potentially form and can include microburst winds (usually less than 70 mph/112 km/h) and weak tornadoes.
Multi-Cell Cluster	A thunderstorm with numerous cells in various stages of development merging together. While each individual thunderstorm cell in a multi-cell cluster behaves as a single cell, the prevailing atmospheric conditions are such that as the first cell matures, it is carried downstream by the upper-level winds, with a new cell forming upwind of the previous cell to take its place. Sometimes the atmospheric conditions encourage vigorous new cell growth – they form so fast that each new cell develops further and further upstream. Tremendous rainfall amounts can be produced over very small areas by back-building thunderstorms.
Multi-cell Line (Squall Line)	Thunderstorms that form in a line and can extend laterally for hundreds of miles. These "squall lines" can persist for many hours and produce damaging winds and hail. Updrafts, and therefore new cells, continually re-form at the leading edge of the system, with rain and hail following behind. Individual thunderstorm updrafts and downdrafts along the line can become quite strong, resulting in episodes of large hail and strong outflow winds that move rapidly ahead of the system. While the leading edge of squall lines occasionally form tornadoes, they primarily produce "straight-line" wind damage, a result of the force of the downdraft spreading horizontally as it reaches the Earth's surface.
Supercell Thunderstorms	Supercell thunderstorms are a special kind of single cell thunderstorm that can persist for many hours. They are responsible for nearly all of the significant tornadoes produced in the U.S. and for most of the hailstones larger than golf ball size. Supercells are also known to produce extreme winds and flash flooding.

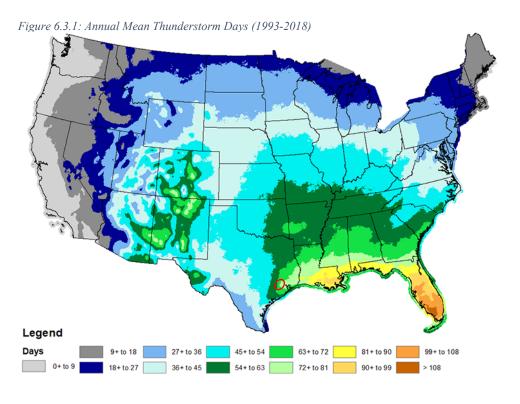

Lightning is defined by NWS as "A visible electrical discharge produced by a thunderstorm. The discharge may occur within or between clouds, between the cloud and air, between a cloud and the ground, or between the ground and a cloud." Lightning accompanies all thunderstorms and poses a threat to lives and property. While the odds of being struck by lightning are relatively low (1/1,222,000)⁵⁸, lightning kills about 20 people per year while hundreds more are injured or suffer lifelong neurological damage. There are different types of lightning with varying characteristics. Most lighting starts within a thunderstorm and travels through the cloud. Descriptions of these can be found in Table 6.3.2.

Table 6.3.2: Types of Lightning

Type of Lightning	Description
	A channel of negative charge, called a stepped leader, will zigzag downward
	in roughly 50-yard segments in a forked pattern. This stepped leader is
	invisible to the human eye, and shoots to the ground in less time than it takes
	to blink. As it nears the ground, the negatively charged stepped leader causes
	streamer channels of positive charge to reach upward, normally from taller
	objects in the area, such as a tree, house, or telephone pole. When the
Cloud-to-Ground Flashes	oppositely charged leader and streamer connect, a powerful electrical current
(Cloud-to-Ground Lightning)	begins flowing. This return stroke current of bright luminosity travels about
	60,000 miles per second back towards the cloud.
	A "bolt from the blue" is Cloud-to-Ground lightning which starts inside a
	cloud, goes out the side of the storm, then travels horizontally away from the
	cloud before going to ground. A bolt from the blue can strike ground at a spot
	with "blue sky" above it.
	Even a storm that is 6 miles away can be dangerous.
Cloud Flashes	Many flashes of lightning within a cloud that do not reach the ground. Cloud
	flashes sometimes have visible channels that extend out into the air around the
(Intra-Cloud Lightning)	storm

Location

Thunderstorms, and the accompanying lightning, are not confined to any geographic boundaries. These hazards can happen anywhere, during any time of the year. However, typically thunderstorms will occur in warmer months such as Summer and Spring, and during the warmest parts of the day. Figure 6.3.1 shows the average number of thunderstorm days each year throughout the U.S. (defined as two lightning flashes within 10 nautical miles (nmi) radius). The most frequent occurrence is in the southeastern states due to warm, moist air from the Gulf of Mexico and Atlantic Ocean are readily available to fuel atmospheric conditions that produce thunderstorms. ⁶¹ Austin County is in an area that can see anywhere from 54-81 thunderstorm days per year.

Extent

Thunderstorm intensity can be measured by NWS and the Storm Prediction Center (SPC) of the NWS risk categories. The SPC issues Convective Outlooks that depict non-severe thunderstorm areas and severe thunderstorm threats across the contiguous United States, along with a text narrative. The categorical forecast specifies the level of the overall severe weather threat via numbers, descriptive labeling, and colors, as seen in Figure 6.3.2. The probabilistic forecast directly expresses the best estimate of a severe weather event occurring within 25 miles of a point. Components of a severe thunderstorm include a tornado, winds of at least 58 mph (50 knots), and/or hail at least 1" in diameter. Structural wind damage may imply the occurrence of a severe thunderstorm. A thunderstorm wind equal to or greater than 40 mph (35 knots) and/or hail of at least 1" is defined as approaching severe.


Figure 6.3.2: Severe Thunderstorm Risk Categories

THUNDERSTORMS	1 - MARGINAL	2 - SLIGHT	3 - ENHANCED	4 - MODERATE	5 - HIGH
(no label)	(MRGL)	(SLGT)	(ENH)	(MDT)	(HIGH)
No severe*	Isolated severe thunderstorms possible	Scattered	Numerous	Widespread	Widespread
thunderstorms		severe storms	severe storms	severe storms	severe storms
expected		possible	possible	likely	expected
Lightning/flooding threats exist with <u>all</u> thunderstorms	Limited in duration and/or coverage and/or intensity	Short-lived and/or not widespread, isolated intense storms possible	More persistent and/or widespread, a few intense	Long-lived, widespread and intense	Long-lived, very widespread and particularly intense
			8		

^{*} NWS defines a severe thunderstorm as measured wind gusts to at least 58 mph, and/or hail to at least one inch in diameter, and/or a tornado. All thunderstorm categories imply lightning and the potential for flooding. Categories are also tied to the probability of a severe weather event within 25 miles of your location.

National Weather Service

Likewise, lightning intensity is measured by the NWS and defined as Lightning Threat Level. The NWS's "Lightning Hazard Map" depicts the local threat of lightning for specified areas. It is largely based on the likelihood that cloud-to-ground (CG) lightning from thunderstorms will occur combined with the anticipated flash rate. The hazard map depicts these likelihoods with varying colors along with a text narrative, as depicted in the table below. 63

Table 6.3.3: NWS Lightning Threat Levels

Lightning Threat Level	Description			
Extreme	"An Extreme Threat to Life and Property from Lightning." Within 12 miles of a location, a moderate likelihood of CG lightning (or 50% thunderstorm probability), with storms capable of excessive CG lightning.			
	AND/ORa high likelihood of CG lightning (or 60% to 70% thunderstorm probability), with storms capable of frequent CG lightning.			
	AND/ORa very high likelihood of CG lightning (or 80% to 90% thunderstorm probability), with storms capable of occasional CG lightning.			
High	"A High Threat to Life and Property from Lightning." Within 12 miles of a location, a low likelihood of CG lightning (or 30% to 40% thunderstorm probability), with storms capable of excessive CG lightning.			
	AND/ORa moderate likelihood of CG lightning (or 50% thunderstorm probability), with storms capable of frequent CG lightning.			
	AND/ORa high likelihood of CG lightning (or 60% to 70% thunderstorm probability), with storms capable of occasional CG lightning.			
Moderate	"A Moderate Threat to Life and Property from Lightning." Within 12 miles of a location, a very low likelihood of CG lightning (or 10% to 20% thunderstorm probability), with storms capable of excessive CG lightning.			
	AND/ORa low likelihood of CG lightning (or 30% to 40% thunderstorm probability), with storms capable of frequent CG lightning.			
	AND/ORa moderate likelihood of CG lightning (or 50% thunderstorm probability), with storms capable of occasional CG lightning.			
Low	"A Low Threat to Life and Property from Lightning." Within 12 miles of a location, a very low likelihood of CG lightning (or 10% to 20% thunderstorm probability), with storms capable of frequent CG lightning.			
	AND/ORa low likelihood of CG lightning (or 30% to 40% thunderstorm probability), with storms capable of occasional CG lightning.			
Very Low	"A Very Low Threat to Life and Property from Lightning." Within 12 miles of a location, a very low likelihood of CG lightning (or 10% to 20% thunderstorm probability), with storms capable of occasional CG lightning.			
Non-Threatening	"No Discernable Threat to Life and Property from Lightning." Within 12 miles of a location, environmental conditions do not support CG lightning.			
	o-ground (CG) lightning, every strike is potentially lethal.			
	al- CG lightning at the rate of 1 to 3 flashes per minute (about 5 to 15 flashes per 5 minutes) associated with a tning storm.			
• Frequent- CG lightning at the rate of 4 to 11 flashes per minute (about 20 to 55 flashes per 5 minutes) associated with a given lightning storm.				
• Excessive	tning storm. - CG lightning rate of 12 flashes or more per minute (about 60 flashes or more per 5 minutes) and is nearly sly associated with a given lightning storm.			

According to Earth Networks 2020 Texas Lightning Report, Texas ranked #1 in total lightning pulses for 2020. Austin County ranked 89 in lightning counts, with 282,820 total for the year from both CG and intra-cloud pulses. This lightning report outlines pulse density, a better indicator of lightning activity than total lightning counts because it allows the comparison of different-sized areas (like states and counties). Pulses are clustered together into flashes. With every pulse detected, there is a more precise measure of lightning activity. In the figure below, areas in bright yellow experienced the highest lightning pulse density per square mile in 2020. CXIII Austin County is outlined by the red circle. The county is ranked as one of the top 100 counties within Texas for the highest amount of thunder days (the total number of days

in the year when lightning was detected by Earth Network's Total Lightning Network) at 85, with Harris County having the most thunder days, at 125 per year on average.

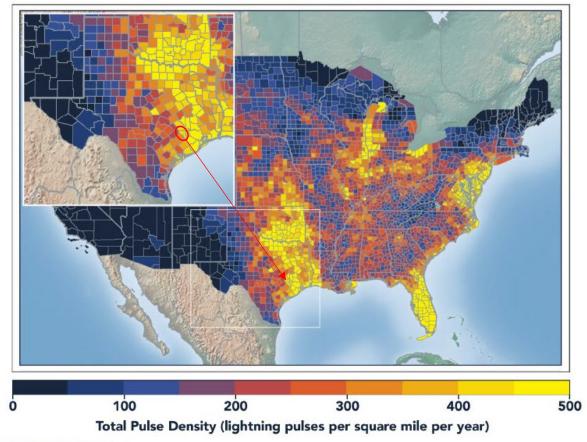


Figure 6.3.3: Total Pulse Density, Austin County

EARTH NETWORKS 2020 U.S. Lightning Report

4Previous occurrences of severe thunderstorms and lightning within the county and participating jurisdictions have seen long-lived and intense thunderstorms in the moderate risk category with lightning threat levels of extreme, including frequent CG lightning at the rate of 4 to 11 flashes per minute. During Hurricane Harvey in 2017, Austin County saw widespread severe thunderstorms in the high-risk category that spanned over multiple days. Rainfall totals across the county ranged anywhere from 15 – 25 inches, the storm had 87 mph recorded wind speeds, spawned multiple tornadoes within the region, and saw frequent CG lightning strikes. Impacts included major lowland flooding, high-water rescues of stranded residents, flooded homes along the Brazos River within the Town of San Felipe with flood depths of 4-7 feet, dangerous outdoor conditions, roads washed out or impassable due to flood waters, and the destruction of critical facilities and infrastructure.⁶⁴

A worst-case scenario for this hazard within Austin County would be similar to that seen during Hurricane Harvey as described above. Severe thunderstorms in the high-risk category, or widespread and long-lived storms, capable of producing strong winds in excess of 87 mph, tornadoes, and/or hail sizes of 1" or more in diameter, and a lightning threat level of extreme with a very high likelihood of CG lightning (or 80% to 90% thunderstorm probability). This could result in dangerous and life-threatening outdoor conditions, record-level flooding, inundated roadways cutting off access to neighborhoods and critical facilities, frequent or extreme CG lightning, and flood waters receding slowly exacerbating rescue and recovery

efforts. These storms could damage critical infrastructure leadings to a prolonged power outage, and even result in a loss of communications within the county if a radio or cell tower is destroyed. If a scenario similar to what is describe above occurs during an excessive heat event or a drought and disrupts power supply in the area for a prolonged amount of time, secondary hazards will pose increased risks to citizens due to the heat and inability to keep homes and buildings cool. This is similar to what occurred within the region during the 2024 derecho and Hurricane Beryl where power lines were destroyed by winds or tree debris in July when the region was under an excessive heat advisory. Power line restoration and infrastructure repairs took up to 10+ days to restore in certain areas and led to the multi-day activation of emergency cooling centers throughout the region. All participating jurisdictions to this HMP update experience moderate risk for severe thunderstorms and high lightning threat levels.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. The table below shows severe thunderstorm and lightning occurrences within Austin County since the last plan update. Austin County has no reported lightning events or losses per the NCEI.³⁹

Table 6.3.4: Austin County Severe Thunderstorm and Lightning Events (1950-2023)

Table 6.3.4: Au	stin County Severe Inunae	rstorm and Lightning Eveni	ts (1930-2023)			****
Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
4/21/1958	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
4/29/1960	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
8/13/1977	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/21/1979	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/15/1980	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
4/23/1981	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/20/1983	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/8/1985	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	52
11/11/1985	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
12/19/1987	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
3/29/1990	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
1/18/1991	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/20/1992	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/9/1993	WALLIS	Thunderstorm Wind	0/0	\$5,000	\$0	ND
4/5/1994	Halletsville	Thunderstorm Wind	0/0	\$500,000	\$50,000	ND
5/29/1994	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
10/8/1994	INDUSTRY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
3/7/1995	N/A, Austin County	Thunderstorm Wind	0/0	\$3,000	\$0	ND
3/13/1995	BELLVILLE	Thunderstorm Wind	0/0	\$0	\$0	ND
4/29/1996	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
9/20/1996	BELLVILLE	Thunderstorm Wind	0/0	\$5,000	\$0	ND
9/20/1996	CAT SPG	Thunderstorm Wind	0/0	\$10,000	\$0	55
5/21/1997	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
5/30/1997	BELLVILLE	Thunderstorm Wind	0/0	\$5,000	\$0	ND

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
6/17/1997	KENNEY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
12/23/1997	NEW ULM	Thunderstorm Wind	0/0	\$3,000	\$0	ND
2/10/1998	CAT SPG	Thunderstorm Wind	0/0	\$25,000	\$0	ND
2/10/1998	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
2/10/1998	WALLIS	Thunderstorm Wind	0/0	\$10,000	\$0	ND
2/10/1998	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	ND
6/5/1998	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	ND
5/2/2000	WALLIS	Thunderstorm Wind	0/0	\$0	\$200,000	ND
7/23/2000	INDUSTRY	Thunderstorm Wind	0/0	\$15,000	\$0	ND
7/23/2000	SHELBY	Thunderstorm Wind	0/0	\$15,000	\$0	ND
9/2/2000	INDUSTRY	Thunderstorm Wind	0/0	\$25,000	\$0	ND
9/2/2000	BELLVILLE	Thunderstorm Wind	0/0	\$15,000	\$0	ND
9/2/2000	BURLEIGH	Thunderstorm Wind	0/0	\$15,000	\$0	ND
11/5/2000	COUNTYWIDE	Thunderstorm Wind	0/0	\$100,000	\$0	ND
11/12/2000	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	ND
11/12/2000	SEALY	Thunderstorm Wind	0/0	\$80,000	\$0	ND
11/12/2000	BELLVILLE	Thunderstorm Wind	0/0	\$15,000	\$0	ND
8/6/2001	SEALY	Thunderstorm Wind	0/0	\$10,000	\$0	ND
9/21/2001	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	ND
10/13/2001	BELLVILLE	Thunderstorm Wind	0/0	\$0	\$0	52
3/30/2002	SEALY	Thunderstorm Wind	0/0	\$8,000	\$0	60
12/12/2002	CAT SPG	Thunderstorm Wind	0/0	\$5,000	\$0	ND
12/23/2002	WALLIS	Thunderstorm Wind	0/0	\$45,000	\$0	52
6/13/2003	INDUSTRY	Thunderstorm Wind	0/0	\$8,000	\$0	58
8/11/2004	BELLVILLE	Thunderstorm Wind	0/0	\$50,000	\$0	65
8/11/2004	KENNEY	Thunderstorm Wind	0/0	\$10,000	\$0	50
11/23/2004	CAT SPG	Thunderstorm Wind	0/0	\$5,000	\$0	50
10/31/2005	BELLVILLE	Thunderstorm Wind	0/0	\$13,000	\$0	53
4/21/2006	NEW ULM	Thunderstorm Wind	0/0	\$5,000	\$0	50
3/12/2007	BUCKHORN	Thunderstorm Wind	0/0	\$1,000	\$0	48
3/14/2007	WALLIS	Thunderstorm Wind	0/0	\$25,000	\$0	58
4/25/2007	BELLVILLE	Thunderstorm Wind	0/0	\$0	\$0	52
5/14/2008	COCHRAN	Thunderstorm Wind	0/0	\$2,000	\$0	57
12/24/2009	MILLHEIM	Thunderstorm Wind	0/0	\$10,000	\$0	52
5/29/2010	WALLIS	Thunderstorm Wind	0/0	\$10,000	\$0	52
8/23/2010	NEW ULM	Thunderstorm Wind	0/0	\$0	\$0	52
8/24/2011	BELLVILLE	Thunderstorm Wind	0/0	\$3,000	\$0	55
8/24/2011	SEALY	Thunderstorm Wind	0/0	\$2,000	\$0	55
9/29/2011	WALLIS	Thunderstorm Wind	0/0	\$3,000	\$0	50
2/18/2012	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	56
2/18/2012	WALLIS	Thunderstorm Wind	0/0	\$2,000	\$0	56

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
8/10/2012	BELLVILLE ARPT	Thunderstorm Wind	0/0	\$0	\$0	55
4/16/2015	NELSONVILLE	Thunderstorm Wind	0/0	\$0	\$0	52
4/25/2015	SAN FELIPE	Thunderstorm Wind	0/0	\$3,000	\$0	50
4/25/2015	SAN FELIPE	Thunderstorm Wind	0/1	\$2,000	\$0	55
4/27/2015	INDUSTRY	Thunderstorm Wind	0/0	\$12,000	\$0	55
5/25/2015	NEW ULM	Thunderstorm Wind	0/0	\$0	\$0	60
5/25/2015	SEALY	Thunderstorm Wind	0/0	\$0	\$0	60
5/25/2015	SEALY	Thunderstorm Wind	0/0	\$0	\$0	56
5/27/2015	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	54
5/23/2017	SEALY	Thunderstorm Wind	0/0	\$1,000,000	\$0	87
5/22/2018	BURLEIGH	Thunderstorm Wind	0/0	\$2,000	\$0	53
5/22/2018	SAN FELIPE	Thunderstorm Wind	0/0	\$2,000	\$0	53
1/10/2020	WEHDEM	Thunderstorm Wind	0/0	\$3,000	\$0	65
2/2/2024	NEW ULM	Thunderstorm Wind	0/0	\$10,000	\$0	59
2/3/2024	FRYDEK	Thunderstorm Wind	0/0	\$0	\$0	59
3/15/2024	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	63
5/16/2024	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	69
	TOTALS:		0/1	\$2,170,000	\$250,000	N/A

ND- No Data

Presidential Disaster Declarations

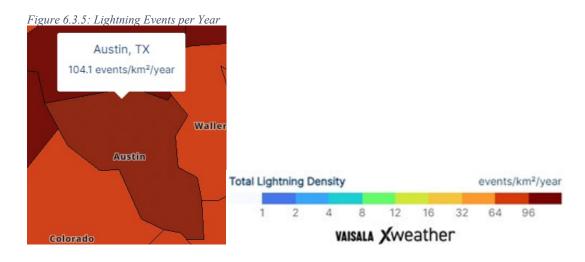
There have been 2 disaster declarations for severe thunderstorms within Austin County since 1954, as depicted in Table 6.3.4 below. There were 0 disaster declarations for lightning.¹

Table 6.3.5: Federal Disaster Declarations, Severe Thunderstorm

Declaration Date	Title	Disaster Number
9/1/1999	Tropical Storm Charley	1239
1/11/2006	Severe storms, tornadoes, straight-line winds, and flooding	4223

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰


Table 6.3.6: USDA Declared Disasters (2018-2023), Severe Thunderstorm and Lightning

Crop Disaster Year	Disaster Description	Designation Number
2018	Excessive moisture and flooding	S4476
2021	Excessive moisture and excessive rainfall	S5053
2021	Excessive Moisture	S5088
2021	Excessive Moisture	S5089
2021	Excessive Moisture	S5105

Probability of Future Occurrences

Severe thunderstorms and lightning are more likely to occur in summer months when temperatures are higher and moisture from the gulf helps to fuel thunderstorm development. According to the FEMA NRI for lightning, annualized frequency values for lightning are 74.4 events per year over a 22-year period of record (1991-2012), with 1,638 events on record for this timeframe. Severe thunderstorms are not included in the FEMA NRI, but it can be inferred that the probability of future occurrences will be the same as lightning as all thunderstorm risk categories defined in Figure 6.3.2 imply lightning and the potential for flooding. ⁴² Annualized frequency values for these hazards are expected to stay the same.

Additionally, the National Lightning Detection Network (NLDN) consists of over 100 remote, ground-based sensing stations located across the United States that instantaneously detect the electromagnetic signals given off when lightning strikes the earth's surface. These remote sensors send the raw data via a satellite-based communications network to the Network Control Center (NCC) operated by Vaisala Inc. in Tucson, Arizona. Within seconds of a lightning strike, the NCC's central analyzers process information on the location, time, polarity, and communicates to users across the country. Through a partnership with Vaisala and cooperative effort with the U.S. Air Force 14th Weather Squadron, summarized daily files from 1986 to present are archived to be at the NOAA National Center for Environmental Information (NCEI). Through a contract with Vaisala, the raw data from NCEI is available only to government and military users. Through use of Vaisala's Interactive Global Lightning Density Map, Figure 6.3.4 shows the average number of lightning events per km2 per year for Austin County. This interactive map utilizes data from 2016 to 2022.

With 282,820 lighting strikes recorded by Earth Networks in 2020, and an annualized frequency value of 74.4 events per the FEMA NRI, Austin County and participating jurisdictions could see 3,800+ lightning strikes per event. Alternatively, using Austin County's thunder days (85) from Earth Networks report as the annualized frequency value puts lightning strikes at 3,300 per event.

Populations at Risk

As stated above, the risk of severe thunderstorms and lightning occurring applies the same to the entire county. There are no known factors that make one area or community more prone these events than another. However, severe thunderstorms and lightning can adversely impact unhoused individuals over those who have places to seek shelter. While no place is 100% safe from lightning, some are much safer than others, the safest place to go when you hear thunder is indoors. Studies have shown most people struck by lightning are struck not at the height of a thunderstorm, but before and after the storm has peaked. This is because lightning can strike as far as 10 miles from the area where it is raining, and many people are unaware of how far lightning can strike from its parent thunderstorm. Lightning is the first thunderstorm hazard to arrive and the last to leave. Winds from thunderstorms and severe thunderstorms can cause the same amount of damage as an EF 2 tornado. Populations within the county living in mobile/manufactured housing are at greater risk from this hazard as even anchored mobile homes can be seriously damaged or destroyed when winds gust over 80 mph.

Any areas of growth or future development within the county could be impacted by these hazards because the entire county is vulnerable to thunderstorms, severe thunderstorms, and the associated lightning, wind, tornado, and/or hail that is accompanied by these systems. As the population within the county increases, so does the vulnerability of its residents to these hazards.

National Risk Index

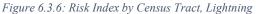
FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

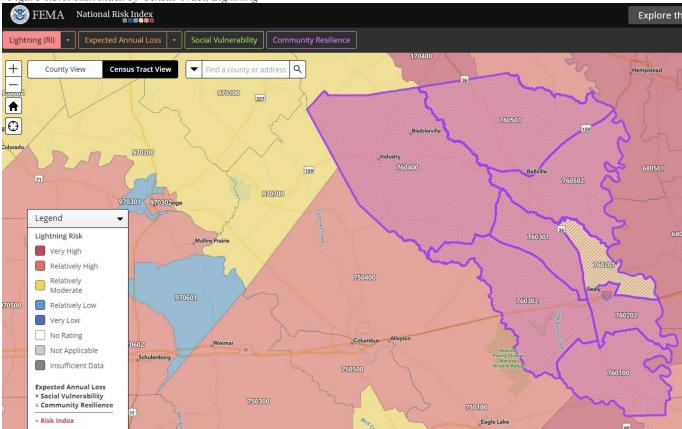
The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

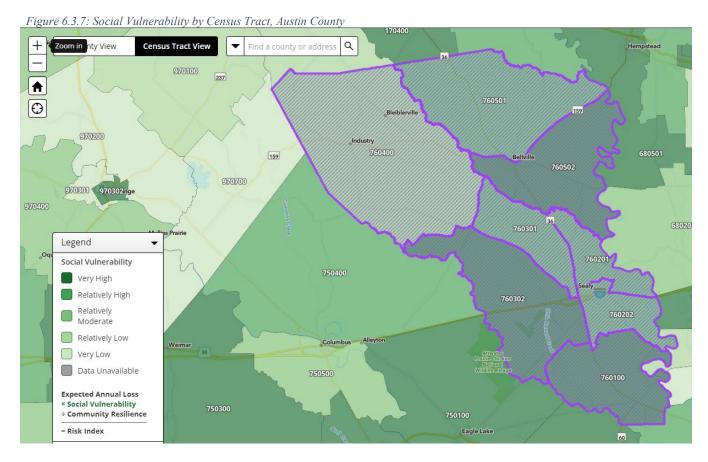
EAL for Austin County each year according to the FEMA NRI for lightning is listed as relatively low. EAL Exposure and EAL Values for various factors can be found in Table 6.3.6 and 6.3.7 below. ⁴⁸

Table 6.3.7: Expected Annual Loss Exposure Values, Severe Thunderstorms and Lightning

Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agricultural Value (\$)	EAL Total (\$)	EAL Rating
Severe Thunderstorm	ND	ND	ND	ND	ND
Lightning	\$7,118,991,434	\$348,150,800,000/ 30,013	N/A	\$355,269,791,434	Relatively Low


ND- No Data, N/A- Not Applicable


Table 6.3.8: Expected Annual Loss Values, Severe Thunderstorms and Lightning


Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agriculture Value
Severe Thunderstorm	ND	ND	ND
Lightning	\$5,352	\$115,863/0.01	N/A

ND- No Data, N/A- Not Applicable

The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score. Severe thunderstorm is not listed as a severe hazard type, lightning is accounted for.

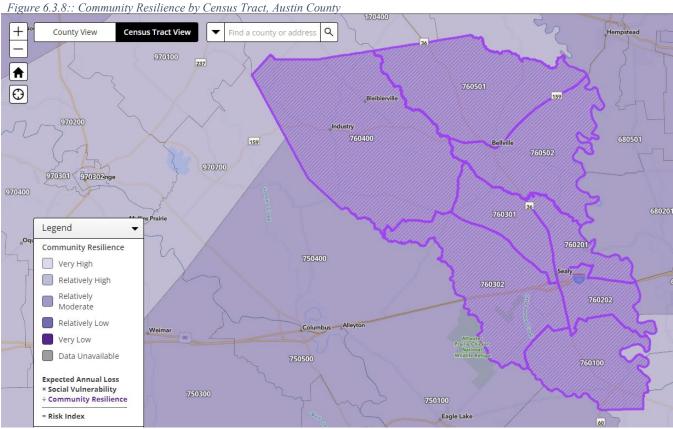


Figure 6.3.9: FEMA NRI Summary, Lightning

		Social	Community	N	RI Hazard: Wildfire		
Rank	Community	Vulnerability	Resilience	Risk Index Rating	Risk Index Score	Natio	onal Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	91.67	0	<u> </u>
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	87.21	0	100
3	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	86.75	0	100
4	Census tract 48015760501	Relatively High	Relatively Low	Relatively Low	84.73	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Low	83.44	0	100
6	Census tract 48015760100	Very High	Relatively Low	Relatively Low	83.15	0	100
7	Census tract 48015760301	Relatively High	Relatively Low	Relatively Low	82.55	0	100

Climate Change Impacts

According to the Office of the Texas State Climatologist, the climate data record for severe thunderstorms is poor, and severe thunderstorms are too small to be simulated directly by present-day climate models. Over the past few decades, the severe storm environment over Texas has changed in complex and opposing ways. The amount of energy available for convection has decreased, and the amount of energy needed to initiate convection has increased at the same time. This suggests that environmental conditions have become less favorable for the occurrence of thunderstorms. However, the amount of low-level shear has increased, which would be expected to make thunderstorms more likely to become severe once they develop.

Changes in severe storm environments have not been uniform throughout the year, with environments becoming more favorable for severe thunderstorms and significant hail in Texas early in the spring and less favorable later in the spring. Lightning occurs most often during the months of May and June. Climate model simulations imply different prospects going forward. As temperatures increase, the amount of energy available to fuel these storms is simulated to increase as temperature and low-level moisture increase. This results in an overall increase in the number of days capable of producing severe thunderstorms. With these complex trends and partially contradictory information between models and observations, there is low confidence in any ongoing trend in the overall frequency and severity of severe thunderstorms.⁴⁵

Table 6.3.9: Climate Change Impacts, Severe Thunderstorm and Lightning

Location	The location of severe thunderstorms and lightning is not expected to change.				
	The extent and intensity of severe thunderstorms and lightning within the				
Extent/Intensity	county may increase due to increased temperatures and energy available to				
	fuel severe thunderstorms and the accompanying lightning.				
	There are no clear trends in severe thunderstorms and lightning frequency				
Fragueray	due to considerable variability in conditions that lead to them occurring.				
Frequency	However, these hazards occur most frequently in warmer months, around				
	May and June.				
	The duration of severe thunderstorms and lightning events is not likely to				
Duration	change, however the intensity of them is expected to increase due to rising				
	temperatures and the proximity of the County to the Gulf of Mexico.				

Section 6.4: Tornado/Microburst

6.4 Tornado/ Microburst

A Tornado is defined by the NWS as a "A violently rotating column of air touching the ground, usually attached to the base of a thunderstorm." 66 Tornados are one of the most violent storms, with the strongest tornados being capable of massive destruction. In extreme cases, winds from a tornado may approach 300 miles per hour, with damage paths that can be more than one mile wide and 50 miles long. These catastrophic tornados are often produced by supercell thunderstorms. ⁶⁷ A microburst is a localized column of sinking air (downdraft) within a thunderstorm and is usually less than or equal to 2.5 miles in diameter. Microbursts can cause extensive damage at the surface, and in some instances, can be life-threatening. There are two primary types of microbursts: 1) wet microbursts and 2) dry microbursts. Wet microbursts are accompanied by significant precipitation and are common in the Southeast during the summer months. Microbursts start with the development of a thunderstorm and the water droplets/hailstones being suspended within the updraft. Sometimes an updraft is so strong it suspends large amounts of these droplets and hailstones in the upper portions of the thunderstorm. When the updraft weakens due to evaporational cooling, it is no longer capable of holding the large core of rain/hail up in the thunderstorm. As a result, the core plummets to the ground creating a microburst. As it hits the ground it spreads out in all directions. The location in which the microburst first hits the ground experiences the highest winds and greatest damage. Wind speeds in microbursts can reach up to 100 mph, or even higher, which is equivalent to an EF-1 tornado.⁶⁸

Location

Similar to that of thunderstorms (Section 6.3), tornadoes and microbursts do not have any specific geographic boundary and can occur anywhere if the right conditions are present. From 1951-2011, nearly 62.7 percent of all Texas tornadoes occurred within the three-month period of April, May, and June, with almost one-third of the total tornadoes occurring in May. ⁶⁹ The State of Texas has the highest average annual number of tornadoes per state, with an average of 136 tornadoes per year over a 30-year period, as seen in Figure 6.4.1. ⁷⁰ Figure 6.4.2 depicts Austin County's total number of tornadoes per year between 21-40 instances. ⁷¹

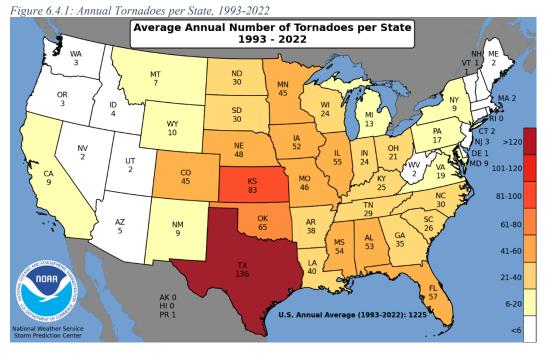


Figure 6.4.2: Tornadoes per County, 1950-2022 Total Number of Tornadoes per County 1950 - 2022 >140 121-140 101-120 81-100 61-80 41-60 21-40 73,824 County Segments
1) 290 - Weld County, Colorado
2) 244 - Harris County, Texas
3) 189 - Palm Beach, Florida
4) 186 - Washington County, Colorado 1-20 National Weather Service Storm Prediction Center 0

Extent

Tornado intensity is ranked using the Enhanced Fujita Scale (EF- Scale), a rating of how strong a tornado was. It is calculated by surveying the damage and comparing it with damage to similar objects at certain wind speeds. The EF-Scale is not meant to be used as a measure of how strong a tornado currently on the ground is. The EF-Scale incorporates 28 damage indicators such as building type, structures, and trees. For each damage indicator, there are 8 degrees of damage ranging from the beginning of visible damage to complete destruction of the damage indicator.⁷²

Table 6.4.1: Enhanced Fujita Scale Descriptions

EF Rating	Wind Speed	Typical Damage
0	65-85	Light damage. Peels surface off some roofs; some damage to gutters or siding; branches broken off trees; shallow-rooted trees pushed over.
1	86-110	Moderate damage. Roofs severely stripped; mobile homes overturned or badly damaged; loss of exterior doors; windows and other glass broken.
2	111-135	Considerable damage. Roofs torn off well-constructed houses; foundations of frame homes shifted; mobile homes destroyed; large trees snapped or uprooted; light-object missiles generated; cars lifted off ground.
3	136-165	Severe damage. Entire stories of well-constructed houses destroyed; severe damage to large buildings such as shopping malls; trains overturned; trees debarked; heavy cars lifted off the ground and thrown; structures with weak foundations blown away some distance.
4	166-200	Devastating damage. Whole frame houses Well-constructed houses and whole frame houses completely leveled; cars thrown, and small missiles generated.
5	>200	Incredible damage. Strong frame houses leveled off foundations and swept away; automobile-sized missiles fly more than 109 yards; high-rise buildings have significant structural deformation; incredible phenomena will occur.

Table 6.4.2: EF-Scale Damage Indicators

Number	Damage indicator	Abbreviation
1	Small barns, farm outbuildings	SBO
2	One- or two-family residences	FR12
3	Single-wide mobile home (MHSW)	MHSW
4	Double-wide mobile home	MHDW
5	Apt, condo, townhouse (3 stories or less)	ACT
6	Motel	M
7	Masonry apt. or motel	MAM
8	Small retail bldg. (fast food)	SRB
9	Small professional (doctor office, branch bank)	SPB
10	Strip mall	SM
11	Large shopping mall	LSM
12	Large, isolated ("big box") retail bldg.	LIRB
13	Automobile showroom	ASR
14	Automotive service building	ASB
15	School - 1-story elementary (interior or exterior halls)	ES
16	School - jr. or sr. high school	JHSH
17	Low-rise (1-4 story) bldg.	LRB
18	Mid-rise (5-20 story) bldg.	MRB
19	High-rise (over 20 stories)	HRB
20	Institutional bldg. (hospital, govt. or university)	IB
21	Metal building system	MBS

Number	Damage indicator	Abbreviation
22	Service station canopy	SSC
23	Warehouse (tilt-up walls or heavy timber)	WHB
24	Transmission line tower	TLT
25	Free-standing tower	FST
26	Free standing pole (light, flag, luminary)	FSP
27	Tree - hardwood	TH
28	Tree - softwood	TS

For this hazard, a worst-case scenario within Austin County would be an EF-4 tornado crossing through the county. This would be a catastrophic event with buildings and homes leveled, vehicles becoming airborne missiles, downed trees and power lines, debris on roadways, and critical facilities damaged or experiencing a service disruption to residents due to damages or lack of power. This scenario is based on previous occurrences of tornadoes that have crossed through the county, with the strongest being EF-1 and EF-2 crossing through populated urban areas of the county.

Historic Occurrences

Austin County has experienced seven tornados and one microburst since 1990. There have been no new tornado occurrences since the last plan update, however, there have been recent instances of funnel cloud formation as reported by NCEI. Figure 6.4.3 below depicts previous tornado occurrences and their tracks within Austin County, while Table 6.4.3 lists tornado and funnel cloud occurrences within the county.

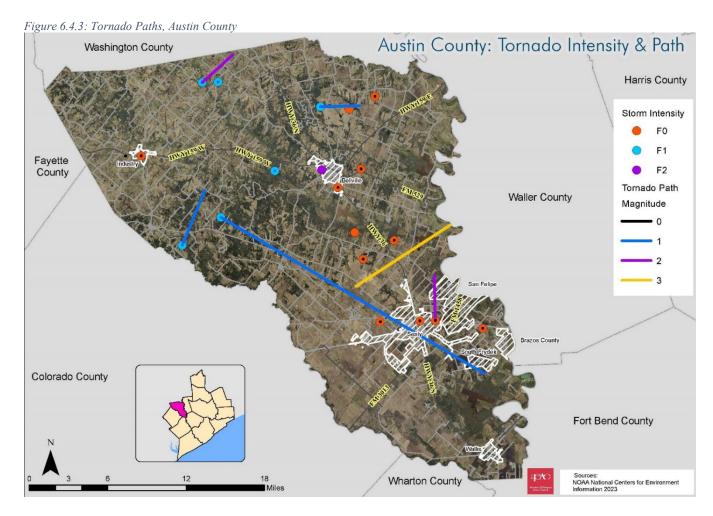


Table 6.4.3:Tornado Occurrences, Austin County

Date	Rating	Location	Property Damage (\$)	Crop Damage (\$)	Deaths	Injuries
7/31/1992	F0	Austin County	\$25,000.00	\$0	0	0
5/13/1994	F1	Austin County	\$50,000.00	\$0	0	0
5/13/1994	F0	Austin County	\$0.00	\$0	0	0
5/13/1994	F0	Austin County	\$5,000.00	\$0	0	1
1/12/1995	F0	Sealy	\$50,000.00	\$0	0	0
10/23/1997	F0	Bellville	\$5,000.00	\$0	0	0
11/12/2000	F0	Bellville	\$15,000.00	\$0	0	0
9/4/2001	Funnel Cloud	Sealy	\$0.00	\$0	0	0
4/10/2004	Funnel Cloud	Bellville	\$0.00	\$0	0	0
10/7/2004	Funnel Cloud	Bellville	\$0.00	\$0	0	0
3/29/2006	Funnel Cloud	Bellville	\$0.00	\$0	0	0
4/27/2009	Funnel Cloud	Shelby	\$0.00	\$0	0	0
7/20/2011	Funnel Cloud	San Felipe	\$0.00	\$0	0	0
9/18/2014	Funnel Cloud	Sealy	\$0.00	\$0	0	0
5/23/2017	Microburst	Sealy	\$1,000,000.00	\$0	0	0
5/3/2019	Funnel Cloud	Cochran	\$0.00	\$0	0	0
8/3/2021	Funnel Cloud	Wallis	\$0.00	\$0	0	0

Presidential Disaster Declarations

There has been 1 disaster declaration in which tornado was included in the declaration title for Austin County, however the declaration itself is listed as a "severe storm" for the incident type. There were 0 disaster declarations for microbursts.¹

Table 6.4.4: Federal Disaster Declarations, Tornado/Microburst

Declaration Date	Title	Disaster Number
1/11/2006	Severe storms, tornadoes, straight-line winds, and flooding	4223

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.4.5: USDA Declared Disasters (2018-2023), Tornado/Microburst

Crop Disaster Year	Disaster Description		Designation Number
		None	

Probability of Future Occurrences

Tornado season usually refers to the time of year the U.S. sees the most tornadoes. The peak "tornado season" for the southern Plains (e.g., Texas, Oklahoma, and Kansas) is from May into early June. On the Gulf coast, it is earlier in the spring. ⁶⁶ According to the FEMA NRI for tornadoes, annualized frequency values are 0.5 events per year over a 72-year period of record (1950-2021), with 12 events on record for this timeframe. ⁴²

Populations at Risk

All residents within the county are exposed to these hazards. Impacts of a tornado/ microburst on life, health, and safety of Austin County residents depends on several factors, including severity of the event and whether adequate warning time was provided to residents to take shelter. Tornadoes/ microbursts can lead to a disruption in emergency response services, shelters, and loss of secure inmate housing while repairs are made to critical facilities within the county. Residents impacted may be displaced or require temporary to long-term sheltering. In addition, downed trees, damaged buildings, and debris carried by winds associated with tornadoes/microbursts can lead to further injury, power disruption, or loss of life. Socially vulnerable populations are most susceptible based on several factors, including their physical and financial ability to react or respond during or directly following a hazard event. Those at a greater risk for adverse impacts due to tornadoes/ microbursts are older populations as they require extra time or outside assistance during evacuations. Older residents are also more likely to seek or need medical attention that may not be available during a storm event. Those that are economically disadvantaged are also more vulnerable because they may not have the funds to recover from such an event as quickly as households that are in a better spot economically. People living in mobile homes are especially at risk from injury and death. Even anchored mobile homes can be seriously damaged when winds gust over 80 mph (Tornadoes of EF 1 and above). As the county continues to expand in both population and development, areas of future growth could increase the vulnerability of the county and its residents to this hazard.

National Risk Index

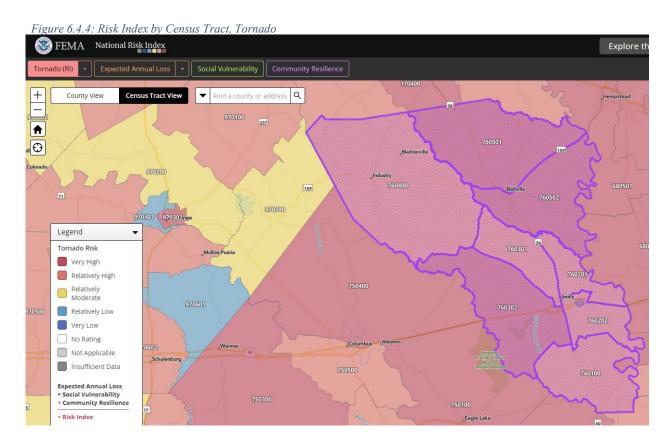
FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from

natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

EAL for Austin County each year according to the FEMA NRI for tornadoes is listed as relatively moderate. EAL Exposure and EAL Values for various factors can be found in Table 6.4.6 and 6.4.7 below.⁴¹

Table 6.4.6: Expected Annual Loss Exposure Values, Tornado/Microburst


Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agricultural Value (\$)	EAL Total (\$)	EAL Rating
Tornado	\$7,118,991,434	\$348,150,800,000/30,013	\$37,985,562	\$355,307,776,996	Relatively Moderate
Microburst	ND	ND	ND	ND	ND

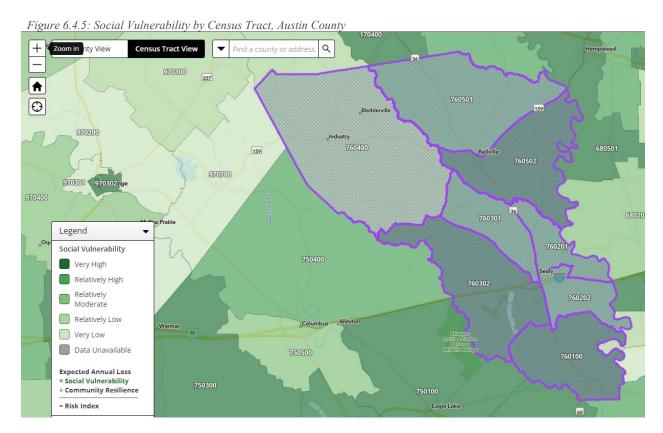

ND- No Data, N/A- Not Applicable

Table 6.4.7: Expected Annual Loss Values, Tornado/Microburst

Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agriculture Value
Tornado	\$887,196	\$1,604,908/ 0.14	\$782
Microburst	ND	ND	ND

The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score. Microburst is not listed as a severe hazard type; Tornado is accounted for.

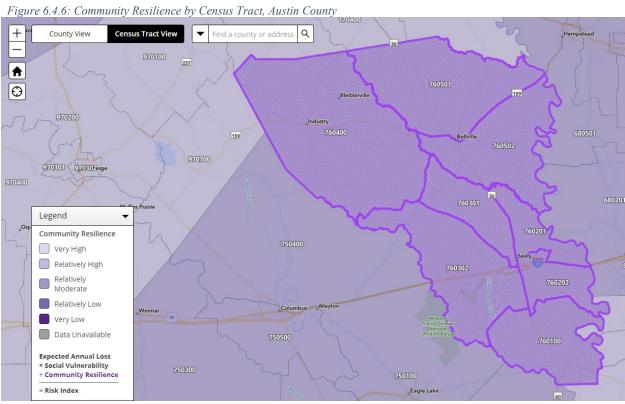


Figure 6.4.7: FEMA NRI Summary, Tornado

Rank	Community	Social Vulnerability	Community Resilience	Hazard Type: Tornado Risk Index Rating	Risk Index Score	1	National Percentile
1	Census tract 48015760502	Very High	Relatively Low	Very High	98.38	0	100
2	Census tract 48015760302	Very High	Relatively Low	Very High	97.79	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Very High	95.03	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively High	92.88	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively High	92.12	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively High	87.04	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively High	80.7	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively High	77.07	0	100

Climate Change Impacts

According to the Office of the Texas State Climatologist, "The most robust trend in tornado activity is a tendency of more tornadoes in large outbreaks, but the factors apparently driving that trend are not projected to continue." Severe thunderstorms and lightning are more likely to occur in summer months when temperatures are higher and moisture from the gulf helps to fuel thunderstorm development, which could lead to the development of tornadoes along the front of the storm if the right conditions exist.

Table 6.4.8: Climate Change Impacts, Tornado/Microburst

Location	The location of tornadoes and microbursts is not expected to change.	
	The extent and intensity of tornadoes and microbursts within the county may	
Extent/Intensity	change (increase) due to increased temperatures and energy available to fuel	
	severe thunderstorms from the warm air within the Gulf of Mexico.	
	Tornadoes and microburst frequency is not expected to change. 62.7 percent	
Frequency	of all Texas tornadoes occurred within the three-month period of April, May,	
	and June, with almost one-third of the total tornadoes occurring in May	
D	The duration of tornadoes and microbursts events is not likely to change,	
Duration	however the intensity of them, or outbreaks is expected to increase.	

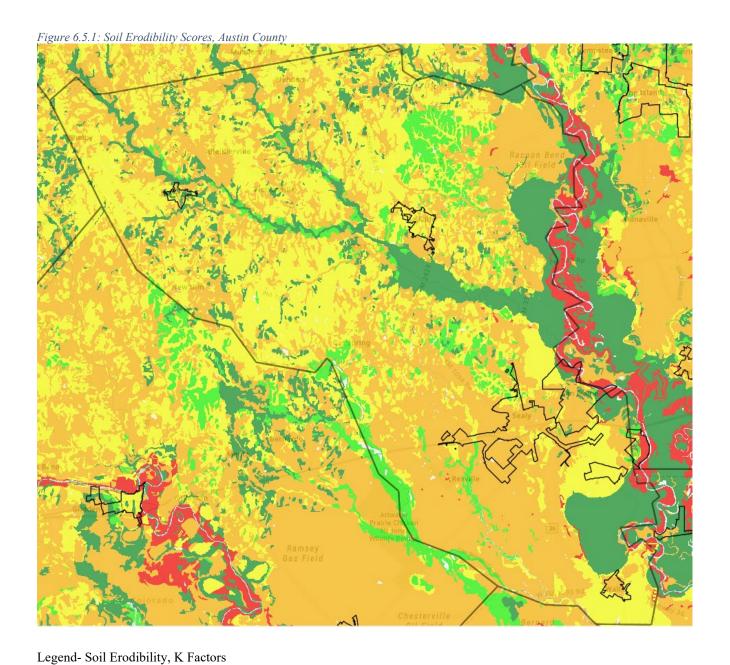
Section 6.5: Erosion

6.5 Erosion

Soil erosion consists of a series of natural processes that move earth and rock material. The land surface is worn away through the detachment and transport of soil and rock by moving water, wind, and other geologic agents.⁷³ Erosion removes topsoil (areas with the highest levels of organic matter and nutrients), reduces levels of organic matter within the soil, and creates a less favorable environment for plants due to breakdown within the soil structure. The different types of erosion are described in table 6.5.1 below.

FEMA defines erosion as "The process of the gradual wearing away of land masses. Erosion can occur along coasts and rivers and streams." Although flood-related erosion is covered by flood insurance, this hazard is not covered under the NFIP. The mapping and regulatory standards of the NFIP do not currently address erosion, however, CRS credit is given to communities that include this hazard in their regulations, planning, public information, hazard disclosure, and flood warning programs. For example: communities that have established setbacks and other requirements in areas subject to erosion.

Table 6.5.1: Types of Erosion⁷⁴

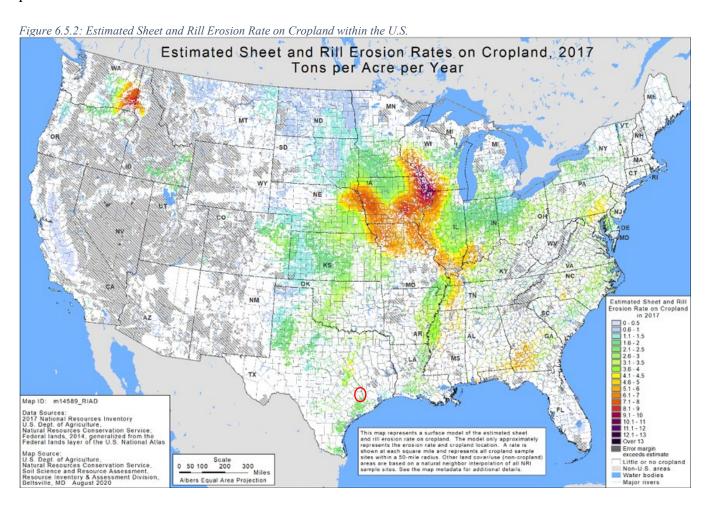

Type of Erosion	Description
Wind Erosion	Wind erosion is a natural process that moves loose soil from one location to another. Wind erosion can harm the fields where it picks up soil, as well as the areas where the dirt—and whatever minerals and contaminants it includes—are deposited. It can also have health impacts: worsening air quality, obscuring visibility, and causing people to experience breathing difficulties.
Water Erosion, Rainfall	Occurs when the rainfall intensity that hits the ground exceeds the absorbing capacities or the infiltration rate of soil affected. This leads to soil in water runoff and sediment transport to waterways resulting in deterioration in soil and water quality.
Water Erosion, Sheet	Sheet erosion is the removal of soil in thin, uniform layers (sheets) by raindrop impact and shallow surface water flow. Sheet erosion can sometimes be difficult to detect unless the soil is deposited nearby or if the damage is already severe. This erosion process removes the fine soil particles that contain most of the important nutrients and organic matter.
Water Erosion, Rill	Occurs when runoff becomes concentrated enough to cut small rivulets in the soil that carry sediment down hillsides.
Water Erosion, Gully	Gully Erosion is the washing away of soil through deep grooves or channels across unprotected land. Gully erosion can refer to soil being washed away through human-made drainage lines or describe the process of soil traveling through grooves created by hard rains. Farmers will typically fill these grooves back in with fresh soil as a temporary solution. Gully erosion can hinder the ability to plow fields and grow crops.
Water Erosion, Bank	The progressive undercutting, scouring, and slumping of natural rivers and streams as well as man-made drainage channels by the intense movement of water. When land managers remove vegetation or ranchers allow their livestock to overgraze the land near streams and riverbanks, it can exacerbate the problem.

Location

Soil erosion is typically measured in a variety of ways, both qualitative and quantitative. Within the county, inland erosion due to water is the main hazard of concern. One method is the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE). Potential erodibility for sheet and rill erosion is estimated by multiplying the following factors of the Universal Soil Loss Equation USLE: Rainfall and runoff factor (R), Susceptibility of the soil to water erosion (K), and Combined effects of slope length and steepness (LS). The K factor represents the susceptibility of soil to water erosion. Past management or misuse of a soil by intensive cropping can increase a soil's erodibility. The K factor may need to be increased if the subsoil is exposed or where the organic matter has been depleted, the soil's structure destroyed, or soil compaction has reduced permeability. Figure 6.5.2 below shows K factor scores, soil descriptions, and their associated soil erodibility. Figure 6.5.1 depicts these k-factors within Austin County. K-factors with high erodibility of 0.4 or greater are depicted in red. The legend breaks down the soil erodibility factor and how they were colored on the map. Areas within the county most susceptible to this hazard are located mainly along the Brazos River, such as the Town of San Felipe and City of Brazos Country.

Table 6.5.2: K Factor, Soil Erodibility Scores

K-Factor	Soil Description	Erodibility
0.05 to 0.15	High in clay	Resistant to detachment
0.05 to 0.2	Coarse textured soils, such as sandy soils	Low runoff, easily detached
0.25 to 0.4	Medium textured soils, such as the silt loam soils	Moderately susceptible to detachment and they produce moderate runoff
>0.4	Soils with a high silt content	Most erodible of all soils, easily detached; tend to crust and produce high rates of runoff



Extent

Soil erosion and its risk of occurring is difficult to measure without proper documentation techniques in place. Measuring certain properties in specific locations in the field, such as the surface and aggregate stability of the soil, infiltration rates, organic matter content, and sediment delivery ratios are all necessary components to quantify the rate of erosion in a given area Furthermore, using these quantitative measurements with photographs or visual observations of the soil or landmarks at specific locations would help to paint a clearer picture if erosion is occurring or likely to occur.⁶⁷ Soil erosion rates on cropland within the U.S. decreased 35 percent between 1982 and 2017. The water (sheet and rill) erosion rate declined from 3.89 tons per acre per year to 2.67 tons per acre per year, and the erosion rate due to wind decreased from 3.24 tons per acre per year to 1.96 tons per acre per year.⁷⁷ Figure 6.5.2 shows the estimated sheet and rill erosion rates on cropland in tons per acre per year within the U.S. The rate of erosion due to sheet and rill within Austin County ranged from 2.1 to 2.5 tons per acre per year. This hazard is of greater risk to areas along the Brazos River, such as the City of Brazos Country and Town of San Felipe, whose banks can be eroded away during times of heavy rain and flooding, especially if the river reaches major flood stage or crests.

This map is derived from the 2017 summary resource report developed by the U.S. Department of Agriculture Natural Resources Conservation Service. It is the most recent report available and was published in 2020.

During Hurricane Harvey in 2017, Austin County saw widespread high-risk severe thunderstorms that spanned multiple days. Rainfall totals across the county ranged anywhere from 15 – 25 inches, the storm had 87 mph recorded wind speeds, spawned multiple tornadoes within the region, and saw frequent CG lightning strikes. Impacts included major lowland flooding, high-water rescues of stranded residents, flooded homes along the Brazos River within the Town of San Felipe with flood depths of 4-7 feet, dangerous outdoor conditions, roads washed out or impassable due to flood waters, and the destruction of critical facilities and infrastructure. A worst-case scenario for this hazard would be a heavy rainfall event that created flooding conditions within the Brazos River causing stream bank erosion from the river cresting, the river reaching moderate or major flooding levels which could flood nearby roads and properties, and water receding slowly causing clean up efforts to be prolonged. A historic river crest from the Brazos River occurred during Hurricane Harvey in 2017 at 129 feet.

Historic Occurrences

During the last HMP update for Austin County in 2017, there were two notable occurrences of erosion. The most notable occurrence in the county took place in San Felipe where the Stephen F. Austin State Park reported building damage due to erosion. Another instance occurred within the City of Brazos Country where the golf course had also experienced erosion, however no damage was reported. San Felipe, Brazos Country, and portions of unincorporated Austin County are located directly along the Brazos River and are susceptible to the effects of erosion.

Presidential Disaster Declarations

There have been no disaster declarations for erosion within Austin County since 1950.¹

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.5.3: USDA Declared Disasters (2018-2023), Erosion

Crop Disaster Year	Disaster Description	Designation Number
	None	

Probability of Future Occurrences

As mentioned above, the rate of erosion on croplands has been decreasing across the U.S. over time. However, the county and jurisdictions at risk for this hazard sit along the Brazos River where erosion could potentially increase if the river crests due to heavy rainfall from other hazards. It is difficult to estimate the probability of future occurrence of this hazard due to a lack of data regarding previous erosion events through any formal system. It can be inferred that the risk from this hazard will stay the same in

areas that are not in close proximity to the Brazos River, while areas near the Brazos River will experience an increased risk from this hazard.

Populations at Risk

Populations at risk from erosion include those who work in agricultural fields. Erosion can greatly affect agriculture production through lost revenue and agricultural production. Those who own private property particularly along the Brazos River may be more susceptible to this hazard as damage could require costly repairs and infrastructure reinforcement. The FEMA NRI does not account for erosion within its various analysis of natural hazards.

As the county grows, the vulnerability of its residents to this hazard will expand as the entire county could be vulnerable to this hazard and its secondary impacts on agriculture. Any areas of future development could experience risks from erosion. Areas of future development along the eastern edge of the county that follows the Brazos River, such as the Town of San Felipe and City of Brazos Country, face a greater level of risk than other participating jurisdictions to this HMP update.

Climate Change Impacts

Climate change can increase the impacts felt from water erosion from more frequent and intense rainfall, longer periods of extreme heat and drought can lead to an increase in wind erosion, and as wildfires destroy areas- the loss of vegetation and groundcover are more prone to erosion by both wind and water. In addition, soil erosion can drive climate change. Soil is a vast storage center for carbon dioxide, organic matter, and microbes. When soil becomes degraded it can release carbon back into the atmosphere.⁶⁸

Table 6.5.4: Climate Change Impacts, Erosion

Location	The location of erosion is not expected to change.				
Extent/Intensity	The extent of erosion is not expected to change.				
	The frequency of erosion is not expected to change. The rate of erosion on				
	croplands have been decreasing across the U.S. over time, however the				
Frequency	county and jurisdictions at risk for this hazard sit along the Brazos River				
	where erosion could increase if the river crests due to heavy rainfall from				
	other hazards. Frequency of this hazard is difficult to estimate.				
Duration	The duration of erosion is not expected to change.				

Section 6.6: Winter Weather

6.6 Winter Weather

Winter weather is defined by NWS as "a winter weather phenomenon (such as snow, sleet, ice, cold temperatures) that impacts public safety, transportation, and/or commerce." Within the planning area, these types of hazards typically occur during the months of November-February.

Location

Winter weather occurs on a regional scale and can happen anywhere within the state or the county.

Extent

The Winter Storm Severity Index (WSSI) is a new product (released in 2022) of the NWS that forecasts the potential impacts of winter storms. NWS has implemented the WSSI to provide the public with a tool that attempts to convey the complexities and hazards associated with winter storms as they relate to potential societal impacts. The WSSI is created using Geographic Information Systems (GIS) by screening the official NWS gridded forecasts from the National Digital Forecast Database (NDFD) for winter weather elements and combining those data with non-meteorological or static information datasets such as land use, climatology, urban areas, etc. The outcome is a graphical depiction of anticipated overall impacts on society due to winter weather. There are numerous datasets used or derived as part of calculating the WSSI.

Table 6.6.1: Winter Storm Severity Index Datasets

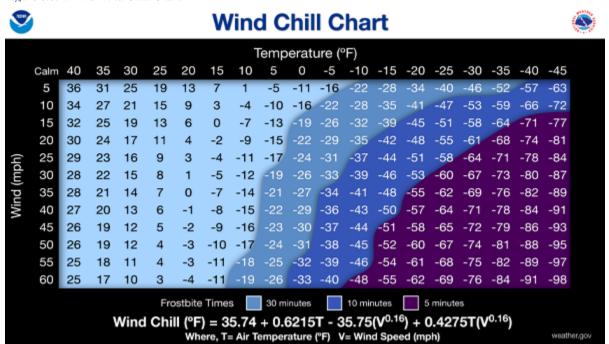
Table 6.6.1: Winter Storm Severity Index Datasets Data Source	Dataset
Official NWS Forecast datasets from NDFD	 6-hour snow accumulation 6-hour ice accumulation 6-hour precipitation accumulation (Quantitative Precipitation Forecasts) Wind speed (hourly time steps) Temperature (hourly time steps)
Additional derived forecast parameters from other official NWS NDFD	 Total snowfall Total ice accumulation Maximum wind speed within each 6-hour period 6-hourly snowfall accumulation rate 6-hourly snow-liquid ratio Average snow-liquid ratio
Daily National Snow Analyses are obtained from the NWS National Operational Hydrologic Remote Sensing Center (NOHRSC)	 Snow depth Snowpack temperature Snow water equivalent
Non-forecast datasets	 Urban area designation Land-use designations NOAA/NCEI gridded annual snowfall climatology

The WSSI consists of a series of component algorithms, each of which uses meteorological and non-meteorological data to model the predicted severity of specific characteristics of winter weather. Each of the components produces a 0 to 5 output scale value that equates to the potential severity based on the winter weather hazards. The final WSSI value is the maximum value from all the sub-components. The 4 impact levels are given the following descriptors: Minor, Moderate, Major, and Extreme. In addition to the impact levels, a Winter Weather Area is also shown to depict the extent of the winter weather

conditions. The WSSI output provides colors, impact classifications, and definitions of the overall expected severity of winter weather, as depicted in Table 6.6.2 below.

Table 6.6.2: Winter Storm Severity Index Impact Classifications and Definitions

Map Color	Associated Impacts	WSSI Definition
	No Impacts	N/A
	Limited Impacts,	Expect winter weather.
	Winter Weather Area	Winter driving conditions: Drive carefully.
	Minor Impacts	Expect a few inconveniences to daily life.
	willor impacts	Winter driving conditions: Use caution while driving.
	Moderate Impacts	Expect disruptions to daily life. Winter driving conditions: Hazardous driving conditions. Use extra caution while driving.
		Closures and disruptions to infrastructure may occur.
		Expect considerable disruptions to daily life.
	Major Impacts	Winter driving conditions: Dangerous or impossible driving conditions. Avoid travel if possible.
		Widespread closures and disruptions to infrastructure may occur.
	Extreme Impacts	Expect substantial disruptions to daily life. Winter driving conditions: Extremely dangerous or impossible driving conditions. Travel is not advised.
		Extensive and widespread closures and disruptions to infrastructure may occur. Life-saving actions may be needed.


The specific sub-components of the WSSI are:

- Snow Load Index- Indicates potential infrastructure impacts due to the weight of the snow. This index accounts for the land cover type. For example, more forested and urban areas will show increased severity versus the same snow conditions in grasslands.
- Snow Amount Index- Indicates potential impacts due to the total amount of snow or the snow accumulation rate. This index also normalizes for climatology, such that regions of the country that experience, on average, less snowfall will show a higher level of severity for the same amount of snow that is forecast across a region that experiences more snowfall on average. Designated urban areas are also weighted a little more than non-urban areas.
- Ice Accumulation- Indicates potential infrastructure impacts (e.g., roads/bridges) due to combined effects and severity of ice and wind. Designated urban areas are also weighted a little more than non-urban areas. Please note that not all NWS offices provide ice accumulation information in the NDFD. In those areas, the ice accumulation is not calculated.
- Blowing Snow Index- Indicates the potential disruption due to blowing and drifting snow. This index accounts for land use type. For example, more densely forested areas will show less blowing snow than open grassland areas.
- Flash Freeze Index- Indicates the potential impacts of flash freezing (temperatures starting above freezing and quickly dropping below freezing) during or after precipitation events.
- Ground Blizzard- Indicates the potential travel-related impacts of strong winds interacting with pre-existing snow cover. This is the only sub-component that does not require snow to be forecast for calculations to be made. The NOHRSC snow cover data along with forecast winds are used to model the ground blizzard. Adjustments are made based on the land cover type. For example, heavily forested areas will have a lower ground blizzard severity than the same conditions occurring across open areas.⁷⁹

Anticipated intensities for the WSSI sub-components mentioned above within the Austin County, per the American Society of Civil Engineers for determining loads for structures with a risk category of 4 (those that have the greatest impact on life, health, and welfare)⁸⁰ include:

- Snow Load Index-
 - ☐ Ground Snow Load, pg:10 lb/ft2
 - This is the maximum amount of snow that's expected to accumulate on the ground in a specific location. Light snow ranges from 5–20 lb/ft².
 - □ 20-year mean recurrence interval: Light snow, 1.38 lb/ft²
 - This represents the snow load that is statistically likely to occur once every 20 years at a given location, used primarily in structural engineering calculations to design buildings against snow loads.
 - ☐ Winter Wind Parameter: 0.45
 - The percentage of time the wind speed is above 10 mph during October through April. Used to calculate snow drifting.
 - ☐ Mapped Elevation: 212.0 ft
- Ice Accumulation- Ice thickness on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values. Values provided are equivalent radial ice thicknesses due to freezing rain for 250, 500, 1,000, and 1,400-year mean recurrence intervals along with concurrent 3-s gust speeds and concurrent air temperatures.
 - ☐ Ice Thickness: 1.52 in.
 - ☐ Concurrent Temperature: 15 F
 - ☐ 3-s Gust Speed: 32 mph

Figure 6.6.1: NWS Wind Chill Chart

The NWS Wind Chill Temperature uses advances in science, technology, and computer modeling to provide an accurate, understandable, and useful formula for calculating the dangers from winter winds and freezing temperatures. The wind chill temperature is how cold people and animals feel when outside. Wind chill is based on the rate of heat loss from exposed skin caused by wind and cold. As the wind

increases, it draws heat from the body, driving down skin temperature and eventually the internal body temperature. Therefore, the wind makes it feel much colder. If the temperature is 0°F and the wind is blowing at 15 mph, the wind chill is -19°F. At this wind chill temperature, exposed skin can freeze in 30 minutes. Average temperatures for Austin County during the months of November- February typically range from highs in the mid-60's to low 70's during the day and lows in the 40's at night, with the coldest month generally being January. Wind speeds during the months of November to January average 8-10 mph. According to the NWS Wind Chill Chart above, this puts the planning area, on average, slightly above freezing. Winter weather events, like cold waves or Winter Storm Uri, within the planning area occur rarely (once every 10 years)

A worst-case scenario for this hazard within Austin County would be similar to that of Winter Storm Uri which occurred in February 2021. Every county across Texas was under a Winter Storm Warning and wind chill values were below zero as far south as the Rio Grande River and into northeastern Mexico. This historic winter storm brought snow, sleet, freezing rain and prolonged extreme temperature lows that brought significant buildup of ice on roads and highway overpasses. Impacts were extreme according to the NWS WSSI impact classifications seen above. Travel was dangerous and not advised, there was extensive damage to public infrastructure by means of frozen, cracking pipes and water line breaks. Ice accumulations led to downed trees and power lines, which in turn led to prolonged power outages, closed roadways, and cut-off access to critical facilities and services due to dangerous travel conditions. This storm was the largest and most costly winter weather event in the county's history, causing over \$25,000 in property damage in Austin County alone. Additionally, a hazard of this severity occurring again and damaging critical infrastructure that leads to a prolonged power outage raises secondary hazards for residents due to the cold and inability to keep homes and buildings warm.

The Sealy News reported Winter Storm Uri as having ice accumulations of 1"-2", temperatures at or below freezing before windchill, and snow/sleet accumulations up to 1-3". This resulted in multiday road closures, power outages, loss of heat, loss of water, loss of communications, broken pipes, and other societal impacts for the region. Another winter storm event of this magnitude could, again, result in risks to life and property as well as secondary hazards from prolonged power outages.

NOAA and the NWS have a variety of watches, warnings, and advisories for freeze, frost, wind, and ice events. A watch is generally issued in the 24 to 72-hour forecast time frame when the risk of a hazardous winter weather event has increased (50 to 80% certainty that warning thresholds will be met). It is intended to provide enough lead time so those who need to set their plans in motion can do so. Warnings are issued when a hazardous winter weather event is occurring, is imminent, or has a very high probability of occurrence (generally greater than 80%). A warning is used for conditions posing a threat to life or property. Advisories are issued when a hazardous winter weather event is occurring, is imminent, or has a very high probability of occurrence (generally greater than 80%). An advisory is for less serious conditions that cause significant inconvenience and, if caution is not exercised, could lead to situations that may threaten life and/or property. The table below describes the various NWS winter weather warnings, watches, and advisories.⁸³

Table 6.6.3: Winter Weather-Related Warnings, Watches, and Advisories

Table 6.6.3: Winter Weather-Related War	nings, watches, and Advisories
Watch/ Warning/ Advisory	Description
Winter Storm Watch	Issued when conditions are favorable for a significant winter storm event (heavy sleet, heavy snow, ice storm, heavy snow and blowing snow, or a combination of events.)
Extreme Cold Watch (Previously Wind Chill Watch)	Issued when there is the potential for dangerously cold air with or without wind.
Freeze Watch	Issued when there is a potential for significant, widespread freezing temperatures within the next 24-36 hours.
Winter Storm Warning	Issued when dangerously cold air, with or without wind, is expected. Conditions could lead to frostbite or hypothermia. Limit time outside.
Extreme Cold Warning (Previously Wind Chill Warning)	Issued for a combination of very cold air and strong winds that will create dangerously low wind chill values. This level of wind chill will result in frostbite and lead to hypothermia if precautions are not taken. Avoid going outdoors and wear warm protective clothing if you must venture outside.
Freeze Warning	Issued when significant, widespread freezing temperatures are expected.
Ice Storm Warning	Are usually issued for ice accumulation of around 1/4 inch or more. This amount of ice accumulation will make travel dangerous or impossible and likely lead to snapped power lines and falling tree branches. Travel is strongly discouraged.
Blizzard Warning	Issued for frequent gusts greater than or equal to 35 mph accompanied by falling and/or blowing snow, frequently reducing visibility to less than 1/4 mile for three hours or more. A Blizzard Warning means severe winter weather conditions are expected or occurring. Falling and blowing snow with strong winds and poor visibilities are likely, leading to whiteout conditions making travel extremely difficult. Do not travel.
Winter Weather Advisory	Issued for any amount of freezing rain, or when 2 to 4 inches of snow (alone or in combination with sleet and freezing rain) is expected to cause a significant inconvenience, but not serious enough to warrant a warning.
Cold Weather Advisory (Previously Wind Chill Advisory)	Issued when seasonably cold air temperatures or wind chill values, but not extremely cold values, are expected or occurring.
Frost Advisory	Issued when the minimum temperature is forecast to be 33 to 36 degrees on clear and calm nights during the growing season.

2021 Winter Storm Uri resulted in a total of 8 days, 23 hours, and 23 minutes of winter highlights between the first Winter Weather Advisory issued on Thursday, February 11th, 2021, at 9:37 am, to when the last Freeze Warning expired at 9 am on Saturday, February 20th, 2021. While a winter weather hazard event of Uri's magnitude in southeast Texas is uncommon, winter weather is expected to affect the planning area yearly and annualized frequency for this hazard is expected to remain the same in the future.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County winter weather-related events data from 1950-2023 is provided in the table below.³⁹

Table 6.6.4: Historic Occurrences, Winter Weather

Date	Description	Death/Injury	Property Damage	Crop Damage
1/12/1997	Ice Storm	0/0	\$0	\$0
1/16/2007	Ice Storm	0/0	\$1,000	\$0
2/3/2011	Ice Storm	0/0	\$0	\$0
2/3/2011	Ice Storm	0/0	\$0	\$0
12/7/2013	Winter Weather	0/0	\$0	\$0
2/15/2021	Extreme Cold/ Wind Chill	0/0	\$25,000	\$0
2/3/2022	Winter Weather	0/0	\$0	\$0

Presidential Disaster Declarations

There have been 2 disaster declarations for winter weather within Austin County since 1953.¹

Table 6.6.5: Federal Disaster Declarations, Winter Weather

Declaration Date	Title	Disaster Number
2/14/2021	Severe Winter Storm	3554
2/19/2021	Severe Winer Storms	4586

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make emergency EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.6.6: USDA Disaster Declarations (2018-2023), Winter Weather

Crop Disaster Year	Disaster Description	Designation Number
	None	

Probability of Future Occurrences

Winter weather, as defined above, in southeast Texas is expected to affect the planning area yearly. The table below shows FEMA NRI annualized frequency values for winter weather, ice storms, and cold waves below.

Table 6.6.7: Annualized Frequency Values, Cold Wave, Ice Storm, and Winter Weather

Hazard Type	Annualized Frequency	Events on Record	Period of Record
Cold Wave A rapid fall in temperature within 24 hours and extreme low temperatures for an extended period.	0.1 events per year 1 event every 10 years	2	2005-2021 (16 years)
Ice Storm Freezing rain with significant ice accumulations of 0.25 inches or greater.	0.7 events per year 1 event every 1.4 years	48	1946-2014 (67 years)
Winter Weather Winter storm events in which the main types of precipitation are snow, sleet, or freezing rain.	0.5 events per year 1 event every 2 years	8	2005-2021 (16 years)

Populations at Risk

The Gulf Coast and Southeast Texas region are generally not used to snow, ice, and freezing temperatures. When cold air penetrates south across Texas and Florida, into the Gulf of Mexico, temperatures fall below freezing. This can kill vulnerable vegetation, such as flowering plants and the citrus fruit crop. Wet snow and ice rapidly accumulate on trees with leaves, causing the branches to snap under the load. Motorists are generally unaccustomed to driving on slick roads and traffic accidents increase. Some buildings are poorly insulated or lack heat altogether. Local towns may not have available snow removal equipment or treatments, such as sand or salt for icy roads. Repulations at risk include adults over 65 years of age and children, who according to the CDC are the most vulnerable populations to winter weather-related illnesses. Additionally, Austin County experiences significant annual financial losses to winter weather. Most of these losses are attributed ice storms that cause dangerous driving conditions, falling trees, and power outages in homes. The most notable vulnerabilities throughout the county to this hazard are the dangerous driving conditions and power outages.

The NCHH summarizes at-risk populations for several hazards. These include older adults, children, people experiencing homelessness, people with disabilities, and people with chronic health conditions. In addition to the dangers listed above, older adults can face social isolation, lack of electricity needed to run medical equipment, lack of access to a vehicle for evacuation, and lack of access to other critical supplies. In younger populations, such as children, winter weather and related hazard events can disrupt schooling and the normal day-to-day routines they thrive on. This can not only jeopardize their academic success but can also cause mental and emotional stress. Children are more at risk when their exposure to these extreme temperatures is prolonged. For people experiencing homelessness, adequate shelter is critical in keeping populations safe during winter weather and related events. People with disabilities may require additional assistance to stay safe and prepare for these hazards such as creating a support network, finding accessible transportation to evacuate or get medical attention, and loss of power for needed medical equipment. Likewise, those with chronic health conditions may need similar assistance as those with disabilities. People with chronic health conditions also face exposure to diseases or illnesses from prolonged exposure to extreme temperatures and increased exposure to these illnesses when utilizing a shelter, warming center, or evacuation center. 43

Additionally, freezing temperatures can cause damage to homes and businesses in the form of burst pipes, which can cause mold to thrive if not treated promptly. This can exacerbate illness among the general population but especially among those with chronic health conditions. When heating systems or power outages can't adequately maintain a safe temperature households may turn to using space heaters,

fireplaces, or appliances that aren't meant for heating (such as ovens or stoves) for warmth. This increases the risk of fires and negatively impacts indoor air quality. Additionally, carbon monoxide poisoning can be a risk for those who utilize generators too close to the home or indoors. These issues disproportionately affect low-income communities and families who may lack the resources to pay for safe heating in their homes.⁴⁶

Any areas of growth or future development within the county could be potentially impacted by this hazard as it has no set geographic boundary, and the level of vulnerability is the same throughout Austin County. As future developments are completed the risk to this hazard increases. Similarly, as the population within the county increases, more people will be at risk of the impacts from these hazards.

National Risk Index

FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

The NRI accounts for winter weather in various formats, these are cold waves, ice storms, and winter weather. EAL Exposure Values for Austin County each year according to the FEMA NRI for these hazards are listed as relatively low.42 EAL Exposure Values and EAL Values can be found in the tables below.

Table 6.6.8: Expected Annual Loss Exposure Values, Cold Wave, Ice Storm, and Winter Weather

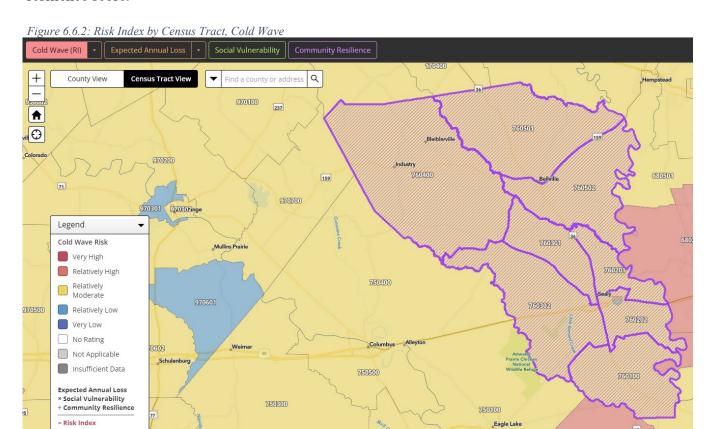
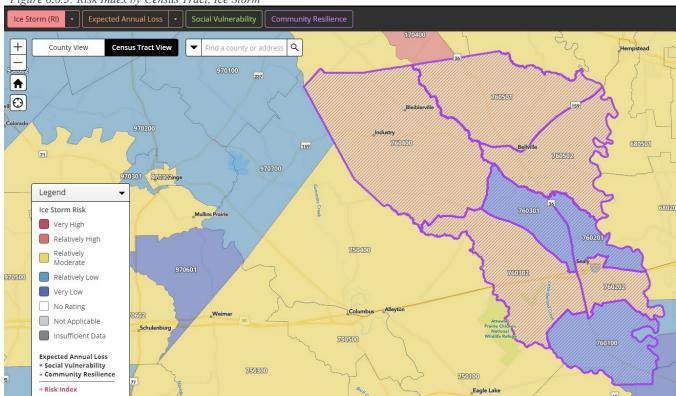
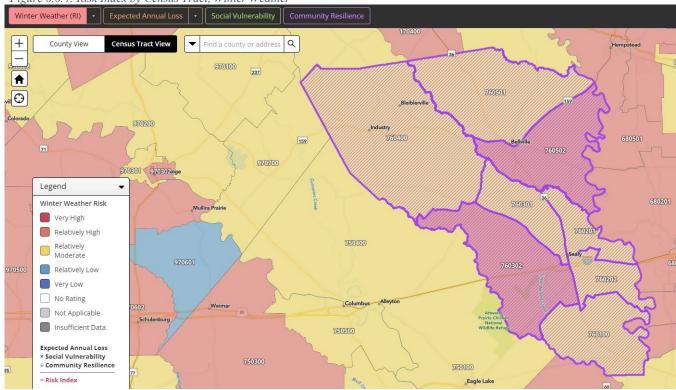
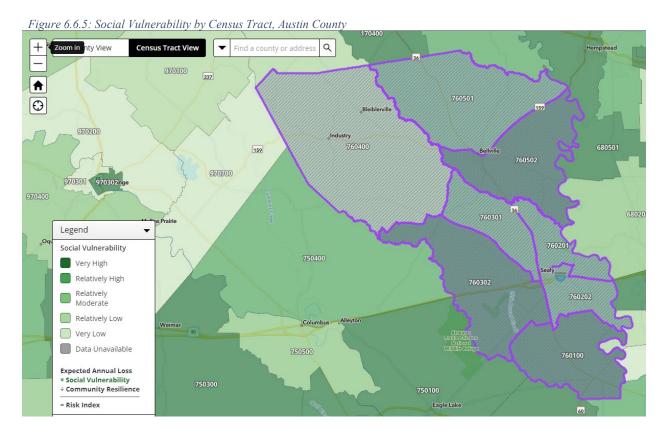

Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agricultural Value (\$)	EAL Total (\$)	EAL Rating
Cold Wave, Ice Storm, and Winter Weather	\$7,118,991,434	\$348,150,800,000/30,013	\$37,985,562	\$355,307,776,996	Relatively Low

Table 6.6.9: Expected Annual Loss Values, Cold Wave, Ice Storm, and Winter Weather


Hazard Type	Building Value (\$)	Population Equivalence	Agriculture Value
		(\$)/ Population (#)	
Cold Wave	\$1,235	\$82,576/ 0.01	\$15,923
Ice Storm	\$5,763	\$39,920/ 0.00	N/A
Winter Weather	\$2,031	\$41,531/0.00	\$296

N/A- Not Applicable


Historic loss ratios, according to the FEMA NRI, for cold waves and ice storms within Austin County are very low. Winter weather historic loss ratio is listed as relatively moderate. The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.



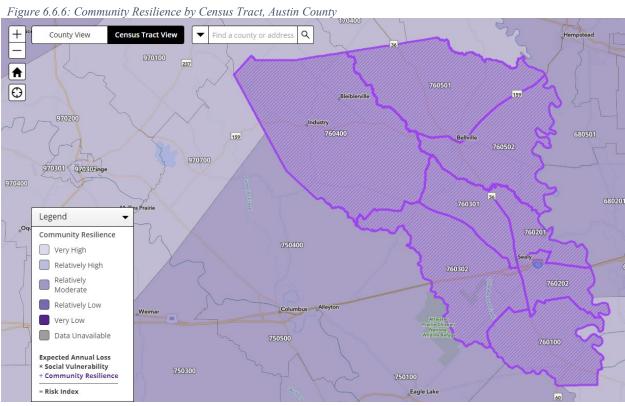


Figure 6.6.7: FEMA NRI Summary, Cold Wave

Rank	Community	Social	Community	Hazard Type: Cold Way				
		Vulnerability	Resilience	Risk Index Rating	Risk Index Score	N	lational Percentile	
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	89.23	0	100	
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	88.72	0	100	
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	84.91	0	100	
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	83.5	0	100	
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Moderate	82.02	0	100	
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	81.78	0	100	
7	Census tract 48015760100	Very High	Relatively Low	Relatively Moderate	78.9	0	100	
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Moderate	75.13	0	100	

Figure 6.6.8: FEMA NRI Summary, Ice Storm

rigure	0.0.0. I LIVIA I	vita Summary, ice	Storm				
Rank	Community	Social Vulnerability	Community Resilience	Hazard Type: Ice Storm Risk Index Rating	Risk Index Score		National Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	80.53	0	100
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	79.08	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	74.6	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	73.41	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Moderate	70.66	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Low	68.68	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively Low	67.42	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Low	60.13	0	100

Figure 6.6.9: FEMA NRI Summary, Winter Weather

		Social Commun	Community	Hazard Type: Winter Weather				
Rank	Community	Vulnerability	Resilience	Risk Index Rating	Risk Index Score	Nat	ional Percentile	
1	Census tract 48015760502	Very High	Relatively Low	Relatively High	88.35	0	100	
2	Census tract 48015760302	Very High	Relatively Low	Relatively High	87.28	0	100	
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	83.17	0	100	
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	82.32	0	100	
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Moderate	77.64	0	100	
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	76.31	0	100	
7	Census tract 48015760100	Very High	Relatively Low	Relatively Moderate	75.15	0	100	
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Moderate	69.83	0	100	

Climate Change Impacts

As stated above, the Gulf Coast and Southeast Texas region are generally not used to snow, ice, and freezing temperatures. According to the Office of the Texas State Climatologist, in the southern part of the state and in coastal regions, snow is rare, but nonetheless, large accumulations of snow are possible. Climate model projections have shown the risk of snowfall consistently decreases in climates like that of Texas.⁴⁵

Table 6.6.10: Climate Change Impacts, Winter Weather

Location The location of winter weather is not expected to change.	
Extent/Intensity	The extent of winter weather is not expected to change.
Frequency	The frequency of winter weather is expected to decrease.
Duration	The duration of winter weather is expected to decrease.

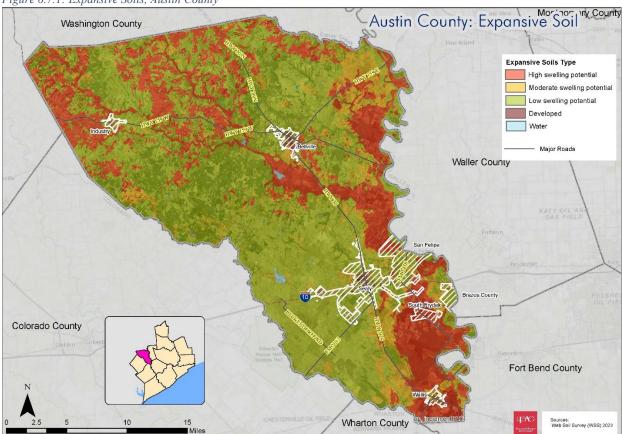
Section 6.7: Drought & Expansive Soils

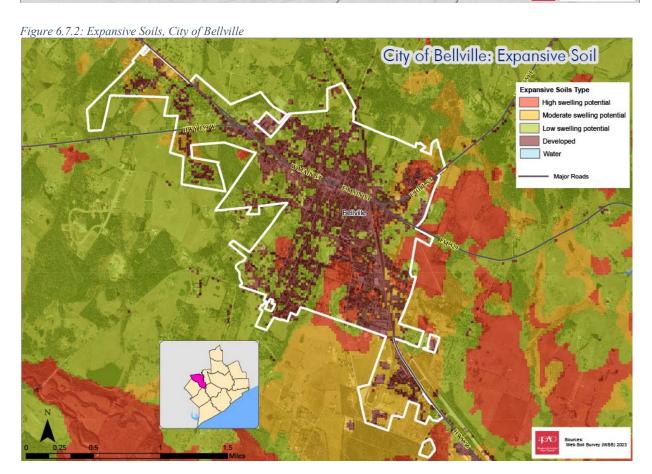
6.7 Drought & Expansive Soils

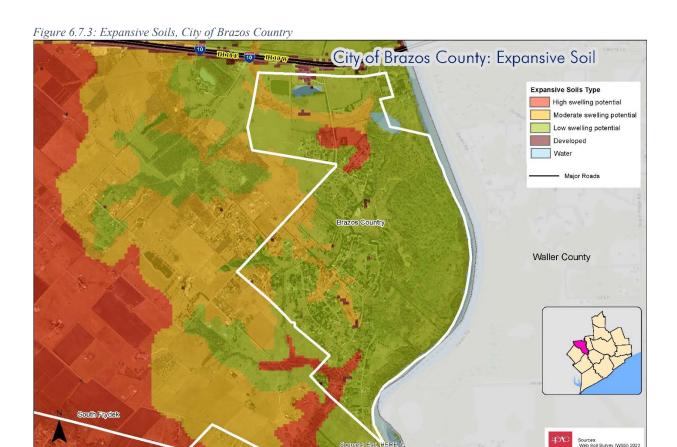
The NWS defines drought as "A deficiency of moisture that results in adverse impacts on people, animals, or vegetation over a sizeable area." The American Meteorological Survey defines drought as "A period of abnormally dry weather sufficiently long enough to cause a serious hydrological imbalance." Drought can have several different classifications for monitoring purposes. Table 6.7.1 below outlines these classifications and their definitions.

Table 6.7.1: Drought Classifications

Drought Classification	Definition
Meteorological	When dry weather patterns dominate an area.
Hydrological	When low water supply becomes evident in the water system.
Agricultural	When crops become affected by drought.
Socioeconomic	When the supply and demand of various commodities is affected by
	drought.
Ecological	When natural ecosystems are affected by drought.


Expansive or swelling soils are soils intertwined with layers of various clay particles that can absorb large quantities of water. Changes in precipitation or other moisture conditions cause these soils to shrink and swell. They can expand up to 20% by volume when exposed to water and exert a force of up to 30,000 pounds per square foot, enough to break up any structure they encounter. Expansive soils are one of the nation's most prevalent causes of damage to buildings and construction. Annual losses are estimated in the billions of dollars. Losses include severe structural damage, cracked driveways, cracked or upheaval in sidewalks, slab on grade foundations, roads, and highway structures, which can lead to the condemnation of buildings and disruption of pipelines and sewer lines. The destructive forces of these soils may be upward, horizontal, or both, and can be exacerbated by drought conditions. ⁸⁶ For this plan update, drought and expansive soils are included in the same hazard profile as they directly correlate to greater vulnerability, losses and risk for the county. Additionally, expansive soil impacts happen gradually over time. There is no distinct beginning and ending period for this hazard and impacts occur so gradually that one often doesn't notice until there is damage to address or mitigate. As such, expansive soil hazards are unique to specific areas across the state that have soils with heavy clay content.


Location


Drought can lead to a wide range of impacts on agriculture, public health, water quality, ecosystems, transportation, and wildfire risk. This is a reoccurring natural hazard in every Texas county and has no geographic boundary. Droughts are also difficult to predict and monitor as the effects vary from region to region. ⁸⁷ All of Austin County and participating jurisdictions are susceptible to drought and its impacts.

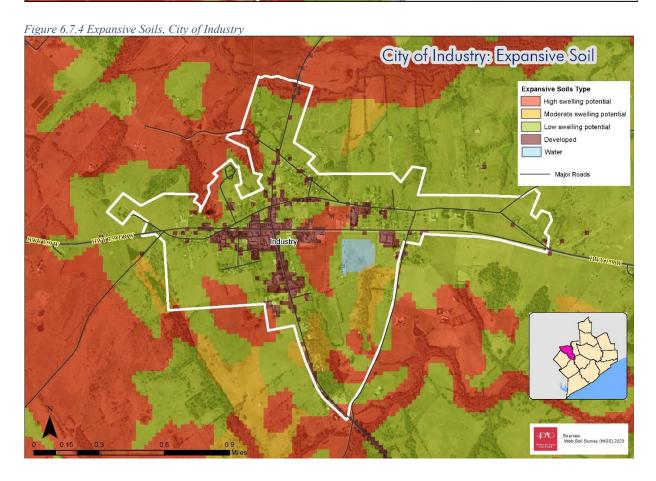
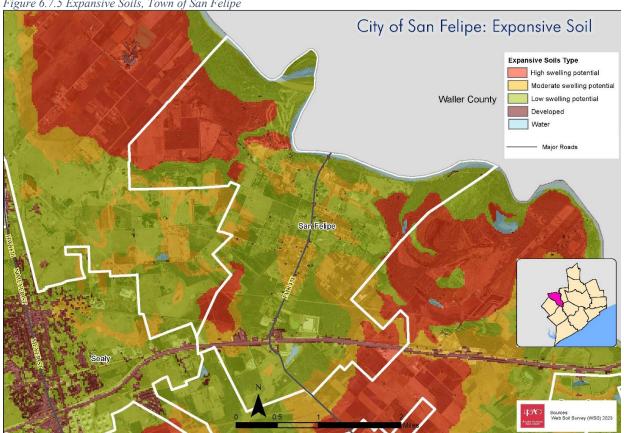
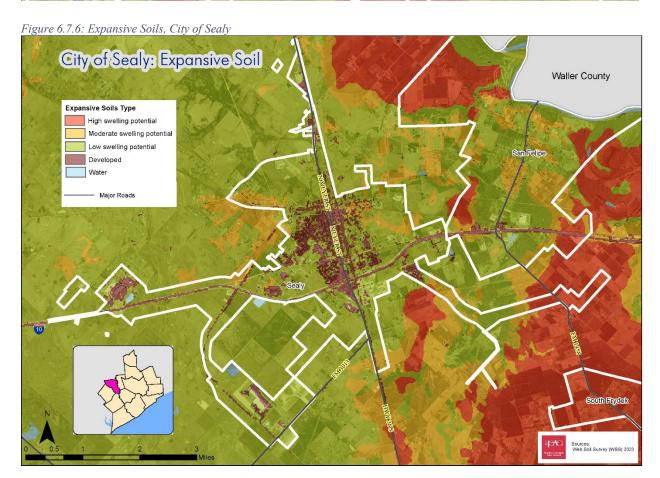
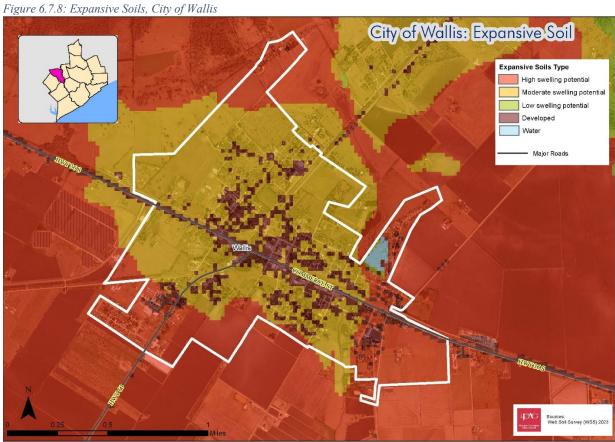

Similarly, expansive soils pose a greater risk during times of drought followed by heavy rainfall and periods of dryness. The figures below show the expansive soil locations and their shrink-swell potentials within Austin County and participating jurisdictions of this plan. Areas with high shrink-swell potential have a greater risk for losses and damage than those with low shrink-swell potential. These maps show the differences in the participating jurisdictions of this HMP that make their expansive soil hazard impacts different from the rest of the planning area.

Figure 6.7.1: Expansive Soils, Austin County







The chart below shows the Linear Extensibility Percent (LEP) and Coefficient of Linear Extent (COLE) to show the Shrink-Swell Class of expansive soils. COLE is a test frequently used to characterize expansive soils. COLE is a measure expressed as a fraction of the change in a soil sample dimension from the moist to dry state. The LEP is a measure expressed as a percentage of the change in a soil sample dimension from the moist to dry state. The Shrink-Swell Class is found in comparing these two measurements. A moderate to very high rating marks soils that have the potential to contract and expand, leading to damage to critical infrastructure, foundations, and transportation structures. While most of the participating jurisdictions in this plan update have some degree of low swelling potential soils, the cities of South Frydek and Wallis are located almost entirely within areas that have soils with moderate and high shrink-swell potentials.

Table 6.7.2: Linear Extensibility Percent & Coefficient of Linear Extent for Expansive Soils

Shrink-Swell Class	Linear Extensibility Percent	Coefficient of Linear Extent
Low	3	0.03
Moderate	3 to 6	.0306
High	6 to 9	.0609
Very High	Greater than or equal to 9	Greater than or equal to 0.09

Extent

The U.S. Drought Monitor (USDM) is a map that is updated each Thursday to show the location and intensity of drought across the country. The USDM uses a five-category system to classify levels of drought. These categories, seen in Figure 6.7.9 below, show experts' assessments of conditions related to dryness and drought including observations of how much water is available in streams, lakes, and soils compared to usual for the same time of year. Abnormally Dry (D0) shows areas that may be going into or are coming out of drought conditions, while the remaining four categories characterize levels of drought (D1–D4).⁸⁸

Figure 6.7.9: Drought Monitor Categories

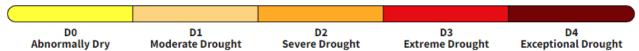
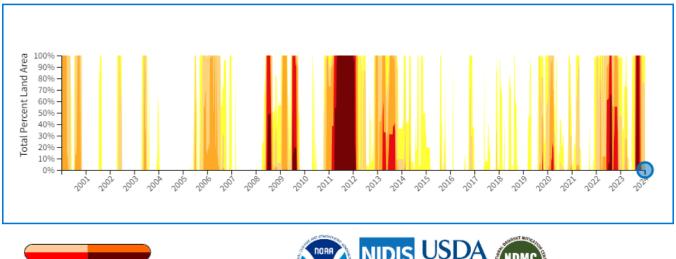



Figure 6.7.10 shows the USDM Drought Categories for Austin County since 2000. The county experienced drought levels of D1-D4 36.4%. The risk of drought occurring applies the same to the entire county. There are no known factors that make one area or community more prone to drought events than another. However, drought can adversely impact individuals employed in agriculture and natural resources over other industries. Severe droughts can also lead to crop and livestock losses, impacting the food supply and economy. Extreme (D3) drought conditions result in multiple sectors of the economy experiencing some level of financial burden, dry and cracked soil that leads to greater crop and livestock losses, and severe fish, plant, and wildlife loss due to low soil moisture and surface water levels, and impacted air quality from increased dust and sandstorms. Exceptional drought (D4) impacts can see water levels at historic lows leading to water shortages, exceptional and widespread crop and livestock losses, widespread tree mortality, water sanitation and water quality concerns, extreme wildfire risks, and significant financial losses within the forestry, tourism, and agricultural sectors.

Figure 6.7.10: U.S. Drought Monitor for Austin County (2000-2024)

Total Area in Drought (D1-D4) 36.40%

For Austin County, the worst-case scenario for drought would include a multi-year drought of D4, similar to what occurred in 2011-2013, and more recently in 2022 and 2024. Regarding expansive soils, a worst-case scenario for this hazard would be soils shifting and causing foundation and infrastructure damage to underground pipes. Expansive soil risks are exacerbated during a drought, when temperatures are high, and rainfall is scarce.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County drought events data from 1950-2023 is provided in the table below.³⁹

Table 6.7.3: Austin County Drought Events (1950-2023)

Event Date	Fatalities	Property Damage Estimate	Crop Damage Estimate	
4/1/1996	0	\$-	\$-	
5/1/1996	0	\$-	\$-	
6/1/1996	0	\$-	\$-	
5/1/1998	0	\$-	\$-	
6/1/1998	0	\$-	\$-	
7/1/1998	0	\$-	\$-	
8/1/1998	0	\$1,000,000.00	\$7,300,000.00	
8/1/2000	0	\$-	\$-	
9/1/2000	0	\$-	\$-	
6/1/2022	0	\$-	\$-	
7/1/2022	0	\$-	\$-	
8/1/2022	0	\$-	\$-	
9/1/2023	0	\$-	\$-	

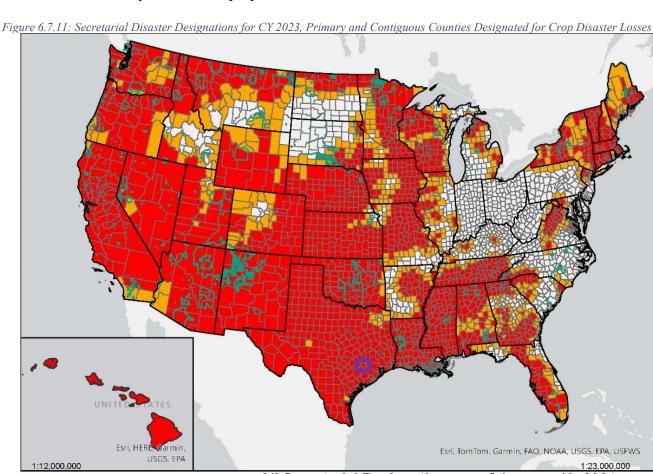
In 2022, many areas within the region experienced water main and other piping breaks during a period of drought that caused soils to dry up and shift underground. This led to higher level water restrictions for many areas while city staff attempted to make repairs.

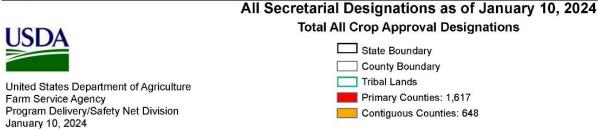
Historic occurrences of expansive soils and related damages are not currently tracked or documented in any dataset from local, state, or national levels. This is due to the unique nature of this hazard happening gradually over time. Damages to homeowners and business owners are typically discovered when repairs or mitigation needs to be made. The costs for these repairs are shouldered by the individuals when damages are discovered. Though the effects and extent of expansive soils have been studied over a great period, there is no system in place and no future tracking method for these damages or associated costs.⁶³ Thus, there is no way to quantify or show historic occurrences of this hazard. This has been noted as a data deficiency and is addressed within Section 7: Mitigation Action Plan as an action item for all plan participants.

Presidential Disaster Declarations

Presidential major disaster declarations, which must be requested of the President by a governor, are administered through FEMA. A Presidential major disaster declaration can be made within days or hours of the initial request. There have been no federally declared drought disasters for drought within the county since 1950.¹

USDA Disaster Declarations


The Secretary of Agriculture is authorized to designate counties as disaster areas to make emergency EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰


Table 6.7.4: USDA Declared Disasters (2018-2023), Drought

Crop Disaster Year	Disaster Description	Designation Number
2019	Drought-FAST TRACK	S4552
2019	Drought-FAST TRACK	S4571
2020	Drought-FAST TRACK	S4654
2020	Drought-FAST TRACK	S4658
2020	Drought-FAST TRACK	S4663
2020	Drought-FAST TRACK	S4669
2021	Drought-FAST TRACK	S4942
2022	Drought-FAST TRACK	S5197
2022	Drought-FAST TRACK	S5209
2022	Drought-FAST TRACK	S5214
2022	Drought-FAST TRACK	S5221
2022	Drought-FAST TRACK	S5240

Crop Disaster Year	Disaster Description	Designation Number
2023	Drought-FAST TRACK	S5381
2023	Drought-FAST TRACK	S5499
2023	Drought-FAST TRACK	S5511

Figure 6.7.11 below displays counties declared primary (red) or contiguous (orange) disaster counties, where producers may be eligible for emergency aid. Austin County is listed as a primary county for CY 2023.⁴⁰ Austin County is circled in purple.

Probability of Future Occurrences

Droughts are more likely to occur in summer months when temperatures are higher, and precipitation is less frequent. According to the FEMA NRI for drought, annualized frequency values for Austin County are 27.9 events per year over a 21-year period of record (2000-2021).⁴² There have been 756 reports of drought for the county during this period of record. There are no clear trends in the probability of future occurrences of drought, according to the Office of the Texas State Climatologist. However, droughts are

expected to increase in severity.⁴⁵ Impacts from expansive soils are directly associated with both drought and flooding hazards within the planning area. As stated above, expansive soil impacts happen gradually over time and impacts often go unnoticed until there is damage to address or mitigate. As such, expansive soil hazards are unique as there is no distinct beginning and end for the hazard and its impacts. Expansive soils will impact locations within the planning area every year. The probability of future occurrences of expansive soils are based on climatic shifts and follow that of drought, thunderstorms, and flooding.

Populations at Risk

Populations most at risk, or that may be disproportionately affected by drought impacts according to the National Integrated Drought Information System are people with chronic health conditions or respiratory illnesses, people with compromised immune systems, and people with mental health or mood disorders. Drought impacts on public health include changes in air quality, changes in water quality and quantity, increased incidence of illness and disease, and mental health effects. Air quality can decrease during drought events because of dust storms or wildfires. Particulates in the air irritate the lungs and bronchial passages and exacerbate chronic respiratory conditions. Drought conditions can also put those with compromised immune systems at risk as drought conditions can change how often and where certain diseases occur. Mosquitoes that carry West Nile virus can move to new locations when water bodies become stagnant and create new breeding grounds. There is also a higher risk of contracting a lung infection called Valley Fever, caused by a fungus in the soil, in dry and dusty soil conditions. Complex relationships between drought and its associated economic consequences can increase mood disorders, domestic violence, and suicide. 90

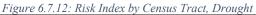
As the county continues to grow and the population increases, so does the vulnerability of residents and property to these hazards. New developments in areas where soils have moderate to high shrink-swell potentials face greater risks of damage from these soils, especially during periods of heavy rain followed by extremely dry conditions and low soil moisture. Additionally, as more people move into the county there will be an increased demand for water resources and supplies that can be exacerbated during a drought.

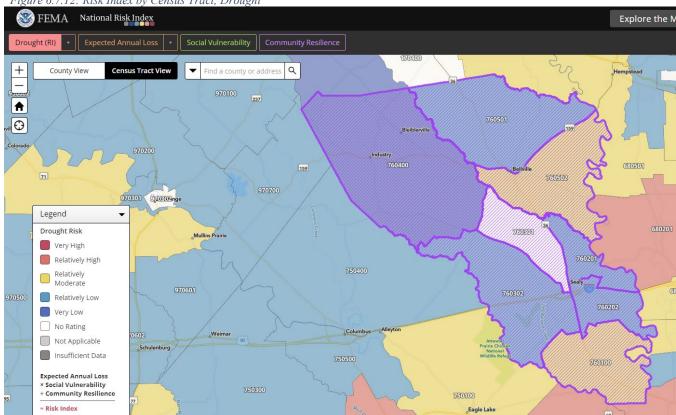
National Risk Index

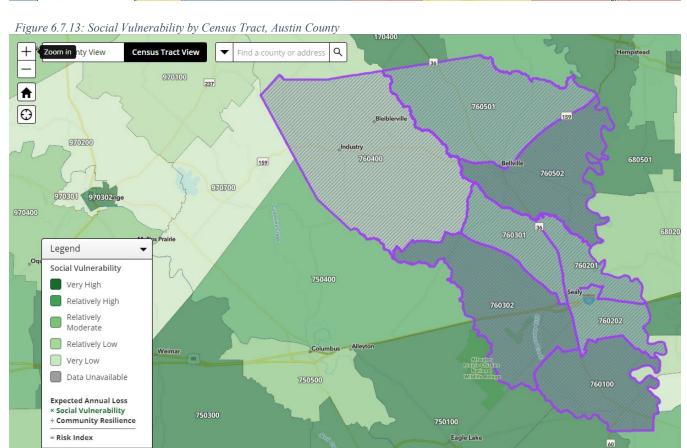
FEMA's NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

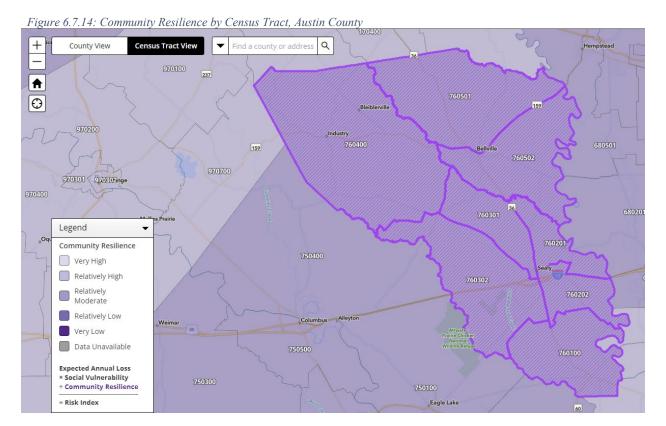
The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from

natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸


EAL for Austin County each year according to the FEMA NRI for drought is listed as relatively low. EAL for various factors can be found in Table 6.7.5 below. ⁴¹ As stated above, the risk of drought occurring applies the same to the entire county. There are no known factors that make one area or community more prone to drought events than another. However, drought can adversely impact individuals employed in agriculture and natural resources over other industries. Severe droughts can also lead to crop and livestock losses, impacting the food supply and economy.


Table 6.7.5: Expected Annual Loss, Drought


Expected Annual Loss	Agricultural	Expected	Annual	Expected Annual
Hazard Type	Exposure Value (\$)	Loss (\$)		Loss Rating
Drought	\$11,048,942	\$67,723		Relatively Low


Expansive soils are not included in the FEMA NRI. However, jurisdictions can be impacted by expensive financial costs to repair foundations and water lines for public facilities. School districts, homeowners, and business owners could also be impacted by broken pipes, cracked foundations, and other structural costly repairs caused by expanding and contracting soils. Pipes in critical facilities may also lead to a loss of service, or damaged roads/bridges can increase response time for emergency personnel. While newer buildings can be impacted; older buildings including critical facilities and homes are more likely to be impacted due to older buildings being exposed to numerous weather events and seasons, having building standards that do not take expansive soils into account, and the lack of engineering solutions to mitigate expansive soils used in the past.

The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score. Expansive soils are not listed as a hazard type, drought is accounted for.

2000		Social	Community	Hazard Type: Drought			
Rank	Community	Vulnerability	Resilience	Risk Index Rating	Risk Index Score		National Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	96.2	0	10
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	93.65	0	10
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Low	93.28	0	10
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Low	92.15	0	10
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Low	90.89	0	10
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Low	84.01	0	10
7	Census tract 48015760100	Very High	Relatively Low	Very Low	77.74	0	10
8	Census tract 48015760201	Relatively High	Relatively Low	No Rating	0	0	10

Climate Change Impacts

As stated above, it is impossible to make a quantitative statewide projection of drought trends. However, the majority of factors at play point to an increase in drought severity.⁴³ It can be inferred that the impacts of climate change on expansive soils will grow as drought, thunderstorms, flooding, and their associated impacts on the high clay content soils within the planning area become more prevalent. This is because expansive soils pose a greater risk during times of drought followed by heavy rainfall and periods of dryness.

Table 6.7.6: Climate Change Impacts, Drought & Expansive Soils

The location of drought is

	The location of drought is not expected to change.				
Location	The location of expansive soils may increase within the planning area and				
Location	participating jurisdiction boundaries should soils and clay content adjust				
	naturally over time due to climatic shifts.				
	The extent and intensity of drought and associated risks from expansive soils				
	within the county may increase due to heavier precipitation and stronger storms				
Extent/Intensity	that can lead to an increase in flooding events. Additionally, rising surface				
	temperatures, increased occurrences of heat events, and increases in drought				
	severity.				
	There are no clear trends in drought frequency due to considerable variability				
Enganonav	in conditions that lead to droughts. Since expansive soils pose the most risk				
Frequency	during periods of drought and flooding, the frequency of expansive soil impacts				
	also show no clear trends.				
	The duration of drought events is not likely to change, however the intensity of				
Duration	droughts is expected to increase.				
	Expansive soils duration is gradual over time and is not expected to change.				

Section 6.8: Windstorm

6.8 Windstorm

Damaging winds are often called straight-line winds to differentiate the damage they cause from tornadoes or other hazards. Winds that cause damage at the ground are a result of outflows generated by a thunderstorm downdraft. Damaging winds are classified as those exceeding 50-60 mph. Damage from severe winds accounts for half of all damage reports and is more common than damage from tornadoes. Wind speeds can reach up to 100 mph and can produce a damage path extending for hundreds of miles. These damaging winds are often associated with other hazards such as thunderstorms, tornadoes, hurricanes, tropical storms, and tropical depressions. Windstorms, or damaging winds, include many different variations. These damaging wind types and their definitions from NOAA can be seen in the table below. 92

Table 6.8.1: Types of Damaging Winds

Damaging Wind Type	
Straight-line Wind	Used to define thunderstorm wind, which is not linked with rotation and is mainly used to differentiate from tornadic winds
Down Draft	A small-scale column of air that sinks toward the ground
Macroburst	An outward burst of strong winds that are more than 2.5 miles in diameter, occurs when a strong downdraft reaches the surface
Microburst	A small, concentrated downburst that produces an outward burst of relatively strong winds near the surface. Microbursts are less than 4 km in diameter and short-lived, lasting only five to 10 minutes. Maximum wind speeds sometimes exceed 100 mph. There are two kinds of microbursts: wet and dry. • A wet microburst is accompanied by heavy precipitation at the surface. • A dry microburst is common in places like the high plains and occur with little or no precipitation reaching the ground.
Downburst	A general term to describe macro and microbursts
Gust Front	The leading edge of rain-cooled air that clashes with a warm thunderstorm inflow
Derecho	A widespread and long-lived windstorm is associated with rapidly moving showers or thunderstorms. A typical derecho consists of numerous microbursts, downbursts, and downburst clusters. If the wind damage swath extends more than 240 miles and includes wind gusts of at least 58 mph or greater along most of its length, then the event may be classified as a derecho.

Location

Similar to the Severe Thunderstorms & Lightning (Section 6.3), and the Tornado/Microburst (Section 6.4) hazard profiles, windstorms/ damaging winds are not confined to any geographic boundaries and can occur anywhere if the right conditions are present. The entire county is at risk for this hazard type. Thunderstorms will typically occur in warmer months such as Summer and Spring, and during the warmest parts of the day. Warm, moist air from the Gulf of Mexico is readily available to help fuel atmospheric conditions that produce thunderstorms and the damaging winds associated with them. Austin County is in an area that can see anywhere from 54-81 thunderstorm days per year. 84

Extent

Wind intensity is measured by the NWS through the Beaufort Wind Scale. One of the first scales to estimate wind speeds and their effects was created by Britain's Admiral Sir Francis Beaufort (1774-1857).

He developed the scale in 1805 to help sailors estimate the winds via visual observations. The scale starts with 0 and goes to a force of 12. The Beaufort scale is still used today to estimate wind strengths. ⁹³ The table below outlines the measurements used by the Beaufort Wind Scale for use on land.

Table 6.8.2: Beaufort Wind Scale

Force	Speed, mph	Description	Specifications for use on land			
0	0-1	Calm	Calm; smoke rises vertically.			
1	1-3	Light Air	Direction of wind shown by smoke drift, but not by wind vanes.			
2	4-7	Light Breeze	Wind felt on face; leaves rustle; ordinary vanes moved by wind.			
3	8-12	Gentle Breeze	Leaves and small twigs in constant motion; wind extends light flag.			
4	13-18	Moderate Breeze	Raises dust and loose paper; small branches are moved.			
5	19-24	Fresh Breeze	Small trees in leaf begin to sway; crested wavelets form on inland waters.			
6	25-31	Strong Breeze	Large branches in motion; whistling heard in telegraph wires; umbrellas used with difficulty.			
7	32-38	Near Gale	Whole trees in motion; inconvenience felt when walking against the wind.			
8	39-46	Gale	Breaks twigs off trees; generally impedes progress.			
9	47-54	Severe Gale	Slight structural damage occurs (chimneypots and slates removed)			
10	55-63	Storm	Seldom experienced inland; trees uprooted; considerable structural damage occurs.			
11	64-72	Violent Storm	Very rarely experienced; accompanied by wide-spread damage.			
12	72-83	Hurricane	Reference the Saffir-Simpson Hurricane Scale			

Additionally, NOAA and the NWS issues watches, warnings, and advisories for wind events when wind speeds can pose a hazard or are life-threatening. Table 6.8.2 describes the various wind-related warnings, watches, and advisories below.⁹⁴

Table 6.8.3: Wind-Related Warnings, Watches, and Advisories

Table 6.6.5. If that Tellated II all things, II all the state of the t					
Watch/ Warning/ Advisory	Description				
High Wind Warning	Sustained, strong winds with even stronger gusts are happening. Seek shelter. If you are driving, keep both hands on the wheels and slow down.				
High Wind Watch	Sustained, strong winds are possible. Secure loose outdoor items and adjust plans as necessary so you're not caught outside.				

Watch/ Warning/ Advisory	Description	
Wind Advisories	Strong winds are occurring but are not so strong as to warrant a High Wind Warning. Objects that are outdoors should be secured and caution should be taken if driving.	
Hurricane Force Wind Warning	Hurricane Force Wind Warnings are issued for locations along the water when one or both of the following conditions are expected to begin within 36 hours and are not directly associated with a tropical cyclone: sustained winds of 64 knots or greater or frequent gusts (duration of two or more hours) of 64 knots (74 mph) or greater.	

A worst-case scenario for this hazard would include a severe thunderstorm, hurricane, or tropical storm event that could produce hurricane-force winds of 72 mph or more, straight-line winds, downbursts, or Derechos. These winds could damage critical infrastructure that leads to a power outage, blocked roadways, and even loss of communication within the county if a radio or cell tower is destroyed. If the wind event occurs during a period of drought or a heat event and disrupts power supply in the area for a prolonged amount of time, risks to citizens are exacerbated.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County windstorm events data from 1950-2023 is provided in the table below.³⁹

Table 6.8.4: Austin County Wind Events (1950-2023)

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
4/21/1958	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
4/29/1960	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
8/13/1977	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/21/1979	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/15/1980	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
4/23/1981	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/20/1983	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/8/1985	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	52
11/11/1985	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
12/19/1987	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
3/29/1990	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
1/18/1991	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/20/1992	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
5/9/1993	Wallis	Thunderstorm Wind	0/0	\$5,000	\$0	ND
4/5/1994	Halletsville	Thunderstorm Wind	0/0	\$500,000	\$50,000	ND
5/29/1994	N/A, Austin County	Thunderstorm Wind	0/0	\$0	\$0	ND
10/8/1994	Industry	Thunderstorm Wind	0/0	\$5,000	\$0	ND
3/7/1995	N/A, Austin County	Thunderstorm Wind	0/0	\$3,000	\$0	ND
3/13/1995	Bellville	Thunderstorm Wind	0/0	\$0	\$0	ND
4/29/1996	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
9/20/1996	BELLVILLE	Thunderstorm Wind	0/0	\$5,000	\$0	ND
9/20/1996	CAT SPG	Thunderstorm Wind	0/0	\$10,000	\$0	55

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
5/21/1997	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
5/30/1997	BELLVILLE	Thunderstorm Wind	0/0	\$5,000	\$0	ND
6/17/1997	KENNEY	Thunderstorm Wind		\$5,000	\$0	ND
12/23/1997	NEW ULM	Thunderstorm Wind	0/0	\$3,000	\$0	ND
2/10/1998	CAT SPG	Thunderstorm Wind	0/0	\$25,000	\$0	ND
2/10/1998	SEALY	Thunderstorm Wind	0/0	\$5,000	\$0	ND
2/10/1998	WALLIS	Thunderstorm Wind	0/0	\$10,000	\$0	ND
2/10/1998	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	ND
6/5/1998	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	ND
5/2/2000	WALLIS	Thunderstorm Wind	0/0	\$0	\$200,000	ND
7/23/2000	INDUSTRY	Thunderstorm Wind	0/0	\$15,000	\$0	ND
7/23/2000	SHELBY	Thunderstorm Wind	0/0	\$15,000	\$0	ND
9/2/2000	INDUSTRY	Thunderstorm Wind	0/0	\$25,000	\$0	ND
9/2/2000	BELLVILLE	Thunderstorm Wind	0/0	\$15,000	\$0	ND
9/2/2000	BURLEIGH	Thunderstorm Wind	0/0	\$15,000	\$0	ND
11/5/2000	COUNTYWIDE	Thunderstorm Wind	0/0	\$100,000	\$0	ND
11/12/2000	BELLVILLE	Thunderstorm Wind	0/0	\$10,000	\$0	ND
11/12/2000	SEALY	Thunderstorm Wind	0/0	\$80,000	\$0	ND
11/12/2000	BELLVILLE	Thunderstorm Wind	0/0	\$15,000	\$0	ND
8/6/2001	SEALY	Thunderstorm Wind	0/0	\$10,000	\$0	ND
9/21/2001	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	ND
10/13/2001	BELLVILLE	Thunderstorm Wind	0/0	\$0	\$0	52
3/30/2002	SEALY	Thunderstorm Wind	0/0	\$8,000	\$0	60
12/12/2002	CAT SPG	Thunderstorm Wind	0/0	\$5,000	\$0	ND
12/23/2002	WALLIS	Thunderstorm Wind	0/0	\$45,000	\$0	52
6/13/2003	INDUSTRY	Thunderstorm Wind	0/0	\$8,000	\$0	58
8/11/2004	BELLVILLE	Thunderstorm Wind	0/0	\$50,000	\$0	65
8/11/2004	KENNEY	Thunderstorm Wind	0/0	\$10,000	\$0	50
11/23/2004	CAT SPG	Thunderstorm Wind	0/0	\$5,000	\$0	50
10/31/2005	BELLVILLE	Thunderstorm Wind	0/0	\$13,000	\$0	53
4/21/2006	NEW ULM	Thunderstorm Wind	0/0	\$5,000	\$0	50 48
3/12/2007	BUCKHORN WALLIS	Thunderstorm Wind Thunderstorm Wind	0/0	\$1,000 \$25,000	\$0 \$0	58
4/25/2007	BELLVILLE	Thunderstorm Wind	0/0	\$23,000	\$0	52
5/14/2008	COCHRAN	Thunderstorm Wind Thunderstorm Wind	0/0	\$2,000	\$0	57
12/24/2009	MILLHEIM	Thunderstorm Wind	0/0	\$10,000	\$0	52
5/29/2010	WALLIS	Thunderstorm Wind Thunderstorm Wind	0/0	\$10,000	\$0	52
8/23/2010	NEW ULM	Thunderstorm Wind	0/0	\$10,000	\$0	52
8/24/2011	BELLVILLE	Thunderstorm Wind	0/0	\$3,000	\$0	55
8/24/2011	SEALY	Thunderstorm Wind	0/0	\$2,000	\$0	55
9/29/2011	WALLIS	Thunderstorm Wind	0/0	\$3,000	\$0	50
2/18/2012	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	56
2/18/2012	WALLIS	Thunderstorm Wind	0/0	\$2,000	\$0	56
8/10/2012	BELLVILLE ARPT	Thunderstorm Wind	0/0	\$0	\$0	55
4/16/2015	NELSONVILLE	Thunderstorm Wind	0/0	\$0	\$0	52
4/25/2015	SAN FELIPE	Thunderstorm Wind	0/0	\$3,000	\$0	50
	1		1	. , , , , , , ,		· ·

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
4/25/2015	SAN FELIPE	Thunderstorm Wind	0/1	\$2,000	\$0	55
4/27/2015	INDUSTRY	Thunderstorm Wind	0/0	\$12,000	\$0	55
5/25/2015	NEW ULM	Thunderstorm Wind	0/0	\$0	\$0	60
5/25/2015	SEALY	Thunderstorm Wind	0/0	\$0	\$0	60
5/25/2015	SEALY	Thunderstorm Wind	0/0	\$0	\$0	56
5/27/2015	BELLVILLE	Thunderstorm Wind	0/0	\$2,000	\$0	54
5/23/2017	SEALY	Thunderstorm Wind	0/0	\$1,000,000	\$0	87
5/22/2018	BURLEIGH	Thunderstorm Wind	0/0	\$2,000	\$0	53
5/22/2018	SAN FELIPE	Thunderstorm Wind	0/0	\$2,000	\$0	53
1/10/2020	WEHDEM	Thunderstorm Wind	0/0	\$3,000	\$0	65
		TOTALS:	0/1	\$2,140,000	\$250,000	N/A

ND- No Data

Presidential Disaster Declarations

There has been 1 disaster declaration in which wind was included in the declaration title for Austin County. However, the declaration itself is listed as a "severe storm" for the incident type.¹

Table 6.8.5: Federal Disaster Declarations, Tornado/ Microburst

Declaration Date	Title	Disaster Number
1/11/2006	Severe storms, tornadoes, straight-line winds, and flooding	4223

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.8.6: USDA Declared Disasters (2018-2023), Windstorms

Crop Disaster Year	Disaster Description	Designation Number
	I	None

Probability of Future Occurrences

Severe thunderstorms and their associated damaging winds are more likely to occur in summer months when temperatures are higher and moisture from the gulf helps to fuel thunderstorm development. According to the FEMA NRI for strong winds, annualized frequency values are 1.5 events per year over a 34-year period of record (1986-2021), with 52 events on record for this timeframe. 42

Populations at Risk

Populations at risk for strong wind events include similar groups to those listed under Severe Thunderstorms & Lightning (Section 6.3), and the Tornado/Microburst (Section 6.4) hazard profile. All residents within the county are exposed to this hazard. The impacts of strong winds on the life, health, and safety of Austin County residents depend on several factors, including the severity of the event and adequate warning time being provided to residents to secure projectiles and take shelter. Strong wind events can lead to a disruption in emergency response services, loss of electricity, loss of clean water, and delayed forms of necessary medical assistance while repairs are made to critical facilities or power is being restored within the county.

The NCHH summarizes at-risk populations for several hazards. For strong wind events, these include older adults, people experiencing homelessness, people with disabilities, and people with chronic health conditions. In addition to the dangers listed above, older adults can face social isolation, lack of electricity needed to run medical equipment, lack of access to a vehicle for evacuation, and lack of access to other critical supplies. Evacuation for these events is fast-paced, and older adults may not be able to seek adequate shelter or secure dangerous projectiles on their property before a wind event impacts their area. For people experiencing homelessness, adequate shelter is critical in keeping populations safe during these events as they are heavily associated with severe thunderstorms and even tornadoes. People with disabilities may require additional assistance to stay safe and prepare for these hazards and their aftereffects such as creating a support network, finding accessible transportation to evacuate or get medical attention, and loss of power for needed medical equipment. Likewise, those with chronic health conditions may need similar assistance as those with disabilities. Residents impacted may be displaced or require temporary to long-term sheltering. In addition, downed trees, damaged buildings, and debris carried by the strong winds associated with severe thunderstorms or tornadoes can lead to further injury or loss of life. Socially vulnerable populations are most susceptible based on several factors, including their physical and financial ability to react or respond during or directly following a hazard event. These issues disproportionately affect low-income communities and families who may lack the resources to pay for damages to their homes, lack insurance, or lack the resources to replace home contents or personal belongings.⁴³

Areas of growth or future development within the county could be impacted by this hazard because the entire county is vulnerable to strong wind events. Those living in mobile/manufactured housing are at greater risk from this hazard as even anchored mobile homes can be seriously damaged or destroyed when winds gust over 80 mph.⁵⁵ As the population within the county increases, so does the vulnerability of residents to this hazard.

National Risk Index

FEMA's NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

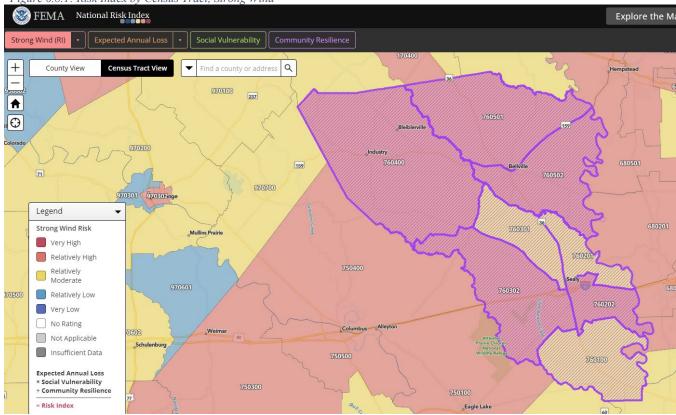
The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based

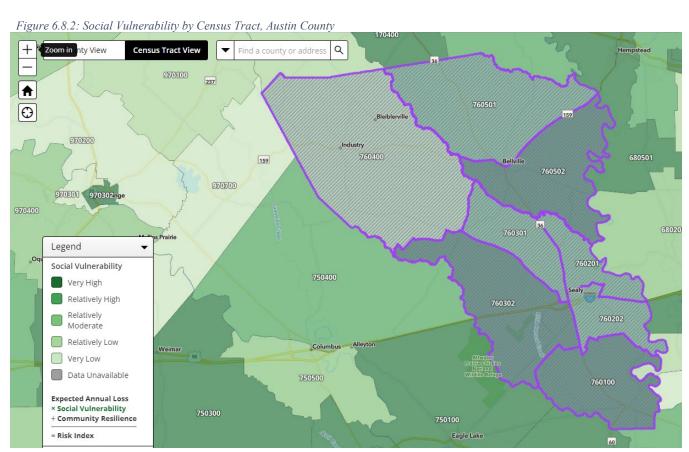
on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor the incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts from natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

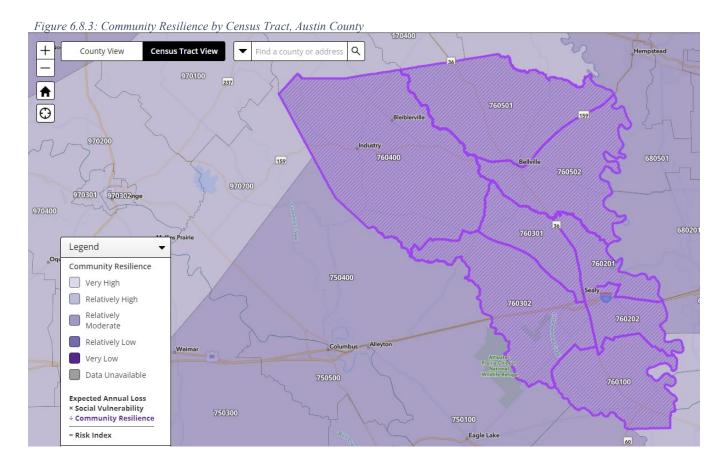
EAL for Austin County each year according to the FEMA NRI for strong wind is listed as relatively low. EAL Exposure Values and EAL Values can be found in the tables below below.⁴²

Table 6.8.7: Expected Annual Loss Exposure Values, Strong Win

Hazard Type	Building (\$)	ValuePopulation Equivalence Population (#)	Agricultural (\$)/Value (\$)	EAL Total (\$)	EAL Rating
Strong Wind	\$7,118,991,4	\$348,150,800,000 30,013	\$37,985,562	\$355,307,776,996	Relatively Low


Table 6.8.8: Expected Annual Loss Values, Strong Wind


Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agriculture Value
Strong Wind	\$192,348	\$94,385/ 0.01	\$3,892


N/A- Not Applicable

Historic loss ratios, according to the FEMA NRI, for strong wind events within Austin County are relatively moderate. The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.

Figure 6.8.4.	FEMA	NRI	Summary,	Strong	Wind
---------------	------	-----	----------	--------	------

	Social Commun			Hazard Type: Strong Wind				
Rank	Community	Vulnerability	Resilience	Risk Index Rating	Risk Index Score	Natio	nal Percentile	
1	Census tract 48015760502	Very High	Relatively Low	Relatively High	91.53	0	100	
2	Census tract 48015760302	Very High	Relatively Low	Relatively High	90.16	0	100	
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively High	86.28	0	100	
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively High	86.24	0	100	
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively High	82.19	0	100	
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	77.52	0	100	
7	Census tract 48015760100	Very High	Relatively Low	Relatively Moderate	69.96	0	100	
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Moderate	67.16	0	100	

Climate Change Impacts

Since windstorms and damaging winds are heavily related to severe thunderstorm development, this section will mirror that of Section 6.3 seen previously. According to the Office of the Texas State Climatologist, the climate data record for severe thunderstorms is poor and severe thunderstorms are too small to be simulated directly by present-day climate models. Over the past few decades, the severe storm environment over Texas has changed in complex and opposing ways. The amount of energy available for convection has decreased, and the amount of energy needed to initiate convection has increased at the same time. This suggests that environmental conditions have become less favorable for the occurrence of

thunderstorms. However, the amount of low-level shear has increased, which would be expected to make thunderstorms more likely to become severe once they develop.

Changes in severe storm environments have not been uniform throughout the year, with environments becoming more favorable for severe thunderstorms and significant hail in Texas early in the spring and less favorable later in the spring. Lightning occurs most often during the months of May and June. Climate model simulations imply different prospects in the future. As temperatures increase, the amount of energy available to fuel these storms is simulated to increase as temperature and low-level moisture increase. This results in an overall increase in the number of days capable of producing severe thunderstorms. With these complex trends and partially contradictory information between models and observations, there is low confidence in any ongoing trend in the overall frequency and severity of severe thunderstorms.⁴⁵

Table 6.8.9: Climate Change Impacts Summary, Windstorm

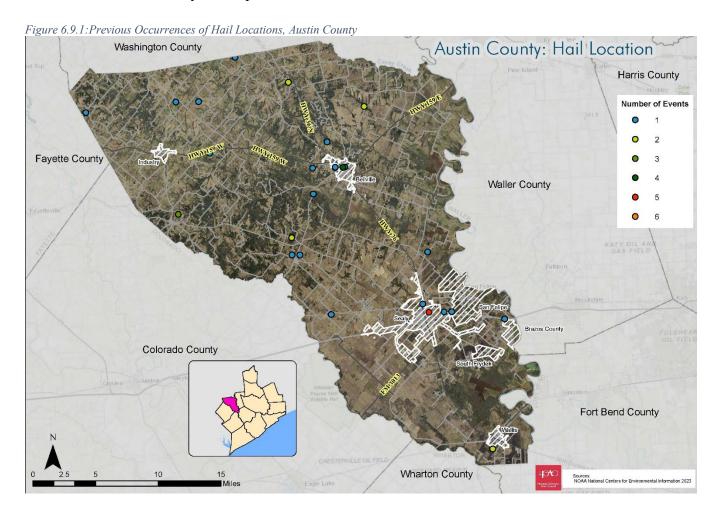
Location	The location of windstorms is not expected to change.
Extent/Intensity	The extent and intensity of windstorms within the county may change (increase) due to increased temperatures and energy available to fuel severe thunderstorms.
Frequency	There are no clear trends in windstorm frequency just as there are no clear trends in severe thunderstorm frequency. This is due to considerable variability in conditions that lead to them occurring. However, these hazards occur most frequently in warmer months, around May and June.
Duration	The duration of windstorms is not likely to change, however, the intensity of them is expected to increase due to rising temperatures and the proximity of the county to the Gulf of Mexico aiding to fuel thunderstorms.

Section 6.9: Hail

6.9 Hail

NOAA's National Severe Storms Laboratory (NSSL) defines hail as "A form of precipitation consisting of solid ice that forms inside thunderstorm updrafts. Hail can damage aircraft, homes and cars, and can be deadly to livestock and people." Hail varieties are determined by how they grow and the maximum size. These differentiating frozen precipitations and their definitions from NOAA's NSSL can be seen in the table below. 96

Table 6.9.1: Types of Frozen Precipitation


Table 6.9.1: Types of Frozen Precipi	
Frozen Precipitation Type	Description
Snow	forms mainly when water vapor turns to ice without going through the liquid stage. This process is called deposition. Snow can form in the gentle updrafts of stratus clouds or at high altitudes in very cold regions of a thunderstorm.
Graupel	soft, small pellets formed when supercooled water droplets (at a temperature below 32°F) freeze onto a snow crystal, a process called riming. If the riming is particularly intense, the rimed snow crystal can grow to an appreciable size but remain less than 0.2 inches. Graupel is also called snow pellets or soft hail, as the graupel particles are particularly fragile and generally disintegrate when handled.
Sleet	small ice particles that form from the freezing of liquid water drops, such as raindrops. At ground level, sleet is only common during winter storms when snow melts as it falls, and the resulting water refreezes into sleet prior to hitting the ground. In thunderstorms, sleet is possible above the melting level where cloud droplets become supercooled and may instantaneously freeze when making contact with other cloud particles or debris, such as dust particles. Sleet is also called ice pellets.
Hail	frozen precipitation that can grow to very large sizes through the collection of water that freezes onto the hailstone's surface. Hailstones begin as embryos, which include graupel or sleet, and then grow in size. Hailstones can have a variety of shapes and include lumps and bumps that may even take the shape of small spikes. Hailstones must be at least 0.2 inches in size.

When forecasting for hail, forecasters look for deep moist convection, in addition to adequate updraft to keep the hailstone aloft for an appropriate amount of time, sufficient supercooled water near the hailstone to enable growth as it travels through an updraft, and a piece of ice, snow or dust for it to grow upon. There is no clear distinction between storms that do and do not produce hailstones. Nearly all severe thunderstorms probably produce hail aloft, though it may melt before reaching the ground.

Multi-cell thunderstorms can produce many small hailstones that are relatively short-lived and do not grow in size. In contrast, supercell thunderstorms have sustained updrafts that support large hail formation by repeatedly lifting the hailstones into the very cold air at the top of the thunderstorm cloud where they can accumulate more layers of ice. In general, hail 2 inches or larger in diameter is associated with supercells. Hail falls to the ground when the thunderstorm's updraft can no longer support the weight of the ice. The stronger the updraft, the larger the hailstone can grow. Additionally, large hail often appears near the area within a thunderstorm where tornadoes are most likely to form⁹⁷

Location

Similar to the Severe Thunderstorms & Lightning (Section 6.3), and the Tornado/Microburst (Section 6.4) hazard profiles, hail is not confined to any geographic boundaries and can occur if the right conditions are present within a thunderstorm, such as a supercell with a strong updraft. The entire county is at risk for this hazard. Thunderstorms and hail can happen at any time of the year. Typically, they occur most in warmer months such as Summer and Spring, and during the warmest parts of the day. Warm, moist air from the Gulf of Mexico is readily available to help fuel atmospheric conditions that produce thunderstorms and the updrafts that bring hail and damaging winds associated with them. Austin County is in an area that can see anywhere from 54-81 thunderstorm days per year.⁵⁷ Figure 6.9.1 depicts the locations within the county where previous hails events have occurred.

Extent

The NWS classifies a hailstorm as "severe" if there is hail 00.75 inches in diameter or greater. Hail threats are categorized from non-threatening to extreme with associated map colors to depict hazard levels, as seen in the table below. NWS also generalizes hail sizes as small (less than 0.75 inches in diameter), large (0.75-1.75 inches in diameter), very large (1.75-2.75 inches in diameter), and giant (hail larger than 2.75 inches). 98

Table 6.9.2: Severe Hail Threat Levels and Descriptions

Table 6.9.2: Severe Ha		
Severe Hail	Map	Threat Level Descriptions
Threat Level	Color	
Extreme		 "An Extreme Threat to Life and Property from Severe Hail." Within 12 miles of a location, a moderate likelihood or greater (16% probability or greater) of severe hail, with storms capable of baseball to softball sized stones. See diameter description below. A high likelihood or greater (26% probability or greater) of severe hail, with storms capable of golf ball to baseball sized hail stones. Avery high likelihood (36% or greater) of severe hail, with storms capable of nickel to golf ball sized hail stones.
High		 "A High Threat to Life and Property from Severe Hail." Within 12 miles of a location, a low likelihood (6% to 15% probability) of severe hail, with storms capable of baseball to softball sized stones. A moderate likelihood (16% to 25% probability) of very large hail (golf ball to baseball sized hail stones). A high likelihood (26% to 35% probability) of large hail (nickel to golf ball sized hail stones).
Moderate		 "A Moderate Threat to Life and Property from Severe Hail." Within 12 miles of a location, a very low likelihood (2% to 5% probability) of severe hail, with storms capable of baseball to softball sized stones. A low likelihood (6% to 15% probability) of severe hail, with storms capable of golf ball to baseball sized hail stones. A moderate likelihood (16% to 25% probability) of severe hail, with storms capable of nickel to golf ball sized hail stones.
Low		 "A Low Threat to Life and Property from Severe Hail." Within 12 miles of a location, a very low likelihood (2% to 5% probability) of severe hail, with storms capable of golf ball to baseball sized hail stones A low likelihood (6% to 15% probability) of severe hail, with storms capable of nickel to golf ball sized hail stones.
Very Low		 Within 12 miles of a location, a very low likelihood (2% to 5% probability) of severe hail, with storms capable of nickel to golf ball sized hail stones. A low likelihood or greater (6% or greater) of small hail (less than 3/4 inch).
Non-Threatening		 No Discernable Threat to Life and Property from Severe Hail." Within 12 miles of a location, environmental conditions do not support the occurrence of severe hail.

Hail intensity is measured by the TORRO scale. The scale starts with H0 and goes to H10 with each increment of intensity or damage potential related to hail size, texture, numbers, fall speed, speed of storm translation, and strength of the accompanying wind. The table below outlines the TORRO Hail Intensity Scale and some associated size comparisons. ⁹⁹

Table 6.9.3: TORRO Hail Intensity Scale

Scale	Intensity Category	Typical Hail Diameter (in)	Size Comparison	Typical damage impacts
Н0	Hard hail	Up to 0.33	Pea	No damage
H1	Potentially damaging	0.33-0.60	Marble	Slight general damage to plants, crops
H2	Significant	0.60-0.80	Dime	Significant damage to fruit, crops, vegetation

Scale	Intensity Category	Typical Hail Diameter (in)	Size Comparison	Typical damage impacts
Н3	Severe	0.80-1.20	Nickel	Severe damage to fruit and crops, damage to glass and plastic structures, paint and wood scored
H4	Severe	1.20-1.60	Quarter	Widespread glass damage, vehicle bodywork damage
Н5	Destructive	1.60-2.0	Half Dollar	Wholesale destruction of glass, damage to tiled roofs, significant risk of injuries
Н6	Destructive	2.0-2.4	Ping Pong Ball	Bodywork of grounded aircraft dented; brick walls pitted
H7	Destructive	2.4-3.0	Golf Ball	Severe roof damage, risk of serious injuries
Н8	Destructive	3.0-3.5	Hen Egg	(Severest recorded in the British Isles) Severe damage to aircraft bodywork
Н9	Super Hailstorms	3.5-4.0	Tennis Ball	Extensive structural damage. Risk of severe or even fatal injuries to persons caught in the open
H10	Super Hailstorms	>4.0	Baseball	Extensive structural damage. Risk of severe or even fatal injuries to persons caught in the open

A worst-case scenario for this hazard would include a severe thunderstorm event that could produce straight-line winds, tornadoes, hail of H7 or above, and lightning which results in dangerous and life-threatening conditions. This is based on previous occurrences within the County that saw hail measuring 2.75", or destructive H5 (golf ball) sized hail.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County hail events data from 1950-2023 is provided in the table below.³⁹

Table 6.9.4: Austin County Hail Events (1950-2023)

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Magnitude (in.)
6/5/1955	N/A, Austin County	Hail	0/0	\$0	\$0	1.75
4/24/1962	N/A, Austin County	Hail	0/0	\$0	\$0	2
5/15/1980	N/A, Austin County	Hail	0/0	\$0	\$0	0.75
5/9/1981	N/A, Austin County	Hail	0/0	\$0	\$0	1
5/14/1981	N/A, Austin County	Hail	0/0	\$0	\$0	1
5/8/1985	N/A, Austin County	Hail	0/0	\$0	\$0	1.75
2/14/1987	N/A, Austin County	Hail	0/0	\$0	\$0	0.75
9/10/1987	N/A, Austin County	Hail	0/0	\$0	\$0	1
6/25/1990	N/A, Austin County	Hail	0/0	\$0	\$0	0.88
6/30/1992	N/A, Austin County	Hail	0/0	\$0	\$0	0.75
2/15/1993	Sealy	Hail	0/0	\$0	\$0	0.75
5/1/1993	Bellville	Hail	0/0	\$5,000	\$0	1
5/9/1993	Wallis	Hail	0/0	\$5,000	\$0	0.87

Date	Jurisdiction	Event	Injuries/	Property	Crop	Magnitude
		Type	Deaths	Damage	Damage	(in.)
5/18/1993	Bellville	Hail	0/0	\$50,000	\$0	1.75
4/5/1994	Moulton	Hail	0/0	\$50,000	\$50,000	0.75
4/5/1994	New Kinkler	Hail	0/0	\$500,000	\$50,000	1.75
4/5/1994	N/A, Austin County	Hail	0/0	\$5,000	\$0	0.75
4/5/1994	N/A, Austin County	Hail	0/0	\$5,000	\$0	0.75
1/12/1995	Sealy	Hail	0/0	\$0	\$0	1
1/22/1995	Near Sealy	Hail	0/0	\$0	\$0	0.75
3/13/1995	Shelby	Hail	0/0	\$0	\$0	0.75
11/2/1995	Wallis	Hail	0/0	\$5,000	\$0	0.75
3/23/1996	N/A, Austin County	Hail	0/0	\$0	\$0	ND
3/23/1996	N/A, Austin County	Hail	0/0	\$0	\$0	ND
4/5/1996	CATSPRING/SEALY	Hail	0/0	\$20,000	\$0	1.75
4/5/1996	SEALY	Hail	0/0	\$20,000	\$0	1.75
4/21/1996	N/A, Austin County	Hail	0/0	\$0	\$0	2.75
4/21/1996	N/A, Austin County	Hail	0/0	\$0	\$0	2.75
4/21/1996	N/A, Austin County	Hail	0/0	\$0	\$0	2.75
4/21/1996	N/A, Austin County	Hail	0/0	\$0	\$0	2.75
4/21/1996	N/A, Austin County	Hail	0/0	\$0	\$0	2.75
8/12/1996	WALLIS	Hail	0/0	\$10,000	\$200,000	1.75
9/17/1996	N/A, Austin County	Hail	0/0	\$0	\$0	0.88
9/17/1996	N/A, Austin County	Hail	0/0	\$0	\$0	0.88
9/20/1996	BELLVILLE	Hail	0/0	\$5,000	\$0	1 77
5/30/1997	BELLVILLE	Hail	0/0	\$10,000	\$0	1.75
2/16/1998	NEW ULM	Hail	0/0	\$3,000	\$0	0.88
6/5/1998	WELCOME	Hail Hail	0/0	\$3,000	\$0 \$0	0.75
2/27/1999 5/12/1999	WALLIS	Наіl	0/0	\$3,000	\$0 \$0	
5/12/1999	BELLVILLE SEALY	Hail	0/0	\$10,000 \$30,000	\$0	0.75
5/2/2000	BELLVILLE	Hail	0/0	\$10,000	\$0 \$0	0.75
5/4/2000	NEW ULM	Hail	0/0	\$15,000	\$0	1
11/12/2000	BELLVILLE	Hail	0/0	\$25,000	\$0	1.75
2/26/2001	BELLVILLE	Hail	0/0	\$5,000	\$0	1.73
3/14/2001	SEALY	Hail	0/0	\$5,000	\$0	0.75
9/21/2001	BELLVILLE	Hail	0/0	\$2,000	\$0	0.88
3/30/2002	NEW ULM	Hail	0/0	\$5,000	\$0	0.75
3/30/2002	SEALY	Hail	0/0	\$5,000	\$0	0.75
10/19/2002	SEALY	Hail	0/0	\$5,000	\$0	0.75
3/13/2003	SEALY	Hail	0/0	\$5,000	\$0	0.75
4/24/2003	SEALY	Hail	0/0	\$2,000	\$0	1
8/8/2003	INDUSTRY	Hail	0/0	\$2,000	\$0	0.75
4/10/2004	BELLVILLE	Hail	0/0	\$30,000	\$0	1.75
6/4/2004	SEALY	Hail	0/0	\$30,000	\$0	0.75
6/4/2004	SAN FELIPE	Hail	0/0	\$20,000	\$0	0.88
12/21/2006	CAT SPG	Hail	0/0	\$3,000	\$0	0.75
6/3/2007	INDUSTRY	Hail	0/0	\$0	\$0	0.75

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Magnitude (in.)
3/18/2008	BELLVILLE	Hail	0/0	\$2,500	\$0	0.75
6/26/2008	BELLVILLE	Hail	0/0	\$13,000	\$0	1.75
3/20/2013	BELLVILLE	Hail	0/0	\$0	\$0	1
3/20/2013	BELLVILLE	Hail	0/0	\$25,000	\$0	1.75
5/10/2013	BELLVILLE	Hail	0/0	\$0	\$0	1
4/19/2015	SEALY	Hail	0/0	\$3,000	\$0	1.5
5/21/2016	BELLVILLE	Hail	0/0	\$0	\$0	0.75
5/23/2017	MILLHEIM	Hail	0/0	\$0	\$0	0.75
5/9/2019	KENNEY	Hail	0/0	\$0	\$0	1.25
4/18/2020	BELLVILLE ARPT	Hail	0/0	\$0	\$0	1.75
4/18/2020	BELLVILLE ARPT	Hail	0/0	\$0	\$0	1.75
		TOTALS:	0/0	\$951,500	\$100,000	N/A

ND- No Data, N//A- Not Applicable

Presidential Disaster Declarations

There has been no disaster declaration in which hail was included for Austin County. ¹

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update for this hazard are listed in the table below.⁴⁰

Table 6.9.5: USDA Declared Disasters (2018-2023), Hail

Crop Disaster Year	Disaster Description	Designation Number
	None	

Probability of Future Occurrences

Severe thunderstorms and hail associated with them are more likely to occur in summer months when temperatures are higher and moisture from the gulf helps to fuel thunderstorm development. According to the FEMA NRI for hail, annualized frequency values are 2.7 events per year over a 34-year period of record (1986-2021), with 91 events on record for this timeframe. 42

Populations at Risk

Hail can occur during thunderstorms, but larger hail occurs more often during warmer months because the heat provided aids in building up the thunderstorm higher in the air and also strengthens these storms to create sustained updrafts. Populations most at risk for hail include outdoor workers, athletes, and pets/animals. Outdoor workers, such as farmers or landscapers have a higher chance of exposure to hail

due to the nature of their work. Likewise, athletes can be caught in a hailstorm and are more exposed to this hazard when engaged in outdoor activities. Pets and animals are also at risk from hail due to their increased exposure to outdoor elements. To cause serious injury to humans and animals, hail would have to be relatively larger in size (1" or larger). As the county continues to expand in both population and development, areas of future growth could increase the vulnerability of the county and its residents to this hazard. There are no known factors that make one area or community more prone to these events than another, the risk of a hail event applies the same to the entire county.

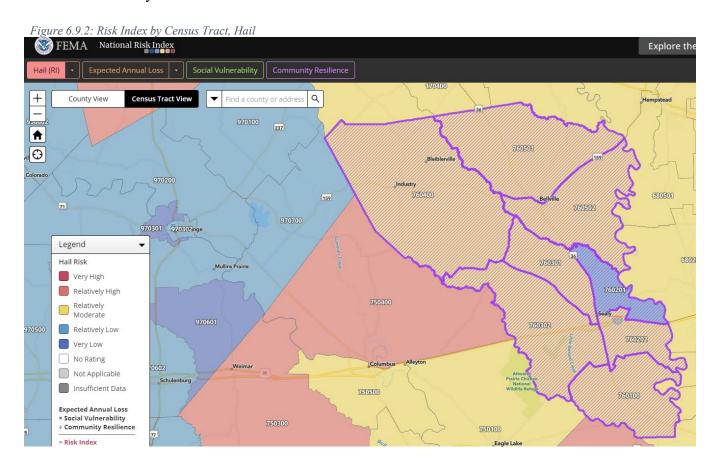
National Risk Index

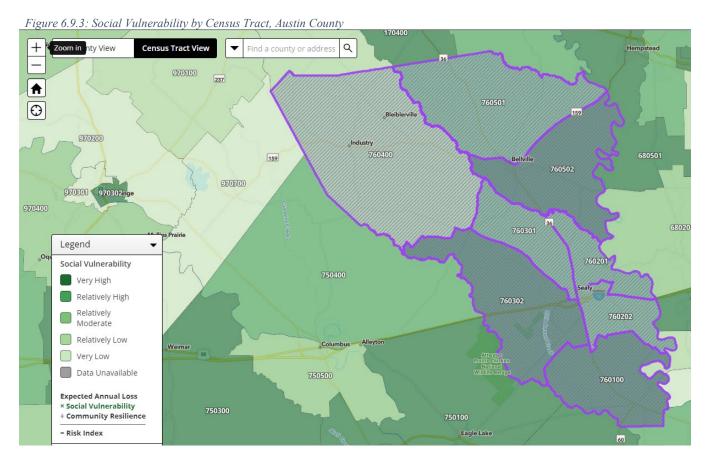
FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions

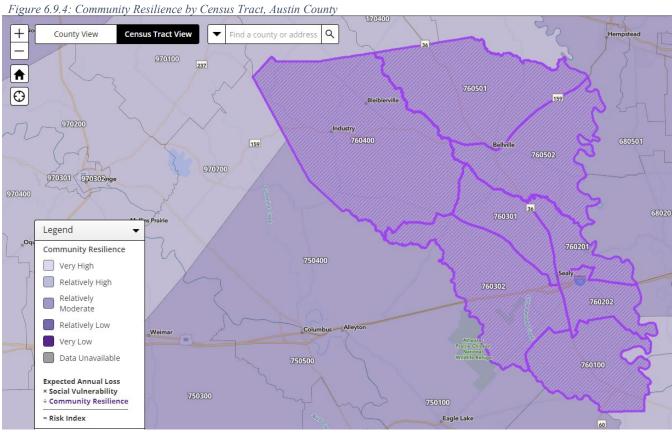
The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provides a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor that incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts of natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

EAL for Austin County each year according to the FEMA NRI for hail is listed as relatively low. EAL Exposure Values and EAL Values can be found in the tables below below.⁴²

Table 6.9.6: Expected Annual Loss Exposure Values, Hail


Hazard Type	Building V: (\$)	aluePopulation Equivalence Population (#)	Agricultural (\$)/Value (\$)	EAL Total (\$)	EAL Rating
Hail	\$7,118,991,434	\$348,150,800,000/ 30,013	\$37,985,562	\$355,307,776,996	Relatively Low


Table 6.9.7: Expected Annual Loss Values, Strong Wind


Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agriculture Value
Hail	\$95,343	\$26,557/ 0.00	\$12,122

N/A- Not Applicable

Historic loss ratios, according to the FEMA NRI, for hail events within Austin County are relatively low. The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.

Figure	695.	FFMA	NRI Summary	Hail

Rank	Community	Social Vulnerability	Community Resilience	Hazard Type: Hail Risk Index Rating	Risk Index Score	Natio	onal Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively Moderate	86.07	0	100
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	85.09	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	83.15	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	82.49	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Moderate	79.55	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	77.24	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively Moderate	75.22	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Low	71.96	0	100

Climate Change Impacts

Since tornadoes, windstorms, and hail are heavily associated with severe thunderstorm development, this section will mirror that of Section 6.3, seen previously. According to the Office of the Texas State Climatologist, the climate data record for severe thunderstorms is poor and severe thunderstorms are too small to be simulated directly by present-day climate models. Over the past few decades, the severe storm environment over Texas has changed in complex and opposing ways. The amount of energy available for convection has decreased, and the amount of energy needed to initiate convection has increased at the same time. This suggests that environmental conditions have become less favorable for the occurrence of thunderstorms. However, the amount of low-level shear has increased, which would be expected to make thunderstorms more likely to become severe once they develop. Changes in severe storm environments have not been uniform throughout the year, with environments becoming more favorable for severe thunderstorms and significant hail in Texas early in the spring and less favorable later in the spring. Warmer temperatures are likely to lead to less hail overall, particular during the summer, but increases in available thunderstorm energy may lead to an increase of the risk of very large hail earlier in springtime. With these complex trends and partially contradictory information between models and observations, there is low confidence in any ongoing trend in the overall frequency and severity of severe thunderstorms.

Table 6.9.8: Climate Change Impacts Summary, Hail

Location	The location of hail is not expected to change.		
Extent/Intensity	The extent and intensity of hail is not expected to change. However, environments are becoming more favorable for hail in early spring.		
Frequency	There are no clear trends in the frequency of hail within the county.		
Duration	The duration of hail is not expected to change.		

Section 6.10: Hurricanes, Tropical Storms, and Tropical Depressions

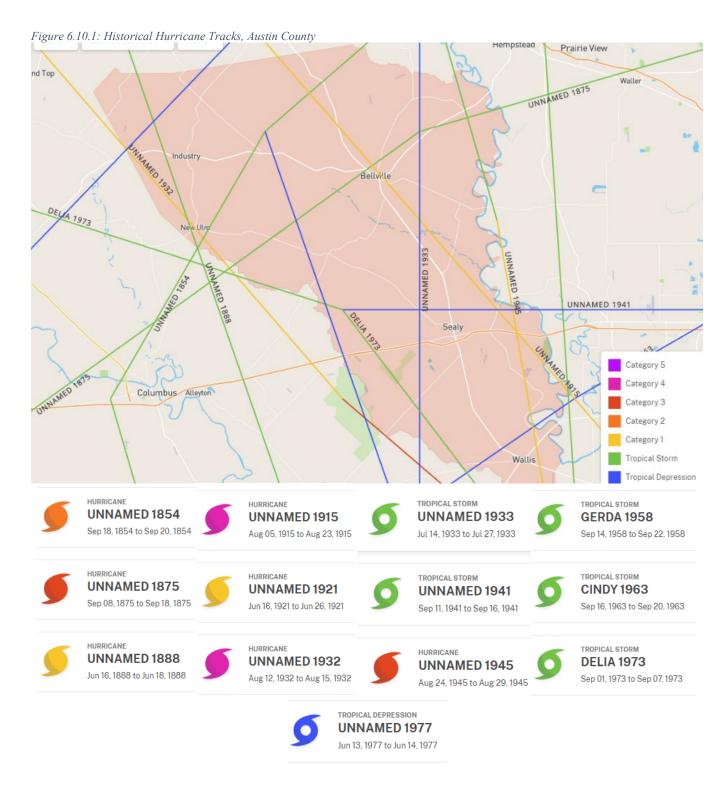
6.10 Hurricanes, Tropical Storms, and Tropical Depressions

Hurricanes form from the development of thunderstorms that are fueled by warm water and air over the ocean. Tropical waves and disturbances can lead to the formation of tropical cyclones. A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or subtropical waters and has a closed low-level circulation. Tropical cyclones can produce intense rainfall more than 6 inches, resulting in heavy flooding. Other dangers associated with the formation of these storms include storm surges, damaging winds, and rip currents, and tornadoes. Slower moving larger storms can produce more rainfall and more dangerous outcomes. Classifications of tropical cyclones; tropical depressions, tropical storms, hurricanes, and major hurricanes are defined in the table below. 101

Table 6.10.1: Tropical Cyclone Classifications

Classification	Definition
	A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or
Tropical Depression	less. Tropical depressions can bring heavy downpours and sustained winds
	strong enough to generate rough surf and life-threatening rip currents.
	A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63
Tropical Storm	knots). These storms are assigned a name and start to become more organized
	and circular.
	A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or
Hurricane	higher. Hurricanes have very pronounced circulation of which an area of clear
	weather, an "eye" forms in the center.
	A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or
Major Hurricane	higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane
	Wind Scale.

Hurricane season for Texas officially begins on June 1 and ends on November 30. The greatest threat of a landfall for the Texas coast is between the beginning of June and the end of October. The NWS issues hurricane and tropical storm watches and warnings when these hazards are forming. These watches and warnings are issued or will remain in effect after a tropical cyclone becomes post-tropical, when such a storm poses a significant threat to life and property. The NWS allows the National Hurricane Center (NHC) to issue advisories during the post-tropical stage. Whenever a tropical cyclone or a subtropical storm has formed in the Atlantic or eastern North Pacific, the NOAA NHC issues tropical cyclone advisory products at least every 6 hours at 5 AM, 11 AM, 5 PM, and 11 PM Eastern Daylight Time (EDT). When coastal tropical storm or hurricane watches or warnings are in effect, the NHC issues Tropical Cyclone Public Advisories every 3 hours. The table below provides definitions of these tropical watches and warnings. 102


Table 6.10.2: Tropical Watches and Warnings

Name	Definition			
Advisories				
Tropical Cyclone Publi Advisory	Contains a list of all current coastal watches and warnings associated with an ongoing or potential tropical cyclone, a post-tropical cyclone, or a subtropical cyclone. Provides the cyclone position, maximum sustained winds, current motion, and a description of the hazards associated with the storm.			
	Watches			
Tropical Storm Watch	Tropical storm conditions (sustained winds of 39 to 73 mph) are possible within the specified area within 48 hours.			

Storm Surge Watch	There is a possibility of life-threatening inundation from rising water moving inland from the shoreline somewhere within the specified area, generally
	within 48 hours.
	Hurricane conditions (sustained winds of 74 mph or greater) are possible
Hurricane Watch	within your area. Because it may not be safe to prepare for a hurricane once
	winds reach tropical storm force, The NHC issues hurricane watches 48 hours before it anticipates tropical storm-force winds.
	Warnings
Tropical Storm Warning	Tropical storm conditions (sustained winds of 39 to 73 mph) are expected
Tropical Storm Warming	within your area within 36 hours.
	There is a danger of life-threatening inundation from rising water moving
Storm Surge Warning	inland from the shoreline somewhere within the specified area, generally
Storm Surge Warming	within 36 hours. If you are under a storm surge warning, check for evacuation
	orders from your local officials.
	Extreme sustained winds of a major hurricane (115 mph or greater), usually
Extreme Wind Warning	associated with the eyewall, are expected to begin within an hour. Take
	immediate shelter in the interior portion of a well-built structure.
	Hurricane conditions (sustained winds of 74 mph or greater) are expected
	somewhere within the specified area. NHC issues a hurricane warning 36
Hurricane Warning	hours in advance of tropical storm-force winds to give you time to complete
	your preparations. All preparations should be complete. Evacuate
	immediately if so ordered.

Location

Austin County is located approximately 68 miles inland from the Gulf of Mexico. The winds from hurricanes, tropical storms and depressions typically have substantially weakened by the time they reach the county leading to minimal or no impacts. The rains generated from hurricanes, tropical storms and depressions do have a significant impact on flooding within the county. Flooding is profiled in Section 6.1 of this HMP. The figure below shows the historical hurricane, tropical storms, and tropical depression tracks that have crossed into Austin County. It is important to remember that these storms, named or unnamed, do not have to cross the county boundaries in order for the county to be at risk from their impacts.

Extent

Hurricane intensity is measured through the Saffir-Simpson Hurricane Wind Scale. The scale was originally developed by wind engineer Herb Saffir and meteorologist Bob Simpson. It has been an excellent tool for alerting the public about the possible impacts of various intensity hurricanes. The scale does not address the potential for other hurricane-related impacts, such as storm surge, rainfall-induced floods, and tornadoes. This wind caused damage general descriptions of the scale are to an extent dependent upon the local building codes in effect and how well and how long they have been enforced. 103

The scale gives a 1 to 5 rating based only on a hurricane's maximum sustained wind speed and estimates potential property damage at each scale. Hurricanes of Category 3 and higher are known as major hurricanes. These hurricanes can cause devastating to catastrophic wind damage and significant loss of life due to the strength of their winds. Hurricanes of all categories can produce deadly storm surge, rain-induced floods, and tornadoes. These hazards require people to take protective action. 104

Table 6.10.3: The Saffir-Simpson Hurricane Wind Scale

	ne Saffir-Simpson Hurricane W Sustained Wind	
Category	Speeds	Types of Damage Due to Hurricane Winds
1	74-95 mph	Very dangerous winds will produce some damage: People, livestock, and pets struck by flying or falling debris could be injured or killed. Well-constructed frame homes could have damage to roof, shingles, vinyl siding and gutters. Large branches of trees will snap, and shallowly rooted trees may be toppled. Extensive damage to power lines and poles likely will result in power outages that could last a few to several days.
2	96-110 mph	Extremely dangerous winds will cause extensive damage: There is a substantial risk of injury or death to people, livestock, and pets due to flying and falling debris. Older (mainly pre-1994 construction) manufactured homes have a very high chance of being destroyed and the flying debris generated can shred nearby manufactured homes. Newer manufactured homes can also be destroyed. Well-constructed frame homes could sustain major roof and siding damage. Many shallowly rooted trees will be snapped or uprooted and block numerous roads. Near-total power loss is expected with outages that could last from several days to weeks.
3	111-129 mph	Devastating damage will occur : There is a high risk of injury or death to people, livestock, and pets due to flying and falling debris. Nearly all older (pre-1994) manufactured homes will be destroyed. Newer manufactured homes will sustain severe damage with potential for complete roof failure and wall collapse. Well-built framed homes may incur major damage or removal of roof decking and gable ends. Many trees will be snapped or uprooted, blocking numerous roads. Electricity and water will be unavailable for several days to weeks after the storm passes.
4	130-156 mph	Catastrophic damage will occur: There is a very high risk of injury or death to people, livestock, and pets due to flying and falling debris. Nearly all older (pre-1994) manufactured homes will be destroyed. A high percentage of newer manufactured homes also will be destroyed. Poorly constructed homes can sustain complete collapse of all walls as well as the loss of the roof structure. Well-built homes also can sustain severe damage with loss of most of the roof structure and/or some exterior walls. Most trees will be snapped or uprooted, and power poles downed. Fallen trees and power poles will isolate residential areas. Power outages will last weeks to possibly months. Most of the area will be uninhabitable for weeks or months.

Category	Sustained Wind Speeds	Types of Damage Due to Hurricane Winds
5	157 mph or higher	Catastrophic damage will occur: People, livestock, and pets are at very high risk of injury or death from flying or falling debris, even if indoors in manufactured homes or framed homes. Almost complete destruction of all manufactured homes will occur, regardless of age or construction. A high percentage of frame homes will be destroyed, with total roof failure and wall collapse. Extensive damage to roof covers, windows, and doors will occur. Fallen trees and power poles will isolate residential areas. Power outages will last for weeks to possibly months. Most of the area will be uninhabitable for weeks or months.

A worst-case scenario for this hazard would be a category 5 hurricane making landfall south of Austin County, spawning multiple severe thunderstorms, heavy rains, tornadoes, and hail. Widespread flooding, dangerous winds, and other secondary hazards would occur. Potential loss of life as well as extensive damage to buildings, critical facilities, and infrastructure could occur.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County Hurricane, Tropical Storms, and Depressions events data from 1950-2023 is provided in the table below.³⁹

Table 6.10.4: Austin County Hurricane, Tropical Storms, and Tropical Depressions (1950-2023)

Date	Jurisdiction	Event Type	Injuries/ Deaths	Property Damage	Crop Damage	Wind Speed (mph)
4/21/1958	N/A, Austin County	Tropical Storm	0/0	\$25,000	\$0	ND
4/29/1960	N/A, Austin County	Tropical Storm	0/0	\$0	\$0	ND
8/13/1977	8/13/1977 N/A, Austin County Tropical Storm		0/0	\$0	\$0	ND
	TOTALS	S:	0/1	\$25,000	\$0	N/A

ND- No Data

Presidential Disaster Declarations

There have been seven federally declared hurricane disasters in Austin County since 1950. There is also one severe storm disaster the mentions a tropical storm and was included in the table below.

Table 6.10.5: Federal Disaster Declarations for Hurricane, Tropical Storms, and Tropical Depressions

Date	Disaster Number	Declaration Types	Incident Type	Declaration Title
8/26/1998	1239	Major Disaster Declaration	Severe Storm	Tropical Storm Charley
9/2/2005	3216	Emergency Declaration	Hurricane	Hurricane Katrina
9/21/2005	3261	Emergency Declaration	Hurricane	Hurricane Rita
9/24/2005	1606	Major Disaster Declaration	Hurricane	Hurricane Rita
8/29/2008	3290	Emergency Declaration	Hurricane	Hurricane Gustav
9/10/2008	3294	Emergency Declaration	Hurricane	Hurricane Ike
9/13/2008	1791	Major Disaster Declaration	Hurricane	Hurricane Ike
8/25/2017	4332	Major Disaster Declaration	Hurricane	Hurricane Harvey

USDA Disaster Declarations

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.10.6: USDA Declared Disasters (2018-2023), Hurricane, Tropical Storms, and Tropical Depressions

Crop Disaster Year	Disaster Description	Designation Number
	None	

Probability of Future Occurrences

The State of Texas HMP estimates the occurrence of hurricanes, tropical storms and depressions is trending upward, with a 400% increase in the 5-year planning cycle between 2017-2021.⁶³ According to the FEMA NRI for hurricanes in Austin County, annualized frequency values are 0.1 events per year over a 73-year period of record (1949-2021), with 17 events on record for this timeframe.⁴²

Populations at Risk

Populations at risk for hurricanes, tropical storms, and tropical depressions include the entire county as this hazard has no geographic boundaries. Hurricanes can cause property damage, flooding, lack of access to critical facilities that provide food, water, medications, or other forms of medical assistance, and lack of utilities such as electricity and clean water, which can increase the risk of illness. The NCHH website for emergency preparedness and response includes information on at-risk populations for several hazards. For hurricanes, these include older adults, children, people experiencing homelessness, people with disabilities, and people with chronic health conditions. In addition to the dangers listed above, older adults can face social isolation, lack of electricity needed to run medical equipment, lack of access to a vehicle for evacuation, and lack of access to other critical supplies. In younger populations, such as children, flood events can disrupt schooling and the normal day-to-day routines they thrive on. This can not only jeopardize their academic success but can also cause mental and emotional stress. Children are more at risk and vulnerable to certain medical conditions like asthma, lead poisoning, allergies, and bacterial infections which can be caused by the resulting flood damage and increased moisture of hurricanes. For people experiencing homelessness, housing and adequate shelter are critical in keeping populations safe during these types of hazard events so hurricanes can be life-threatening for this population if adequate shelter is not located and utilized. People with disabilities may require additional assistance to stay safe and prepare for these hazards such as creating a support network, finding accessible transportation to evacuate or get medical attention, and loss of power for needed medical equipment. Likewise, those with chronic health conditions may need similar assistance as those with disabilities. People with chronic health conditions also face exposure to diseases or illnesses from standing water and increased exposure to these illnesses when utilizing a shelter or evacuation center.⁴³

Additionally, flooding of homes and businesses can cause mold to thrive if not treated promptly. This can exacerbate illness among the general population but especially among those with chronic health

conditions.⁴³ People living in mobile homes are also at greater risk of injury and death from these hazards. Despite mobile homes providing a form of shelter, tornadoes and dangerous winds produced by hurricanes, tropical storms, and tropical depressions can cause mobile homes and even mobile homes that utilize anchoring to be seriously damaged or destroyed when winds gust over 80 mph.

All areas of future growth and development within the county will increase the risk to this hazard as it has no geographic boundaries and a wide area of impact with various secondary hazards.

National Risk Index

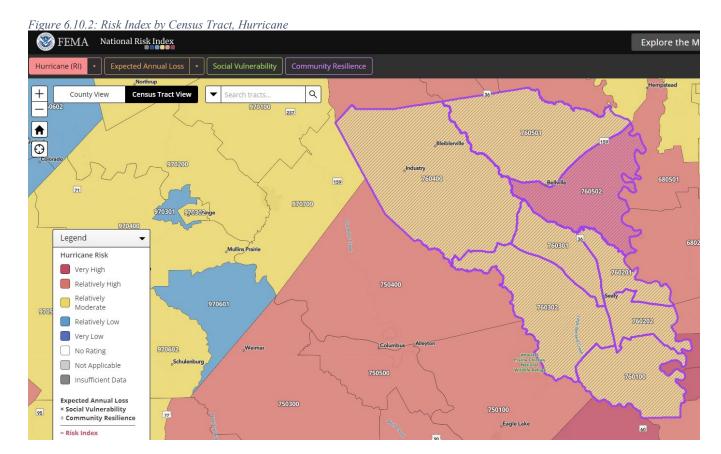
FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

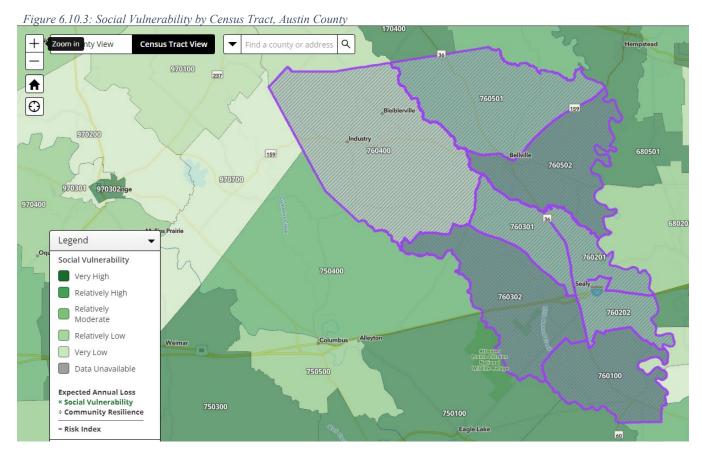
The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provide a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor that incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts of natural hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.⁴⁸

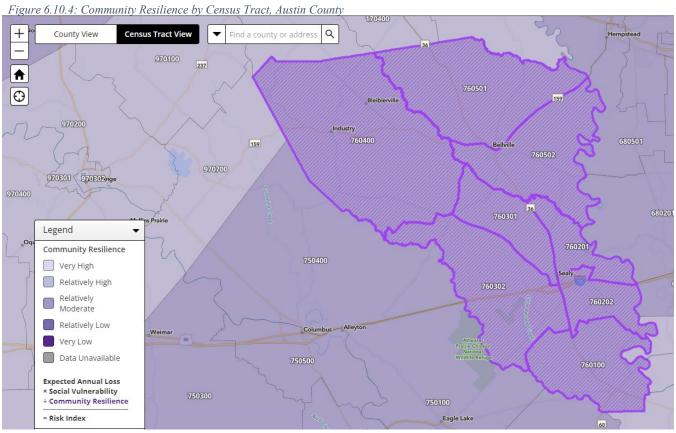
Populations at risk for hurricanes, tropical storms, and depressions include the entire county as this hazard has no geographic boundaries. Additionally, people living in mobile homes are especially at risk of injury and death from the tornadoes and dangerous winds produced by these types of hazards. Even anchored mobile homes can be seriously damaged when winds gust over 80 mph.

EAL for Austin County each year according to the FEMA NRI for hurricane events is listed as relatively low. EAL Exposure Values and EAL Values can be found in the tables below. Tropical storms and tropical depressions are not included in the NRI and were omitted from these tables.⁴²

Table 6.10.7: Expected Annual Loss Exposure Values, Hurricane


Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agricultural Value (\$)	EAL Total (\$)	EAL Rating
Strong Wind	\$7,118,991,434	\$348,150,800,000/ 30,013	\$37,985,562	\$355,307,776,996	Relatively Low


Table 6.10.8: Expected Annual Loss Values, Hurricane


Hazard Type	Building Value (\$)	Population Equivalence (\$)/	Agriculture Value
		Population (#)	
Strong Wind	\$2,289,293	\$57,018/ 0.000	\$50,470

N/A- Not Applicable

Historic loss ratios, according to the FEMA NRI, for hurricanes within Austin County are relatively high. The figures below show, by census tract, the risk index score for this hazard, the social vulnerability score, and the community resilience score.

Figure	6	10	5.	FEM	4	NRI Summary	Hurricane

		Social	Community	Hazard Type: Hurrican	e		
Rank	Community	Vulnerability	Resilience	Risk Index Rating	Risk Index Score	Nati	onal Percentile
1	Census tract 48015760502	Very High	Relatively Low	Relatively High	86.04	0	100
2	Census tract 48015760302	Very High	Relatively Low	Relatively Moderate	85.08	0	100
3	Census tract 48015760501	Relatively High	Relatively Low	Relatively Moderate	83.71	0	100
4	Census tract 48015760202	Relatively High	Relatively Low	Relatively Moderate	82.99	0	100
5	Census tract 48015760400	Relatively Moderate	Relatively Low	Relatively Moderate	79.64	0	100
6	Census tract 48015760301	Relatively High	Relatively Low	Relatively Moderate	77.6	0	100
7	Census tract 48015760100	Very High	Relatively Low	Relatively Moderate	72.69	0	100
8	Census tract 48015760201	Relatively High	Relatively Low	Relatively Moderate	69.8	0	100

Climate Change Impacts

According to the Office of the Texas State Climatologist, hurricanes, tropical storms and depressions though unpredictable in quantity between 5-year planning cycles, will continue to intensify due to other climate related factors such as environmental conditions for thunderstorm intensity rising, warmer temperatures, and increasing ocean temperatures. As temperatures increase, the amount of energy available to fuel the storms, especially those that form over warm tropical waters of the Atlantic Ocean and Gulf of Mexico are expected to increase.⁴⁵

Table 6.10.9: Climate Change Impacts Summary, Hurricane, Tropical Storms, and Tropical Depressions

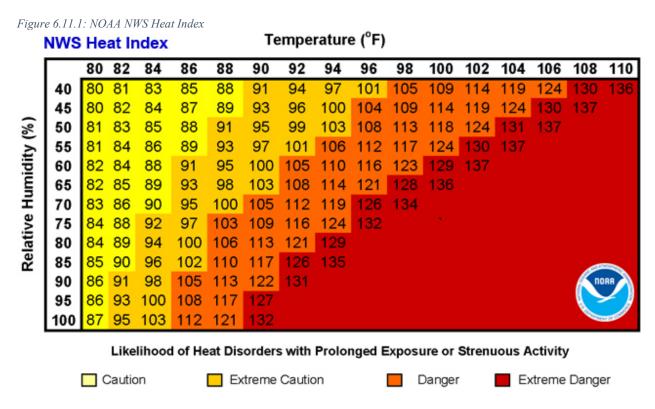
Location	The location of hurricane, tropical storms, and tropical depressions is not		
Location	expected to change.		
Extent/Intensity	The extent and intensity of hurricane, tropical storms, and tropical		
Extent/Intensity	depressions is not expected to change.		
	There are no clear trends in hurricane, tropical storms, and tropical		
	depressions frequency just as there are no clear trends in severe thunderstorm		
	frequency. This is due to considerable variability in conditions that lead to		
Frequency	them occurring. However, these hazards occur most frequently in warmer		
	months. For the Texas coast, hurricane season officially begins on June 1 and		
	ends on November 30. The greatest threat of a landfall for the Texas coast is		
	between the beginning of June and the end of October.		
	The duration of hurricane, tropical storms, and tropical depressions is not		
Duration	likely to change, however, the intensity of them is expected to increase due to		
Duration	rising temperatures and the proximity of the county to the Gulf of Mexico		
	aiding to fuel thunderstorms and tropical cyclone formation.		

Section 6.11: Extreme Heat

6.11 Extreme Heat

Heat events, or extreme heat, is defined by the CDC as summertime temperatures that are much hotter and/or humid than average. ¹⁰⁵ The US Department of Homeland Security's Ready.gov websites take this definition a step further by defining extreme heats as "a period of high heat and humidity with temperatures above 90°F for at least two to three days." Among all weather-related hazards, extreme heat is responsible for the highest number of annual deaths as the body must work extra hard to maintain a normal temperature. ¹⁰⁶ Heat-related illnesses, like heat exhaustion or heat stroke, happen when the body is not able to properly cool itself. While the body normally cools itself by sweating, during extreme heat, this might not be enough. In these cases, a person's body temperature rises faster than it can cool itself down. This can cause damage to the brain and other vital organs. The table below provides classifications of various heat related NWS warnings and watches for extreme heat. ¹⁰⁷

Table 6.11.1: Heat Related Watches and Warnings


Tuble 0.11.1. Heat Retated watches t	$\overline{\psi}$
Name	Definition
Excessive Heat Outlook	Be Aware! The outlooks are issued when the potential exists for an excessive heat event in the next 3-7 days. An Outlook provides information to those who need considerable lead-time to prepare for the event.
Excessive Heat Watch	Be Prepared! Heat watches are issued when conditions are favorable for an excessive heat event in the next 24 to 72 hours. A Watch is used when the risk of a heat wave has increased but its occurrence and timing is still uncertain.
Excessive Heat Warning	Take Action! An Excessive Heat Warning is issued within 12 hours of the onset of extremely dangerous heat conditions. The general rule of thumb for this Warning is when the maximum heat index temperature is expected to be 105°F or higher for at least 2 days and nighttime air temperatures will not drop below 75°F; however, these criteria vary across the country, especially for areas not used to extreme heat conditions. If you don't take precautions immediately when conditions are extreme, you may become seriously ill or even die.
Heat Advisory	Take Action! A Heat Advisory is issued within 12 hours of the onset of extremely dangerous heat conditions. The general rule of thumb for this Advisory is when the maximum heat index temperature is expected to be 100°F or higher for at least 2 days, and nighttime air temperatures will not drop below 75°F; however, these criteria vary across the country, especially for areas that are not used to dangerous heat conditions. Take precautions to avoid heat illness. If you don't take precautions, you may become seriously ill or even die.

Location

The risk of a heat wave occurring applies the same to the entire county. Austin County experiences the highest temperatures in the months of June to August, with average temperatures between 90°F and 100°F degrees. In areas that are more developed, the "urban heat island" effect (increased air temperatures in urban areas in contrast to cooler surrounding rural areas.) can occur due to higher concentrations of buildings and pavement. These materials absorb more heat during the day and radiate it at night, prohibiting temperatures from cooling as much compared to rural areas. ¹⁰⁰

Extent

Intensity of heat and extreme heat events are measured by temperature and the humidity. NOAA's heat index or the "Apparent Temperature" is an accurate measure of how hot it really feels when the relative humidity is added to the actual air temperature. ⁹⁹ The figure below outlines the NOAA NWS heat index for shaded areas. In direct sunlight, these heat index values can be increased by up to 15°F. At temperatures over 103°F dangerous heat disorders can begin with prolonged exposure to the heat or increased physical activity in the heat. ¹⁰⁸ Hazards from extreme heat are made worse when accompanied by high levels of humidity. As the temperature rises, the air can hold more moisture. High humidity hinders a person's body from cooling down naturally, leading people to perceive that the temperature feels hotter. This combination of temperature and humidity is known as the heat index.

The table below outlines various effects on the body in relation to the heat index and associated temperature from the figure above.

Table 6.11 2: Heat Index

Color	Heat Index	Classification	Effect on the body
	Caution	80°F - 90°F	Fatigue possible with prolonged exposure and/or physical activity
	Extreme Caution	90°F - 103°F	Heat stroke, heat cramps, or heat exhaustion possible with prolonged exposure and/or physical activity
	Danger	103°F - 124°F	Heat cramps or heat exhaustion likely, and heat stroke possible with prolonged exposure and/or physical activity
	Extreme Danger	125°F or higher	Heat stroke highly likely

A worst-case scenario for this hazard would include prolonged periods of increased temperatures and humidity resulting in a heat index rating of danger or extreme danger, and excessive heat warnings being issued (maximum heat index values of 113°F or above or maximum temperatures of 105 or above). A loss of power from the increased demands placed on the power grid due to increased usage of air conditioning as people attempt to stay cool. If the heat event lasts several days or more, secondary hazards associated with extreme heat can also become a concern, such as poor air quality, water shortages, loss of life, and drought.

Historic Occurrences

NOAA collects historic climate data for the entire nation. NOAA's storm event data can be accessed on the NCDC storm events database. A condensed version of the Austin County heat events data from 1950-2023 is provided in the table below.³⁹ The previous <u>seven</u> occurrences of heat or excessive heat all occurred within the last year, 2023.

Table 6.11.3: Austin County Heat Events (1950-2023)

Date	Event	Deaths/ Injuries	Property Damage	Crop Damage
6/26/1999	Heat Event	0/0	\$0.00	\$0.00
8/1/1999	Heat Event	0/0	\$0.00	\$0.00
7/6/2000	Heat Event	0/0	\$0.00	\$0.00
8/29/2000	Heat Event	0/0	\$0.00	\$0.00
9/1/2000	Heat Event	0/0	\$0.00	\$0.00
6/24/2009	Heat Event	0/0	\$0.00	\$0.00
6/16/2023	Excessive Heat	0/0	\$0.00	\$0.00
6/25/2023	Excessive Heat	0/0	\$0.00	\$0.00
6/25/2023	Excessive Heat	0/0	\$0.00	\$0.00
7/12/2023	Excessive Heat	0/0	\$0.00	\$0.00
8/5/2023	Excessive Heat	0/0	\$0.00	\$0.00
8/23/2023	Excessive Heat	0/0	\$0.00	\$0.00
9/5/2023	Heat Event	0/0	\$0.00	\$0.00

Presidential Disaster Declarations

There have been no federally declared heat or extreme heat disaster federal declarations in Austin County since 1950.

USDA Disaster Declarations

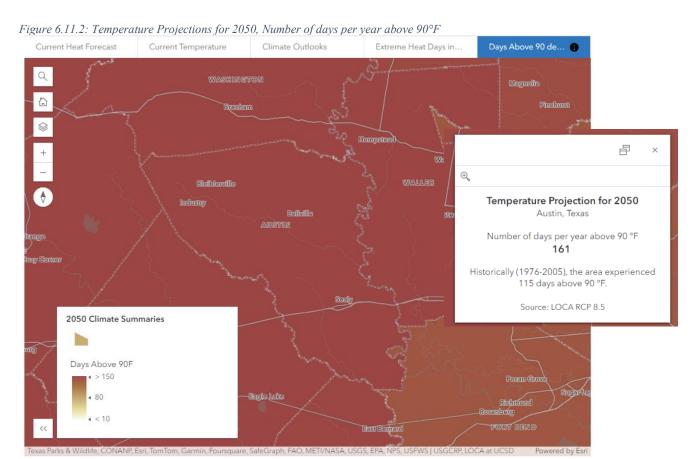

The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰

Table 6.11.4: USDA Declared Disasters (2018-2023), Extreme Heat

Crop Disaster Year	Disaster Description	Designation Number
2022	Excessive Heat	S5350
2023	Excessive Heat and Drought	S5569

Probability of Future Occurrences

The State of Texas HMP estimates the occurrence of extreme heat and heat events is trending upward, with a 600.5% increase in the 5-year planning cycle between 2017-2021. According to the FEMA NRI for heat waves in Austin County, annualized frequency values are 0.0 events per year over a 16-year period of record (2005-2021), with 0 events on record for this timeframe. This may change in the near future as NRI data is updated and recent heat events that have occurred within the county occurred after the reporting period used by the NRI. Additionally, as seen in the figures below, projections for number of days per year above 90°F, and number of days per year warmer then the top 1% historically, have both increased since previous reporting periods. These projections are expected to increase further by 2050.

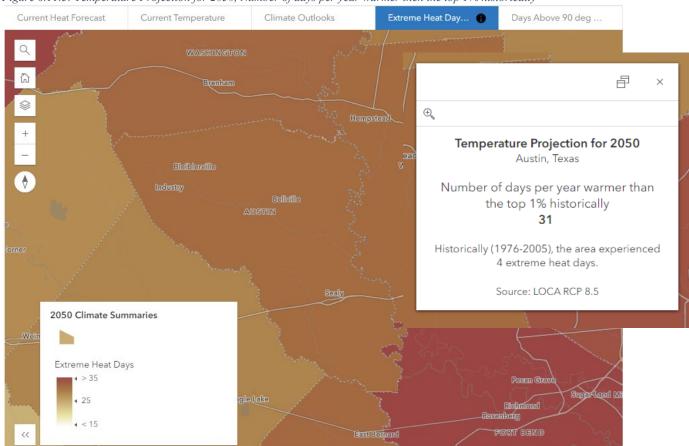


Figure 6.11.3: Temperature Projection for 2050, Number of days per year warmer then the top 1% historically

Populations at Risk

While heat events have the potential to damage buildings and crops, vulnerable populations are most at risk in the county during these events. The National Integrated Heat Health Information System lists those most at risk for extreme heat as older/elderly adults, children, athletes, pregnant people, people with disabilities, people with chronic health conditions/pre-existing conditions, homeless populations, emergency responders, pets and service animals, and outdoor/indoor workers. High temperatures can cause stress on the body which exacerbates respiratory and cardiovascular diseases, diabetes, and renal disease. Some medical conditions, such as obesity and heart disease, increase people's sensitivity to heat, putting them at greater risk of heat illnesses. In addition, some medications (such as some antidepressants, diuretics, and beta-blockers) taken for a chronic illness may increase an individual's sensitivity to heat by interfering with the body's ability to regulate temperature, fluids, or electrolytes.

In older populations, health conditions like cardiovascular issues can be exacerbated by extreme heat. During power outages that may occur during peak heat hours of the day, older populations may be disproportionately affected if they require access to life-sustaining devices. Older adults and children are more vulnerable to this hazard because they are unable to thermoregulate. Children also play outside often which exposes them to the same risks due to the combination of exposure and exertion. Athletes are similar in their risk as outdoor activities, sometimes while wearing protective gear, in combination with exposure and exertion will trap heat. As athletes are expected to push themselves physically, the line between acceptable levels of exertion and dangerous levels of exertion during heat may be blurred. Those who are pregnant are more vulnerable to this hazard due to a general increase in their core body temperature

regardless of the air temperature, but also because extreme heat events can increase the likelihood of common challenges during pregnancy (excessive sweating and heat rash). Extreme heat also poses health risks for pregnant people and the developing fetus. There is increasing evidence that extreme heat can increase the risk of preterm birth, low birth weight, fetal death, and infant mortality.

Homeless populations are more at risk of this hazard as they may face significant stress due to their living conditions, insomnia due to poor sleeping arrangements, and lack of food or spoiled food, which also contributes to a higher risk for heat-related illness and death. Additionally, they may not seek medical treatment during a heat event due to distance, lack of access to transportation, and lack of financial resources. Their access to cooling centers or shelters may be limited due to distance and lack of transportation, building hours of access, stigma, and several other factors. People who live in rural areas may have even less access to these resources and services. If the temperature at night remains high, homeless populations are further at risk as the body will be unable to cool itself off. Emergency responders are at a greater risk due to their often heavy and bulky equipment that can trap heat it, like firefighters. Pets and service animals have differing thermoneutral zones depending on their age, size, and breed. Pets and service animals have a higher metabolic rate which makes them more vulnerable to this hazard. Service animals also face the added risk of burning their paw pads as paved surfaces become hot during a heat wave. Those who work outdoors, or indoors without access to air conditioning are also at a higher risk for heat-related illnesses. Most often these jobs require a level of physical exertion and exposure and can also require personal protective clothing that can trap heat and prevent cooling. Workers may also not have access to water and shade. 110

The vulnerability of communities to this hazard increases with an increase in development and impervious pavement added to major urban areas of the county, as the heat island effect will become more prominent and exacerbate high temperatures.

National Risk Index

FEMA's NRI is a dataset and online tool to help illustrate the U.S. communities most at risk for 18 natural hazards. It was designed and built by FEMA in close collaboration with various stakeholders and partners in academia; local, state and federal government; and private industry. The NRI utilizes data from multiple sources including historical hazard events, hazard intensity, exposure of people and property to hazards, socioeconomic factors, and community resilience indicators. The NRI also incorporates hazard data to determine the frequency and intensity of various natural hazards. This information helps assess the likelihood of specific hazards occurring in different regions.

The NRI considers the exposure of communities to hazards and incorporates factors such as population density, infrastructure systems, and critical facilities that may be at risk during a hazard event. The NRI also generates risk scores for communities across the U.S. that provide a relative ranking of areas based on their overall risk level. This helps to identify areas that may require additional resources and attention for mitigation and planning efforts. The NRI risk equation includes 3 components. EAL represents the average economic loss in dollars resulting from natural hazards each year. The Community Risk Factor is a scaling factor that incorporates social vulnerability (the susceptibility of social groups to the adverse impacts of natural hazards) and community resilience (the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions) into the NRI. The outcome, the risk index, represents the potential negative impacts of natural

hazards. The NRI EAL score, and rating, represent a community's relative level of expected loss each year when compared to all other communities at the same level.

EAL for Austin County each year according to the FEMA NRI for heat events is listed as relatively low, this is because the county is unrated for heat wave within the NRI. EAL Exposure Values and EAL Values can be found in the tables below.⁴²

Table 6.11.5: Expected Annual Loss Exposure Values, Heat Wave

Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agricultural Value (\$)	EAL Total (\$)	EAL Rating
Heat Wave	\$7,118,991,434	\$348,150,800,000/ 30,013	\$37,985,562	\$355,307,776,996	Relatively Low

Table 6.11.6: Expected Annual Loss Values, Heat Wave

Hazard Type	Building Value (\$)	Population Equivalence (\$)/ Population (#)	Agriculture Value
Heat Wave	N/A	N/A	N/A

N/A- Not Applicable

Climate Change Impacts

According to the Office of the Texas State Climatologist, extreme heat has recently become more frequent and more severe. For example, extreme summer heat is approaching values not seen since the early part of the 20th Century and is likely to surpass those numbers by 2036. The typical number of triple-digit days by 2036 is projected to be substantially larger, about 40%, than typical values so far in the 21st Century. Additionally, with an increase in development and impervious pavement in areas the heat island effect will become more prominent in urban areas of the county. The fourth national climate assessment, an authoritative assessment of the science of climate change with a focus on the United States, notes that the annual average temperature over the contiguous U.S. increased by 1.2°F over the period 1986–2016 relative to 1901–1960. The frequency of heat waves has increased since the mid-1960s. Climate projections indicate that extreme heat events will be more frequent and intense in coming decades.

Table 6.11.7: Climate Change Impacts Summary, Extreme Heat

Location	The location of extreme heat and heat events is expected to increase in urban areas of the county.
Extent/Intensity The extent and intensity of extreme heat and heat events is expected increase.	
Frequency	Frequency of extreme heat and heat events is expected to increase.
Duration	The duration of extreme heat and heat events is expected to increase.

Section 6.12 Dam/Levee Failure

6.12 Dam/Levee Failure

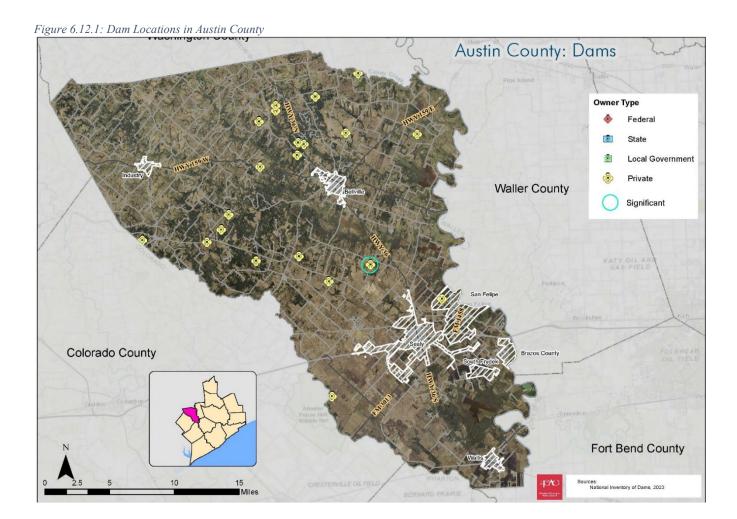

A dam failure is defined as the systematic failure of a dam structure resulting in the uncontrolled release of water, often resulting in floods that could exceed the 100-year floodplain boundaries. Dam failures can be catastrophic due to the energy of the water stored behind the dam being capable of causing rapid and unexpected flooding downstream and immense destruction resulting in loss of life and substantial property damage. There are four major causes of dam failures, as outlined in Table 6.12.1 below. 112

Table 6.12.1: Dam Failure Causes

Dam Failure Cause	Description
Overtopping	These failures occur because of poor spillway design, leading to a reservoir filling too high with water, especially in times of heavy rainfall.
Foundation Defects	These failures occur because of settling in the foundation of the dam, instability of slopes surrounding the dam, uplift pressures, and seepage around the foundation. All these failures result in structural instability and potential dam failure.
Piping and Seepage Failures	These failures occur because of internal erosion caused by seepage and erosion along hydraulic structures such as spillways. Erosion due to animal burrows and/or cracks in the dam structure contributes to these types of failures.
Conduit and Valve Failures	These failures occur as a result of problems with values and conduits.

Location

Figure 6.12.1 shows dam locations and owner types across Austin County and highlights those with high or significant hazard potentials. There is only one dam identified with a significant hazard potential. There are no levees located within Austin County.

Extent

The United States Army Corps of Engineers (USACE) keeps a database of dams, the National Inventory of Dams. Among the many attributes recorded is downstream hazard potential. Ratings of high, significant, or low are given to each dam depending on the potential hazard to the downstream area resulting from failure or maloperation. If it is estimated that there will be any probable loss of any human life this automatically puts the dam in the high hazard category. If there are any estimated economic, environmental, or lifeline losses this places a dam in the significant hazard category. If these losses are low and generally limited to the dam owner, a dam will be categorized as low hazard. The hazard potential rating does not reflect the current condition of the dam or the likelihood of the dam failing. The Texas Commission on Environmental Quality (TCEQ) Dam Safety program also determines the hazard classification of dams based on the criteria in 30 Texas Administrative Code 299.14, as seen in Table 6.12.2 below.

Table 6.12.2: Dam Hazard Classifications

Hazard Classification	Potential Loss of Life	Potential Economic Loss	
Low	No loss of life	Minimal (located primarily in rural areas where failure may damage occasional farm buildings, limited agricultural improvements, and minor highways.)	

Hazard Classification	Potential Loss of Life	Potential Economic Loss
Significant	Loss of human life possible (1-6 lives or 1-2 habitable structures in the breach inundation area downstream of the dam.)	Appreciable (located primarily in rural areas where failure may cause damage to isolated homes, damage to secondary highways, damage to minor railroads, or interruption of service or use of public utilities.)
High	Loss of life expected (7+ lives or 3+ habitable structures in the breach inundation area downstream of the dam.)	Excessive (located primarily in or near urban areas where failure would be expected to cause extensive damage to public facilities, agricultural, industrial, or commercial facilities, public utilities, including the design purpose of the utility, main highways, or railroads used as a major transportation system.)

According to the USACE National Inventory of Dams, there are 21 total dams in the county with 1 being categorized as having a significant hazard potential, the Peters Lake Dam. A dam is exempt from safety requirements, such as having an Emergency Action Plan on file if it has a maximum impoundment capacity of less than 500 acre feet and is either classified as a low or significant hazard, on private property, in a county with a population of less than 350,000 (as per the 2010 census) and not within the corporate limits of a municipality. The Peters Lake Dam is the only dam within the county classified as having a significant hazard potential. There are no dams within Austin County that have a high hazard potential. The Peters Lake Dam has a max storage of 84 acre-feet, meaning in the event of a failure, 84 acres downstream of the dam could be covered by 1 foot of water. This privately owned dam was built in 1939 and has an Emergency Action Plan on file that was last revised on 1/20/2012. It sits south of FM 949 and is connected to Deadman Creek.

Table 6.12.5: Austin County Dams and Hazard Potential Totals

Significant Hazard Potential Dams	Low Hazard Potential Dams	Total Dams
1	20	21

While the probability of dam failure is low, a worst-case scenario for this hazard would be a heavy rain event or tropical storm, like Hurricane Harvey in 2017, that stalls over the county bringing large rainfall totals that could result in a dam failure of significant or high hazard dams within the planning area. Figure 6.12.1 above shows dam locations within the county, with the 1 significant hazard dam being circled in green. The county and participating jurisdictions are only concerned with dams that have a significant or high hazard classification as these pose the most risk to life and property. Dams categorized as having a significant hazard potential are often located in predominantly rural or agricultural areas, however the potential for loss of life or property damage still exists. For a dam with a significant hazard rating, this means 1-6 lives or 1-2 habitable structures in the breach inundation area downstream of the dam could be lost.

Historic Occurrences

The Association of State Dam Safety Officials (ASDSO) Dam Incident Database provides basic information on dam safety incidents to ASDSO members, dam safety stakeholders, the media, and the public. According to the ASDSO, there have been no historical occurrences of dam failure within Austin County. 115

Probability of Future Occurrences

The State of Texas has not experienced loss of life or extensive economic damage due to a dam failure since the City of Austin dam failure of April 7, 1900, which was caused by heavy rainfall and faulty construction. 116 The risk of dam failure is monitored closely by TCEQ and local emergency management staff. The probability of a future dam/levee failure within Austin County is low. However, it is important to note that increases in the amount and intensity of rainfall will lead to additional pressures being placed on these systems. Additionally, as these dams/levees age, and as development increases in areas that are downstream of dam/levee inundation zones, the risk becomes higher. It is likely that dams within the county that are rated as low-hazard potential structures today may have a different classification in the future. TCEQ administers the High Hazard Potential Dam (HHPD) Grant Program, which provides technical, planning, design, and construction assistance in the form of grants for the rehabilitation of eligible high-hazard potential dams. 117

Populations at Risk

Vulnerable populations for this hazard include those that are located within the dam inundation zones (areas downstream of the dam that would be flooded in the event of a failure). For Austin County the populations at risk from a dam failure is negligible. The one dam of concern for this HMP is not located near large residential areas or located within any of the participating jurisdiction's city limits. A breach could potentially affect the nearby roads and 1-2 residences.

Typically, flood inundation maps that are created by the USACE show how water might behave in the event of a breech or failure. Areas on the map can show where water may go upstream and downstream of dams, including how far it may extend past the banks of a river or waterway and how deep it may be. These maps aid in identifying populations at risk (who and what could be damaged) within dam inundation zones and how much time there might be to give evacuation notice in an area that may flood. These maps are important for the development of emergency action plans, evacuation plans, and other emergency response activities. However, the USACE does not have dam inundation maps produced for Austin County. This has been noted as a data deficiency for this hazard and is addressed within Section 7: Mitigation Action Plan as an action item for all plan participants.

Climate Change Impacts

Temperatures and precipitation totals are expected to increase due to climate change, leading to more frequent or intense periods of rainfall and flooding. These increased volumes could potentially cause more pressure on aging dam infrastructure.

Table 6.12.3: Climate Change Impacts Summary, Dam/Levee Failure

Location The location of dam failures is not expected to change.	
Extent/Intensity The extent and intensity of dam failure is not expected to change.	
Frequency	There are no clear trends in the frequency of dam failures within the county.
Duration	The duration of dam failures is not expected to change.

Section 6.13: Emerging Infectious Diseases

6.13 Emerging Infectious Diseases

Emerging Infectious Diseases (EID) are defined by the National Institute of Allergy and Infectious Diseases as "infectious diseases that have newly appeared in a population or have existed but are rapidly increasing in incidence or geographic range." Similarly, a pandemic is a disease outbreak that spans several countries and affects many people. Pandemics are most often caused by viruses which can easily spread from person to person. This hazard profile will refer to EID and use the 2019 coronavirus, SARS-CoV-2, pandemic to give a clearer picture of the risk and vulnerability of this new hazard of concern for the county.

Location

The risk of EID applies the same to the entire county as this hazard has no geographic boundaries. However, areas that are more densely populated can contribute to the rapid spread of EID.

Extent

The extent of an infected population depends on how the illness is spread and methods of transmissibility and detection. In areas that are more densely populated, contact between infected and uninfected individuals may be greater than in rural areas leading to more chances for infection.

Historic Occurrences

Pandemics can emerge anywhere and quickly spread. It is difficult to predict when or where the next pandemic will occur. ¹²⁰ According to the CDC, five pandemics have occurred within the US since 1918. The table below outlines these pandemics, when they occurred, and the underlying cause. ¹²¹

Table 6.13.1: Historic Pandemic Occurrences in the US

Pandemic Name	Estimated Deaths (US only)	Cause
1918 Pandemic	675,000	Influenza virus, H1N1
1957- 1958 Pandemic	116,000	Influenza virus, H2N2
1968 Pandemic	100,000	Influenza virus, H3N2
2009 H1N1 Pandemic	12,469	Influenza virus, H1N1 pdm09 virus
2020 Covid-19 Pandemic	1,181,607	SARS-CoV-2 virus

Presidential Disaster Declarations

There have been 2 federally declared emerging infectious disease related disaster declarations in Austin County for EID listed under biological incidents.

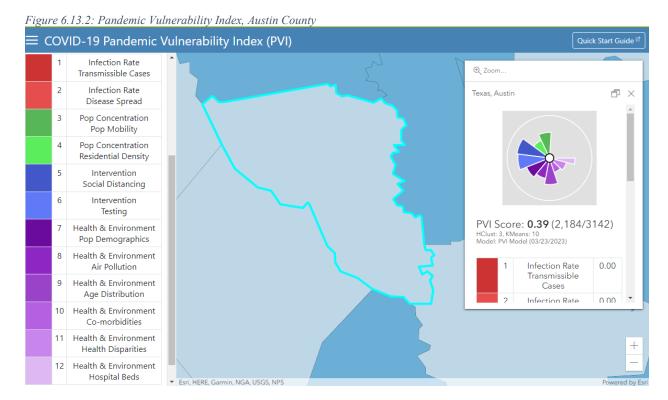
Table 6.13.2: Federal Disaster Declarations for Emerging Infectious Diseases

Date	Disaster Number	Declaration Types	Incident Type	Declaration Title
3/13/2020	3458	Major Disaster Declaration	Biological	Covid-19
3/25/2020	4485	Emergency Declaration	Biological	Covid-19 Pandemic

USDA Disaster Declarations

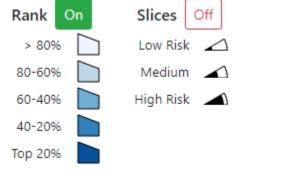
The Secretary of Agriculture is authorized to designate counties as disaster areas to make EM loans available to producers suffering losses in those counties and in counties that are contiguous to a designated county. In addition to EM loan eligibility, other emergency assistance programs, such as FSA disaster assistance programs, have historically used disaster designations as an eligibility trigger. USDA

Secretarial disaster designations must be requested of the Secretary of Agriculture by a governor or the governor's authorized representative, by an Indian Tribal Council leader, or by an FSA SED. The Secretarial disaster designation is the most widely used. When there is a presidential disaster declaration, FEMA immediately notifies FSA of the primary counties named in a Presidential declaration. USDA Disaster Declarations for Austin County since the last HMP update are listed in the table below.⁴⁰


Table 6.13.3: USDA Declared Disasters (2018-2023), Emerging Infectious Diseases

Crop Disaster Year	Disaster Description	Designation Number
None		

Probability of Future Occurrences


EID and pandemics can emerge anywhere and quickly spread. It is difficult to predict when or where the next pandemic will occur. As seen in The National Center for Biotechnology Information review titled "The consequences of human actions on risks for infectious diseases", The number of events of emerging infections has been increasing over the last 100 years. EIDs have been reviewed extensively during the last two decades, and it is now generally accepted that most drivers of emerging diseases are ecological, and the majority of these caused by anthropogenic influences such as increased travelling and transport of animals and goods; changes in ecosystems; deforestation and reforestation; altered land use; increased irrigation and creation of water dams and reservoirs; and urbanization. 122

The National Institute of Environmental Health Sciences developed the COVID-19 Pandemic Vulnerability Index (PVI) Dashboard. This Dashboard creates risk profiles, called PVI Scorecards, for each county in the United States. The PVI summarizes and visualizes overall risk in a radar chart, which is a type of pie chart with various data sources comprising each slice of the pie. Austin County saw 6,867 Covid-19 cases and 83 deaths during the most recent pandemic. As seen in the figure below, Austin County's PVI score is 0.39. 123

In the figure above, he slices shown in the chart to the right indicate a different data source (as described on the left of the figure). The information from each slice is combined to generate a PVI score for each county. A 0.39 PVI score puts Austin County in the > 80% vulnerability ranking. Additionally, the bigger the "slice" shown for each item in the pie chart indicates the county has a higher risk for that area.

Figure 6.13.3: Pandemic Vulnerability Index Ranking Legend

Populations at Risk

EID can vary on severity for different populations based on age, underlying conditions, and how the disease is spread. The last 5 pandemics experienced in the US were respiratory illnesses. Populations that were/are most at risk include people who are older, those with heart or lung conditions, people with compromised immune systems, and people who are obese or diabetic.¹²⁴

Climate Change Impacts

According to the CDC, milder winters, warmer summers, and fewer days of frost make it easier for these and other infectious diseases to expand into new geographic areas and infect more people. As climate changes, new infections may emerge that threaten human health or livelihood.¹²⁵

Table 6.13.4: Climate Change Impacts Summary, Emerging Infectious Diseases

Location	The location of EID is expected to increase in urban areas of the county.
Extent/Intensity	The extent and intensity of EID is expected to increase.
Frequency	Frequency of EID is expected to increase.
Duration	There is no clear trend in duration of EID.

Section 6.14: Cybersecurity

6.14 Cybersecurity

The Internet has improved communication, innovation, and access to information, however due to its largely open and unregulated nature municipal governments are more vulnerable to the hazards associated with cybersecurity threats and incidents. FEMA defines cyberattacks as "malicious attempts to access or damage a computer or network system." Cyberattacks can lead to the loss of money or the theft of personal, financial, and medical information." Cybersecurity involves preventing, detecting, and responding to those cyberattacks that can have wide-ranging effects on individuals, organizations, the community, and the nation. ¹²⁶ Cyber terrorism refers to an attack on information technology itself in a way that would radically disrupt networked services. For example, cyber terrorists could disable networked emergency systems or hack into networks housing critical financial information. Cyber-attacks can take many forms. They can use computers, mobile phones, gaming systems and other devices, they can include fraud or identity theft, block access or delete personal documents and pictures, may target children, and may cause problems with business services, transportation, and power. ¹²⁷ The table below outlines some key terms and definitions for this hazard of concern.

Table 6.14.1: Key terms and definitions for Cybersecurity

Key terms	Definition			
Threat actor	Who is behind the event?			
	This could be the external "bad guy" that launches a phishing campaign or an			
	employee who leaves sensitive documents in their seat back pocket.			
Threat action	What tactics (actions) were used to affect an asset?			
	The seven primary categories of threat actions include: Malware, Hacking,			
	Social, Misuse, Physical, Error and Environmental.			
Incident	A security event that compromises the integrity, confidentiality or availability			
	of an information asset.			
Breach	An incident that results in the confirmed disclosure—not just potential			
	exposure—of data to an unauthorized party. A Distributed Denial of Service			
	(DDoS) attack, for instance, is most often an incident rather than a breach,			
	since no data is exfiltrated. That doesn't make it any less serious.			

Location

These attacks have no set geographic boundary and can occur anywhere, facilitated by the internet. Cybersecurity is an evolving, borderless challenge especially if there are vulnerabilities in software, unsecure or weak passwords, social engineering attacks, and unsecure internet connections.

Extent

The effect of a cyber-attack event can vary depending on the type of attack and the magnitude of the event or events. According to the Verizon Data Breach Investigations Report (DBIR), "There are four key paths leading cyber-attacks: Credentials, Phishing, Exploiting vulnerabilities, and Botnets. All four are pervasive in all areas of the DBIR, and no organization is safe without a plan to handle each of them." 128

Historic Occurrences

There have been no historic occurrences or documented cyber-attacks within Austin County. According to the Verizon DBIR, the North American Region (comprised of the US and Canada) has experienced 9,036 cybersecurity incidents, 1,924 of those with confirmed data disclosure between November 1, 2021, through October 31, 2022. 85% of breaches were due to system intrusion, basic web application attacks

and social engineering. Threat actors for these breaches included external (94%), internal (12%), multiple (9%), and partner (2%). Motives for these cyber-attacks were financial (99%), espionage (1%), and grudge (1%). Data comprised included credentials (67%), internal (50%), personal (38%), and other (24%).

Presidential Disaster Declarations

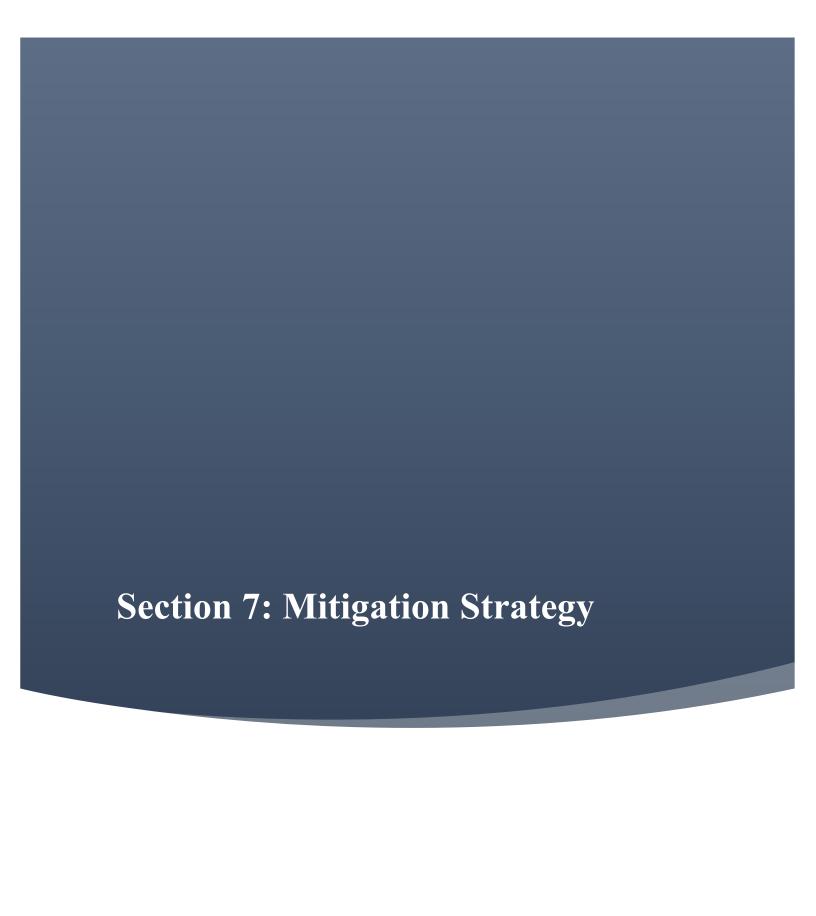
There have been no federally declared cyber-attack or cyber terrorism-related disaster declarations in Austin County since 1950.

USDA Disaster Declarations

Because cyber-attacks and cyber terrorism is a human-caused hazard, no USDA Disaster Declarations are associated with the hazard.

Probability of Future Occurrences

As cybercriminals become more sophisticated in the future, the county's vulnerability to cyber-attacks may change significantly. It is difficult to predict the probability of future occurrences due to the unpredictable nature of this hazard. Opportunistic criminals might also leverage natural disasters to target already vulnerable systems.


To decrease the number of future cybersecurity related attacks, FEMA suggests a variety of prevention methods that can be incorporated now, such as: keeping anti-virus software updated, using strong passwords. Changing passwords monthly, watching for suspicious activity, checking account statements and credit reports regularly, using secure internet communications, using a Virtual Private Network that creates a secure connection, using antivirus solutions (malware, and firewalls) to block threats., regularly back up files in an encrypted file or encrypted file storage device, limiting any personal information shared online, changing privacy settings, and protecting home networks. 129

Populations at Risk

Everyone is equally at risk for this hazard. As the US becomes increasingly reliant on technology, the vulnerability to cyber threats will increases. A significant number of people fear data breaches as the outcomes result in disruptions to sectors like transportation and healthcare and include societal impacts like mistrust.

Climate Change Impacts

This is a human-caused hazard and there are no climate change impacts associated with the hazard.

Section 7: MITIGATION STRATEGY

The planning process, hazard analysis, and vulnerability assessment serve as a foundation for a meaningful hazard mitigation strategy. The mitigation strategy provides an outline for how the county and the local jurisdictions aim to address and reduce the risks associated with the natural hazards identified in the HMP and reduce the potential impact on residents and structures. The mitigation strategy is divided into three sections the mission statement, goals and objectives, and the mitigation action plan. The mission statement provides the overall purpose of the mitigation strategy and the HMP. The goals and objectives provide milestones for how the county aims to meet this purpose. The mitigation action plan details specific mitigation actions, or projects, programs, and polices the county aims to meet these goals and objectives.

Mission Statement

The HMP aims to implement new policies, programs, and projects to reduce the risks and impacts associated with natural hazards, including public education and partnerships between local officials and residents.

Goals

- 1) Educate citizens regarding emergency situations related to hazards.
- 2) Develop publications and educational information on all hazards that is easily accessible to all within Austin County.
- 3) Promote the use of emergency notification systems and weather alerts for all hazards.
- 4) Decrease the risk to life and property from hazards through planning, preparation, and mitigation.
- 5) Develop policies and strategies to effectively manage and reduce risk.
- 6) Increase the resiliency of Austin County through projects and strategies that reduce the impacts of hazards.
- 7) Enhance coordination between local jurisdictions, county, state, and federal agencies.
- 8) Support the continuity of operations before, during, and after hazard events.
- 9) Incorporate hazard mitigation into community planning such as codes/ordinances, day-to-day operations, and projects.
- 10) Identify, protect, and assist socially vulnerable populations recovery from hazard impacts.

Objectives

- Eliminate the number of vulnerable structures in areas susceptible to repetitive flooding.
- Alert motorist with permanent postings at roadways where flooding or flash flooding, or dangerous road conditions due to winter weather are prevalent.
- Provide alternative power sources for critical facilities and infrastructure.

Mitigation Action Plan

The mitigation action plan explains the specific programs, policies, and projects that the county and the local jurisdictions aim to implement for the county to reach its HMP objectives and goals. The mitigation action plan provides the details of each mitigation action including which local department will oversee implementing the actions, how the county or local jurisdiction plan to pay for these actions, and the estimated time for implementing these actions.

Each jurisdiction and the county submitted their mitigation actions based on their greatest vulnerabilities and needs. Each action was evaluated for feasibility using FEMA's BCA Analysis Toolkit. The actions are separated by jurisdiction and include the BCA score for each.

All Participating Jurisdictions Mitigation Actions

Priority Ranking: ALL1, ALL2, ALL3

Priority was determined by the HMC considering what was the most feasible and important for all participating jurisdictions.

Table 7.1: 2018 HMP Action Items- Austin County and All Participating Jurisdictions

Action Item #	Remove from HMP	Keep in HMP	What is the status of the Action Item? If the Action Item is being removed, note why.
A1	X		Remove, participating jurisdictions will address in their action items if applicable
A2	X		Remove, participating jurisdictions will address in their action items if applicable
A3	X		Remove, participating jurisdictions will address in their action items if applicable
A4	X		Remove, participating jurisdictions will address in their action items if applicable
A5		X	Renamed ALL2
A6	X	X	Renamed ALL1
A7	X		Remove, no support
A8	X		Remove, no longer feasible
A9	X		Remove, participating jurisdictions will address in their action items if applicable

Jurisdiction:	Austin County and All Participating	Jurisdictions	Action Number:	ALL1	
Hazard(s) Addressed:	Flooding, Wildfire, Severe Thunderstorms & Lightning Tornado/Microbursts, Erosion, Winter Weather, Drought & Expansive Soils, Windstorm, Hail, Hurricanes, Tropical Storms, & Tro Extreme Heat, Dam/Levee Failure, Emerging Infectious Diseases, Cybersecurity,	,			
Project Title:	Education and Mitigation Techniqu	es			
Project Description:	Implement an outreach and education all hazards to reduce loss of life and		te the public on mitigation	techniques for	
Responsible Entity:	County Judge and City Manager's o	office or Mayor for ea	ch participating jurisdictio	n	
Losses avoided:	Preservation of property, decreased of human life and injuries	financial losses due t	o natural hazards, and miti	igating the loss	
Cost Estimate:	\$7,000	Timeframe:	12-24 months		
Potential Funding Sources:	Local budget and salary, HMPG Benefit-Cost Analysis: N/A				
Is this action related to	a critical facility or lifeline?			Yes	
Does this action reduce the effects of hazards on existing buildings? Yes					
Does this action reduce	the effects of hazards for new building	ngs, infrastructure, or	future development?	Yes	
Does the action identify	y, analyze, and prioritize actions relate	ed to continued comp	liance with the NFIP?	No	

Jurisdiction:	Austin County and All Participati	ing Jurisdictions		Action Number:	ALL2
Hazard(s)	Drought & Expansive Soils,				
Addressed:	Extreme Heat				
Project Title:	Ordinance Adoption				
Project Description:	All participating jurisdictions will develop an ordinance to require incorporating drought tolerant landscape design into all new county and city owned properties.				
Responsible Entity:	County Commissioners Court and City Councils of each participating jurisdiction				
Losses avoided:	Reduction in water needs during drought, and preserving much needed ground water for agricultural purposes throughout the county				
Cost Estimate:	\$1000	Timeframe:	3 months		
Potential Funding	Staff time and wages	Benefit-Cost	N/A		
Sources:	_	Analysis:			
Is this action related to	a critical facility or lifeline?				Yes
Does this action reduce	Does this action reduce the effects of hazards on existing buildings?				
Does this action reduce	the effects of hazards for new buil	dings, infrastruc	ture, or futu	re development?	Yes
Does the action identify	y, analyze, and prioritize actions re	lated to continue	d complianc	e with the NFIP?	No

Jurisdiction:	Austin County and All Participati	ing Jurisdictions		Action Number:	ALL3	
Hazard(s) Addressed:	Drought & Expansive Soils, Dam/Levee Failure, Erosion	Dam/Levee Failure,				
Project Title:	Data Deficiencies	Data Deficiencies				
Project Description:	Address data deficiencies for erosion, expansive soils, and dam/levee failure hazards to identify the extent, vulnerability, and potential impacts of these hazards. Specific Data Deficiencies: -Conduct a risk assessment of dams with significant hazard potential within the county to identify flood inundation areas. -Record and track future instances of erosion and expansive soil events.					
Responsible Entity:	Austin County Engineer, Austin	County Road &	Bridge, All	participating jurisdiction	ons.	
Losses avoided:	Prevent loss of life and property					
Cost Estimate:	\$100,000	Timeframe:	12-36 moi	nths		
Potential Funding Sources:	HMGP, USACE, USGS FIM, TWDB, TCEQ	Benefit-Cost Analysis:	More than	a 1:4 BCR		
Is this action related to	a critical facility or lifeline?					
Does this action reduce the effects of hazards on existing buildings? Yes					Yes	
Does this action reduce	the effects of hazards for new buil	dings, infrastruc	ture, or futu	re development?	Yes	
Does the action identify	y, analyze, and prioritize actions re	lated to continue	d complian	ce with the NFIP?	Yes	

Jurisdiction Specific Mitigation Actions

Austin County

Priority Ranking: A1, A2, A3

Priority was determined by county staff considering need, feasibility, cost, and implementation timeframe.

The 2018 HMP update for Austin County grouped action items for the county and all participating jurisdictions. For the status of these previous action items, see Table 7.1 above.

Jurisdiction:	Austin County		Action Nu	ımber:	A1
	Severe Thunderstorm & Lighting				
Hazard(s) Addressed:	Winter Weather				
Hurricanes, Tropical Storms & Tropical Depressions					
Project Title:	Court House Generator				
Project Description:	Power backup supplies for critical infrastruc	Power backup supplies for critical infrastructure, Court House and secondary EOC			
Responsible Entity:	Austin County				
Losses Avoided:	Customer service to population served, further damage during a disaster with power				
Losses Avoided.	interruption				
Partners:	Local contractor, meeting bid processes				
Cost Estimate:	\$255,116	Timeframe:		12 -24 mc	nths
Potential Funding Sources:	HMPG, General Funds, GLO, FEMA	Benefit-Cost A	nalysis:	1.27	
Is this action related to a critical	Is this action related to a critical facility or lifeline?				
Does this action reduce the effects of hazards on existing buildings? Yes					Yes
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development? Yes					
Does the action identify, analyz	ze, and prioritize actions related to continued	compliance with	the NFIP?)	No

Jurisdiction:	Austin County	Actio	n Number:	A2		
Hazand(s) Addmassed.	Flooding					
Hazard(s) Addressed:	Erosion					
Project Title:	Hurtig Road repair and bridge installation	Hurtig Road repair and bridge installation				
Project Description:	Culvert replacement with bridge and roadw	Culvert replacement with bridge and roadway repair				
Responsible Entity:	Austin County					
Losses Avoided:	Access to multiple homes and property dead end roadway.					
Partners:	Local contractor, meeting bid processes					
Cost Estimate:	\$2,500,000	Timeframe:	12-24 mo	nths		
Potential Funding Sources:	HMPG, General Funds, GLO, FEMA	Benefit-Cost Analys	sis: 2.2			
Is this action related to a critical	al facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings? Yes						
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development? Yes						
Does the action identify, analy	ze, and prioritize actions related to continued	compliance with the N	IFIP?	Yes		

Jurisdiction:	Austin County	Acti	ion Number:	A3		
Hazand(s) Addressed.	Flooding	Flooding				
Hazard(s) Addressed:	Erosion					
Project Title:	Peter San Felipe bridge abutment and shoul	Peter San Felipe bridge abutment and shoulder repair (closed bridge)				
Project Description:	Abutment repair, shoulder and roadway rep	air				
Responsible Entity:	Austin County					
Losses Avoided:	Access to multiple homes and property dead end roadway.					
Partners:	Local contractor, meeting bid processes					
Cost Estimate:	\$1,827,601	Timeframe:	12 -24 mg	onths		
Potential Funding Sources:	HMPG, General Funds, GLO, FEMA	Benefit-Cost Analy	<u>vsis:</u> 1.75			
Is this action related to a critical	al facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings? Yes						
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development? Yes						
Does the action identify, analy	ze, and prioritize actions related to continued	compliance with the	NFIP?	Yes		

Bellville

Priority Ranking: B1

There was only one action item identified for this HMP update and the priority ranking reflects this.

Table 7.2: 2018 HMP Action Items- City of Bellville

Action	Remove from HMP	Keep in HMP	What is the status of the Action Item?
Item #			If the Action Item is being removed, note why.
B 1	X		Completed
B2	X		Remove, no longer feasible.
B3	X		Completed
B4	X		Completed
B5	X		Remove, no longer feasible.
B6	X		Remove, no longer feasible.
B7	X		Remove, no longer feasible.

Jurisdiction:	City of Bellville		Action Number:	B1
	Severe Thunderstorm & Lightning,			
	Winter Weather,			
Hazard(s) Addressed:	Windstorm,			
	Extreme Heat,			
	Hurricanes, Tropical Storms & Tropical Depre	ssions		
Project Title:	Sewer Lift Stations throughout the City			
Project Description:	Install generators at each lift station			
Responsible Entity:	City of Bellville			
Losses Avoided:	Outflow of wastewater into creeks and on land			
Partners:	Local contractors			
Cost Estimate:	\$517,988	Timeframe:	36 months	
Potential Funding	DHS, FPMS, BRIC, HMGP	Benefit-Cost	1.45	
Sources:	DH3, FFM3, BRIC, HMOF	Analysis:	1.43	
Is this action related to a critical facility or lifeline?				
Does this action reduce the effects of hazards on existing buildings?				
Does this action reduce the	effects of hazards for new buildings, infrastructu	ire, or future deve	elopment?	Yes
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	Yes

Brazos Country

Priority Ranking: BC1, BC2, BC4, BC3
Priority was determined by feasibility, cost, need, and implementation timeframe.

Table 7.3: 2018 HMP Action Items- City of Brazos Country

Action Item #	Remove from HMP	Keep in HMP	What is the status of the Action Item? If the Action Item is being removed, note why.
C1		X	Renamed BC4
C2		X	Renamed BC3
C3		X	Renamed BC2
C4		X	Renamed BC1

Jurisdiction:	City of Brazos Country		Action Number:	BC1	
Hazard(s) Addressed:	Flooding				
Project Title:	Public Information and Awareness				
Project Description:	Acquire signage for road closures and detours	during flood eve	nts to inform citizens	of flood	
Troject Description.	dangers				
Responsible Entity:	City of Brazos Country, City Council				
Losses Avoided:	Protection of life and loss of property (vehicles)				
Partners:	None				
Cost Estimate:	\$5,000	Timeframe:	12 months		
Potential Funding	General Funds	Benefit-Cost	N/A		
Sources:	General Funds	Analysis:	IN/A		
Is this action related to a cri	tical facility or lifeline?			Yes	
Does this action reduce the effects of hazards on existing buildings?					
Does this action reduce the	Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

Jurisdiction:	City of Brazos Country		Action Number:	BC2
	Flooding,			
	Hurricanes, Tropical Storms, & Tropical Depre	essions,		
Hazard(s) Addressed:	Wildfire,			
	Severe Thunderstorms & Lightning,			
	Tornado/Microbursts			
Project Title:	Public Information and Awareness			
Project Description:	Expand evacuation and alert system to accomn	nodate population	growth	
Responsible Entity:	City of Brazos Country, City Council			
Losses Avoided:	Loss of life and property through early and bro	ad notification of	weather and wildfire	events
Partners:	None			
Cost Estimate:	\$3,000	Timeframe:	12 months	
Potential Funding	General Funds	Benefit-Cost	N/A	
Sources:		Analysis:		1
Is this action related to a critical facility or lifeline?				Yes
Does this action reduce the effects of hazards on existing buildings?				No
Does this action reduce the	effects of hazards for new buildings, infrastructu	ire, or future deve	elopment?	No
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No

Jurisdiction:	City of Brazos Country		Action Number:	BC3
Hazard(s) Addressed:	Wildfire			
Project Title:	Emergency Services			
Project Description:	Improve water system to support wildfire fight	ting activities		
Responsible Entity:	City of Brazos Country, City Council			
Losses Avoided:	Loss of life and property			
Partners:	None			
Cost Estimate:	\$200,000	Timeframe:	12-18 months	
	Water revenues, FEMA-Fire Mgmt.			
Potential Funding	Assistance Grants, FEMA-Emergency	Benefit-Cost	3.98	
Sources:	Mgmt. Performance Grants, FEMA-All	Analysis:	3.96	
	Hazards Operational Planning			
Is this action related to a critical facility or lifeline?				
Does this action reduce the effects of hazards on existing buildings?				
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No

Jurisdiction:	City of Brazos Country		Action Number:	BC4		
Hazard(s) Addressed:	Flooding	Flooding				
Project Title:	Prevention					
Project Description:	Adopt and enforce floodplain ordinance regulating the elevation of structures in a floodplain					
Responsible Entity:	City of Brazos Country, City Council					
Losses Avoided:	Loss of property by requiring structures to be 24" above the Base Flood Elevation					
Partners:	None					
Cost Estimate:	\$2,000	Timeframe:	12 months			
Potential Funding Sources:	General Funds	Benefit-Cost Analysis:	N/A			
Is this action related to a cri	tical facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings?				No		
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes		
Does the action identify, and	alyze, and prioritize actions related to continued	compliance with	the NFIP?	Yes		

Industry

Priority Ranking: I1

There was only one action identified for this HMP update and the priority ranking reflects this.

2018 HMP Action Items- None, the City of Industry is a new participant to this HMP

Jurisdiction:	City of Industry		Action Number:	I1	
	Severe Thunderstorms & Lighting,				
Hazard(s) Addressed:	Flooding,				
Hazaru(s) Addressed.	Winter Weather,				
	Hurricanes, Tropical Storms, & Tropical Depre	essions			
Project Title:	Industry Generator Project				
Project Description:	Place generators at City and Fireman's Halls for City EOC operations and shelters for backup				
Troject Bescription.	power systems and other critical facilities as identified by the city.				
Responsible Entity:	City of Industry				
Losses Avoided:	Reduce power outages during natural, man-mad	de, and local disa	sters		
Partners:	City of Industry and Local Contractors				
Cost Estimate:	\$130,000	Timeframe:	12-18 months		
Potential Funding	DHS, FPMS, BRIC, HMGP	Benefit-Cost	.02		
Sources:	, , , ,	Analysis:	.02		
Is this action related to a critical facility or lifeline?				Yes	
Does this action reduce the effects of hazards on existing buildings?					
	effects of hazards for new buildings, infrastructu			Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

San Felipe

Priority Ranking: SF1

Priority was determined by feasibility, cost, need, and implementation timeframe.

Table 7.4: 2018 HMP Action Items- Town of San Felipe

Action Item #	Remove from HMP	Keep in HMP	What is the status of the Action Item? If the Action Item is being removed, note why.
D1	X		No longer feasible

Jurisdiction:	Town of San Felipe		Action Number:	SF1	
	Extreme Heat,				
Hazard(s) Addressed:	Erosion,				
	Drought & Expansive Soils				
Project Title:	Restoration Street Project				
Project Description	Resurface streets, blade work, grading streets, drainage control, and base work for Sealy				
Project Description:	Road, Alvin Steet, Baron De Bastrop, and Guadalupe Street,				
Responsible Entity:	Town of San Felipe				
Losses Avoided:	Flooding to local residents and business				
Partners:	Local Road Construction Agencies				
Cost Estimate:	\$2,800,000	Timeframe:	36-48 months		
Potential Funding	FEMA, USACE, FPMS, BRIC, HMGP	Benefit-Cost	.06		
Sources:	TEMA, USACE, IT MS, BRIC, HMGI	Analysis:	.00		
Is this action related to a cri	tical facility or lifeline?			Yes	
Does this action reduce the effects of hazards on existing buildings?					
	effects of hazards for new buildings, infrastructu			Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	Yes	

Sealy

Priority Ranking: S7, S6, S1, S2, S3, S4, S5

Priority was determined by feasibility, cost, need, and implementation timeframe.

Table 7.5: 2018 HMP Action Items- City of Sealy

Action Item #	Remove from HMP	Keep in HMP	What is the status of the Action Item? If the Action Item is being removed, note why.
E1	X		Completed
E2	X		Completed
E3	X		Completed

Jurisdiction:	City of Sealy		Action Number:	S1	
Hazard(s) Addressed:	Flooding,				
Hazaru(s) Addressed.	Erosion				
Project Title:	B&PW Park Detention Basin and Storm Sewer	B&PW Park Detention Basin and Storm Sewer Improvements			
Project Description:	Expand existing B&PW detention basin and co	Expand existing B&PW detention basin and construct storm sewer improvements			
Responsible Entity:	City of Sealy				
Losses Avoided:	Avoid repetitive flooding of neighborhood during extreme rainfall events				
Partners:	None				
Cost Estimate:	\$4,734,545	Timeframe:	12-18 months		
Potential Funding	HMGP	Benefit-Cost	.60		
Sources:	HWOF	Analysis:	.00		
Is this action related to a cri	tical facility or lifeline?			Yes	
Does this action reduce the effects of hazards on existing buildings?			Yes		
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

Jurisdiction:	City of Sealy		Action Number:	S2	
	Flooding,				
Hazard(s) Addressed:	Hurricanes, Tropical Storms, & Tropical Depre	essions,			
	Erosion				
Project Title:	Sealy ISD Junior High Storm Sewer Detention	Basin			
	Construct Detention basin and storm sewer pipe to convey flood waters away from Sealy				
Project Description:	-foot stormwater	detention basin and c	construct		
Troject Description.	1500 linear feet of 48" diameter storm sewer in	nprovements to h	elp relieve flooding a	t Sealy	
	ISD Junior High Facility				
Responsible Entity:	City of Sealy				
Losses Avoided:	Mitigate Structure Damage and property damage	ge to Sealy Junio	r High School		
Partners:	None				
Cost Estimate:	\$892,264	Timeframe:	12-18 months		
Potential Funding	HMGP	Benefit-Cost	3.78		
Sources:	IIIVIOI	Analysis:	3.76		
Is this action related to a critical facility or lifeline?					
Does this action reduce the effects of hazards on existing buildings?					
Does this action reduce the	effects of hazards for new buildings, infrastructu	re, or future deve	elopment?	Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

Jurisdiction:	City of Sealy		Action Number:	S3		
	Flooding,					
Hazard(s) Addressed:	Hurricanes, Tropical Storms, & Tropical Depre	essions,				
	Erosion					
Project Title:	Generator for FM 3538 Regional Lift Station					
Project Description:	Install emergency power generator and automa	Install emergency power generator and automatic transfer switch				
Responsible Entity:	City of Sealy					
Losses Avoided:	Installing emergency power generator will protect residents and environment from sanitary sewer overflows during power outages					
Partners:	None					
Cost Estimate:	\$109,221	Timeframe:	12 months			
Potential Funding	HMGP	Benefit-Cost	0.25			
Sources:	IIIVIOI	Analysis:	0.23			
Is this action related to a critical facility or lifeline?						
Does this action reduce the effects of hazards on existing buildings?						
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?						
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No		

Jurisdiction:	City of Sealy		Action Number:	S4		
	Flooding,					
	Hurricanes, Tropical Storms, & Tropical Depressions,					
	Severe Thunderstorms & Lightning,					
Hazard(s) Addressed:	Extreme Heat,					
	Winter Weather,					
	Tornado/Microbursts,					
	Windstorm,					
	Cybersecurity					
Project Title:	Emergency Generator Columbus Rd FM-1094 lift station					
Project Description:	Install emergency power generator and automatic transfer switch for Columbus Rd FM-1094					
Project Description:	lift station					
Responsible Entity:	City of Sealy					
Losses Avoided:	Installing emergency power generator will prot	tect residents and	environment from sa	nitary		
	sewer overflows during power outages					
Partners:	None					
Cost Estimate:	\$109,221	Timeframe:	12 months			
Potential Funding	HMGP	Benefit-Cost	0.37			
Sources:		Analysis:	0.57			
Is this action related to a critical facility or lifeline?						
Does this action reduce the effects of hazards on existing buildings?						
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?						
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No		

Jurisdiction:	City of Sealy	I	Action Number:	S5		
	Flooding,					
Hazard(s) Addressed:	Hurricanes, Tropical Storms, & Tropical Depressions,					
	Severe Thunderstorms & Lightning,					
	Extreme Heat,					
	Winter Weather,					
	Tornado/Microbursts,					
	Windstorm,					
	Cybersecurity					
Project Title:	Generator for Michalke Rd Lift Station					
Project Description:	Install emergency power generator and automa	tic transfer switch	for Michlake Rd. li	ft station		
Responsible Entity:	City of Sealy					
Losses Avoided:	Installing emergency power generator will prot	tect residents and	environment from sa	initary		
Losses 11, oraca.	sewer overflows during power outages					
Partners:	None					
Cost Estimate:	\$109,221	Timeframe:	12 months			
Potential Funding Sources:	HMGP	Benefit-Cost Analysis:	0.33			
Is this action related to a critical facility or lifeline?				Yes		
Does this action reduce the effects of hazards on existing buildings?				Yes		
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes		
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with t	the NFIP?	No		

Jurisdiction:	City of Sealy		Action Number:	S6
Hazard(s) Addressed:	Flooding, Hurricanes, Tropical Storms, & Tropical Depressive Thunderstorms & Lightning, Extreme Heat, Winter Weather, Tornado/Microbursts, Windstorm, Cybersecurity	essions,		
Project Title:	Generator for Briarwood Estates Lift Station			
Project Description:	Install emergency power generator and automatic transfer switch for Briarwood Estates Lift Station			tes Lift
Responsible Entity:	City of Sealy			
Losses Avoided:	Installing emergency power generator will protect residents and environment from sanitary sewer overflows during power outages			
Partners:	None			
Cost Estimate:	\$130,461	Timeframe:	12 months	
Potential Funding Sources:	HMGP Benefit-Cost Analysis: 1.36			
Is this action related to a critical facility or lifeline?				Yes
Does this action reduce the effects of hazards on existing buildings?				
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No

Jurisdiction:	City of Sealy	4	Action Number:	S7	
Hazard(s) Addressed:	Flooding, Hurricanes, Tropical Storms, & Tropical Depressions, Severe Thunderstorms & Lightning, Extreme Heat, Winter Weather, Tornado/Microbursts, Windstorm, Cybersecurity				
Project Title:	Generator for Water Plant- Ward Bend				
Project Description:	Installation of Emergency Power Generator for the main SCADA HUB and provides pressure infrastructure. During power outages the SCAL of the City's water system and overall pressure distribution system. Install a 250k on-site perm switch. Generator will provide constant control water towers and other water plants.	control for the ent OA system is unablist is not able to be reasons and the control of the contr	tire City of Sealy wa ble to utilize master of maintained througho with automatic transf	ter control ut the er	
Responsible Entity:	City of Sealy				
Losses Avoided:	Elimination of localized power outages and rolling blackouts that have been increased with climate change				
Partners:	None				
Cost Estimate:	\$303,774	Timeframe:	12 months		
Potential Funding Sources:	HMGP Benefit-Cost Analysis: 1.64				
Is this action related to a critical facility or lifeline?					
Does this action reduce the effects of hazards on existing buildings? Yes					
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development? Yes					
Does the action identify, analyze, and prioritize actions related to continued compliance with the NFIP?					

South Frydek

No Action Items

2018 HMP Action Items- None, the City of South Frydek is a new participant to this HMP

Wallis

Priority Ranking: W1, W2, W3, W4

Priority was determined by feasibility, cost, need, and implementation timeframe.

Table 7.6: 2018 HMP Action Items- City of Wallis

Action Item #	Remove from HMP	Keep in HMP	What is the status of the Action Item? If the Action Item is being removed, note why.
F1	X		Completed
F2		X	Replaced by W3

Jurisdiction:	City of Wallis		Action Number:	W1	
Hazard(s) Addressed:	Drought & Expansive Soils	Drought & Expansive Soils			
Project Title:	Water Main Infrastructure				
Project Description:	Replace water main				
Responsible Entity:	City of Wallis, City Council				
Losses Avoided:	Water and Sewage disruption to a population 1,292 people				
Partners:	None				
Cost Estimate:	\$2,000,000	Timeframe:	36-48 months		
Potential Funding Sources:	TWDB, BRIC, HMGP Benefit-Cost Analysis: 73.16				
Is this action related to a critical facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings?			Yes		
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?			Yes		
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

Jurisdiction:	City of Wallis Action Number:			W2	
Hazard(s) Addressed:	Flooding				
Project Title:	Wastewater System				
Project Description:	Prevent infiltration into the wastewater treatme	ent plant.			
Responsible Entity:	City of Wallis, City Council				
Losses Avoided:	The impact of flooding on residents of Wallis includes threats to public health and safety from the floodwater itself, damage to residential and commercial properties				
Partners:	None				
Cost Estimate:	\$3,000,000	Timeframe:	36-48 months		
Potential Funding Sources:	GLO, TWDB, HMGP, USDA Benefit-Cost Analysis: 1.32				
Is this action related to a critical facility or lifeline?				Yes	
Does this action reduce the effects of hazards on existing buildings?				Yes	
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	Yes	

Jurisdiction:	City of Wallis		Action Number:	W3		
	Flooding,	Flooding,				
Hazard(s) Addressed:	Hurricanes, Tropical Storms, & Tropical Depressions,					
	Severe Thunderstorms & Lightning,					
Project Title:	Storm Drainage					
Project Description:	Improving drainage conditions preventing privi	ate and public flo	ooding			
Responsible Entity:	City of Wallis, City Council					
Losses Avoided:	Replacement costs of flooding events replacing real property damage					
Partners:	None					
Cost Estimate:	\$2,750,000	Timeframe:	36-48 months			
Potential Funding	GLO, TWDB, HMGP	Benefit-Cost				
Sources:	GLO, I WDB, HMGP Analysis:					
Is this action related to a critical facility or lifeline?			Yes			
Does this action reduce the effects of hazards on existing buildings?			Yes			
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?			Yes			
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	Yes		

Jurisdiction:	City of Wallis		Action Number:	W4	
Hazard(s) Addressed:	Hurricanes, Tropical Storms, & Tropical Depressions,				
Hazard(s) Addressed.	Severe Thunderstorms & Lightning,	levere Thunderstorms & Lightning,			
Project Title:	Police Department Generator				
Project Description:	Prevention of power loss to critical facilities				
Responsible Entity:	City of Wallis, City Council				
Losses Avoided:	Failure of communications and first responder resources during disasters				
Partners:	None				
Cost Estimate:	\$2,750,000	Timeframe:	12-24 months		
Potential Funding	GLO, HMGP	Benefit-Cost	1.2		
Sources:	GLO, Illvioi	Analysis:	1.2		
Is this action related to a critical facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings?			Yes		
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No	

Bellville ISD

Priority Ranking: BISD2, BISD1

Priority was determined by feasibility, cost, need, and implementation timeframe.

2018 HMP Action Items- None, Bellville ISD is a new participant to this HMP.

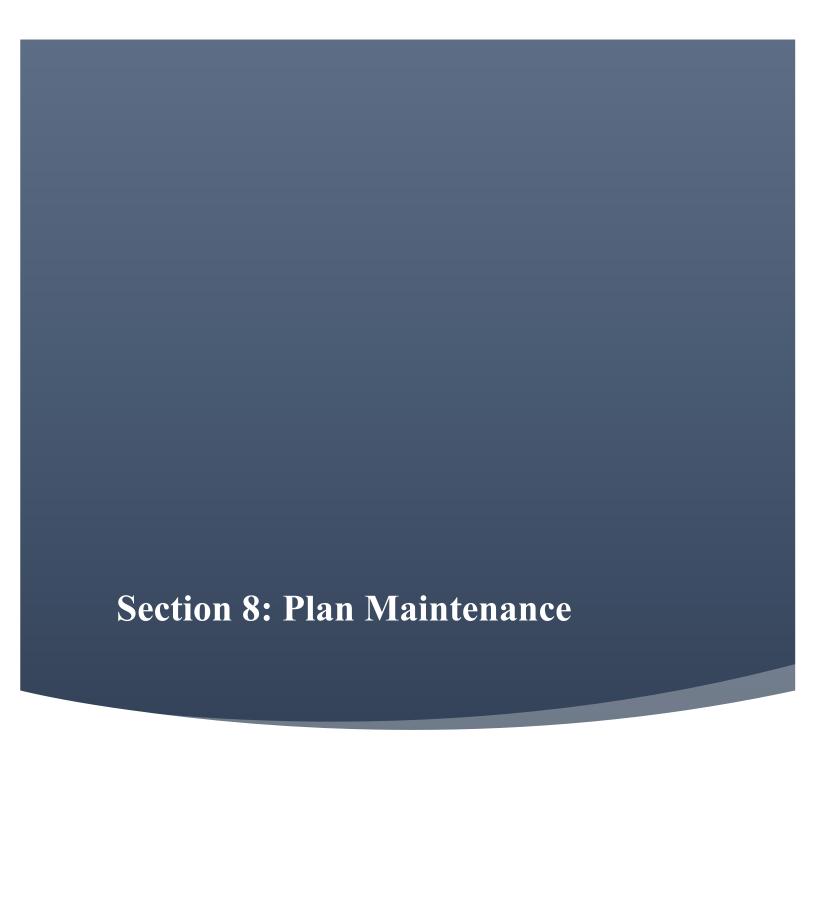
Jurisdiction:	Bellville Independent School District		Action Number:	BISD1	
	Drought & Expansive Soils,				
Hazard(s) Addressed:	Erosion,				
	Extreme Heat				
Project Title:	Bus Transportation Maintenance Facility Roady	vay			
Project Description:	Replace gravel and convert to concrete reducing	g erosion and ex	pansive soil problems		
Responsible Entity:	Bellville Independent School District				
	Will alleviate wear on school buses which cost upwards of 140,000 annually. Additionally,				
Losses Avoided:	the renovation would allow continued support d			s during	
	critical events meeting normal and MOU applications improving hazard mitigation.				
Partners:	None				
Cost Estimate:	\$2,000,000	Timeframe:	36-48 months		
Potential Funding	Community Bond, DHS, FPMS, BRIC,	Benefit-Cost	0.51		
Sources:	HMGP Analysis: 0.31				
Is this action related to a critical facility or lifeline?				Yes	
Does this action reduce the effects of hazards on existing buildings?				No	
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				No	
Does the action identify, an	alyze, and prioritize actions related to continued of	compliance with	the NFIP?	No	

Jurisdiction:	City of Wallis		Action Number:	BISD2		
	Severe Thunderstorms & Lightning,	Severe Thunderstorms & Lightning,				
Hazard(s) Addressed:	Γornado/Microbursts,					
	Winter Weather	Winter Weather				
Project Title:	High School Generator					
Project Description:	Provide backup power source for normal and d	isaster operations	S			
Responsible Entity:	Bellville Independent School District					
Losses Avoided:	Annual and quarterly power interruption can cost up to but not limited to \$10,000 per event. Additionally, power outages during certain times of the year can cause unexpected school disruption and transportation problems due to activities already scheduled, which also affects outside participants. Furthermore, MOUs have been established to provide temporary shelter and transport during a disaster, which further increases mitigation problems.			hool affects		
Partners:	None	-	-			
Cost Estimate:	\$650,000	Timeframe:	36-48 months			
Potential Funding Sources:	Community Bond, DHS, FPMS, BRIC, HMGP Benefit-Cost Analysis: 1.80					
Is this action related to a critical facility or lifeline?						
Does this action reduce the effects of hazards on existing buildings?						
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?						
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	the NFIP?	No		

Brazos ISD

No Action Items

2018 HMP Action Items- None, Brazos ISD is a new participant to this HMP.


Sealy ISD

Priority Ranking: SISD1

There was only one action identified for this HMP update and the priority ranking reflects this.

2018 HMP Action Items- None, Sealy ISD is a new participant to this HMP.

Jurisdiction:	Sealy Independent School District Action Number:		Action Number:	SISD1	
Hazard(s) Addressed:	Cybersecurity				
Project Title:	Cyber Attack Prevention and Recovery				
Project Description:	Replace and remove damaged confirmed infras	structure dealing	with confidential data	ı	
Project Description.	systems				
Responsible Entity:	Sealy Independent School District	Sealy Independent School District			
Losses Avoided:	Student and Staff data				
Partners:	None	None			
Cost Estimate:	\$3,500,000	Timeframe:	6-24 months		
Potential Funding	DHS, TEA, HMGP	Benefit-Cost	1.46		
Sources:	DIIS, TEA, HWOI	Analysis:			
Is this action related to a critical facility or lifeline?			Yes		
Does this action reduce the effects of hazards on existing buildings?				Yes	
Does this action reduce the effects of hazards for new buildings, infrastructure, or future development?				Yes	
Does the action identify, an	alyze, and prioritize actions related to continued	compliance with	h the NFIP?	No	

Section 8: PLAN MAINTENANCE

To remain an effective tool, the HMP will undergo continuous review and updates. This practice is known as plan maintenance and requires monitoring, evaluating, updating, and implementing the entirety of the written plan and planning process. To accomplish this, a Plan Maintenance Team (PMT) has been determined and is comprised of representatives from each of the county's participating jurisdictions. The Plan Maintenance Team Leader shall be the Austin County Emergency Management Coordinator.

Table 8.1.1: Plan Maintenance Team

Jurisdiction	Responsible Entity
Austin County	Austin County OEM and County Judge
City of Bellville	Emergency Management Coordinator, City Manager
Bellville ISD	Executive Director of Administration
City of Brazos Country	Mayor, City Manager
Brazos ISD	Chief Operations Officer
City of Industry	Mayor
Town of San Felipe	Mayor
City of Sealy	Mayor
Sealy ISD	Executive Director of Human Resources & Operations
City of South Frydek	Mayor
City of Wallis	Mayor

Public Involvement

Continued stakeholder and public involvement will remain a vital component of the HMP. The HMP will be hosted on the County and H-GAC websites, and public input can be submitted at any time. The PMT Leader is responsible for documenting public feedback and presenting the comments for discussion at each annual Plan Maintenance Meeting.

The PMT Leader will also conduct outreach and invite the public to annual Plan Maintenance meetings. The PMT Leader will notify the public of all annual meetings through by posting online and printed copies of the meeting agenda and posting fliers at city and county buildings 30 days prior to the meetings. In addition, each participating jurisdiction will seek input from the public on the status of existing hazards, emerging vulnerabilities, and evaluate the HMP's strategy with the public. During each meeting, the PMT will provide an open comment forum for interactive discussion with the public. The development of new goals and strategies will be a joint effort between the PMT Leader, PMT, and public participants.

Procedures & Schedule

Procedures to monitor and evaluate the HMP were determined during the December 18th meeting. This ensures that the goals, objectives, and the mitigation strategy are regularly examined for feasibility, and that the HMP remains a relevant and adaptive tool. The PMT will meet annually and hold its first meeting within one year after the plan's approval date. An additional mid-year meeting will be held 18 months prior to the plan's expiration to develop a timeline and strategy to update the HMP.

Any new mitigation actions, strategies, or required studies, suggestions for improvements or changes to the entire written plan or planning process will be submitted to the County's representative. The representative will evaluate the items for compliance with TDEM and FEMA regulations before leading the process to adopt or approve the new items or suggestions. Recommended changes, updates, and revisions will be implemented based on available funding to support revisions, and updates and will be assigned to appropriate officials with pre-determined timelines for completion. Updates to the HMP will then be adopted by the appropriate governing body. The plan will be updated every 5 years from the previous FEMA approval date and following the evaluation and monitoring procedures below for updates in the interim.

Table 8.1.2: Plan Maintenance: Evaluation & Monitoring Procedures

Method and Procedures	Schedule	Responsible Entity
The PMT Leader will advertise all annual meetings in local newspapers, post invitations on the County social media pages, and post fliers at city and county buildings 30 days prior to the meetings.	30 days prior to annual meetings	PMT Leader
The PMT Leader is responsible for evaluating the entire plan prior to the meeting. Each PMT member will be asked to identify and discuss any deficiencies in the plan as it relates to their jurisdiction. Each PMT member will discuss their findings followed by public input and comments.	Annually	PMT Leader, PMT member for each participating jurisdiction, and Public
Emerging hazards, risks, and vulnerabilities will be identified and discussed. 1) PMT members are responsible for monitoring each natural hazard in their jurisdiction and providing a written and/or verbal update on any new occurrences and emerging risks. 2) The PMT Leader will seek input from participants and the public at the annual meetings by opening the meeting for public comment. 3) Newly identified hazards, risks, and vulnerabilities will be assigned to a PMT member to research and monitor.	Annually	Public and all participating jurisdictions
 The PMT will evaluate the mitigation goals and objectives to ensure the HMP remains relevant, and the strategy continues to be effective. PMT members will identify new projects and/or re-prioritize existing strategies based on changes in their jurisdiction, emerging hazards, and shifting priorities. Mitigation strategies for the newly identified hazards, risks, and vulnerabilities will be proposed and discussed. Funding sources and multijurisdictional cooperation for new initiatives will be determined. 	Annually	PMT member for each participating jurisdiction
 Each participating jurisdiction will evaluate their progress implementing the HMP and suggested improvements to the entire current written plan, public participation and planning process. 1) Representatives will publicly discuss progress and submit written progress reports to the team leader. 2) Completed and ongoing mitigation actions will be discussed by responsible entity. 3) Unaddressed mitigation actions will be evaluated for relevancy and/or amended to increase feasibility. 4) Feasibility of the mitigation strategy will be evaluated, and any necessary revisions will be proposed. 	Annually	PMT, the responsible department identified in the mitigation action up for discussion, and the public.

Method and Procedures	Schedule	Responsible Entity
5) The team leader and each representative will report on all		
suggestions received throughout the past year on the planning		
process and the entire written plan and discuss how to		
incorporate these suggestions into current and future planning		
efforts.		
The PMT will develop a timeline and strategy to update the plan 12		
months before it expires. The update strategy will include:		
1) Identify entities responsible for drafting and submitting the	12-18	
update to TDEM.	months prior	
2) Send appropriate representatives to G-318 training.	to HMP	PMT Leader and PMT
3) Determine funding needs and funding sources for plan update.	expiration	
4) Review the entirety of the plan; discuss hazards, vulnerabilities	CAPITATION	
and impacts identified in the plan and what to include/ revise in		
the update		

Plan Integration

Integrating the HMP into county and local planning mechanisms is key to its success. Effective integration allows communities to benefit from existing plans and procedures to further reduce their vulnerability and risk. Upon approval of the plan and approval of updates or revisions as proposed by the PMT, each participating jurisdiction will follow the pre-determined actions:

To update and revise existing planning mechanisms to further integrate the HMP, each participating jurisdiction will follow a basic process(es) described in this section.

- 1.) Propose a policy, strategy, or regulatory amendment to the proper governing body.
- 2.) Advertise the amendment 15 days prior to meeting where it will be discussed. Advertising procedures for the public meeting(s) is outlined in the public involvement measures described in Section 8 of this plan.
- 3.) Provide the public, elected officials, and governing bodies the opportunity to discuss and comment upon proposed change(s).
- 4.) If the proposal is accepted, the change is implemented by the appropriate governing authority.

Several existing plans and programs that require integration of the HMP have been identified by the participating jurisdictions. The PMT will initiate the process described above. As each participating jurisdiction develops or approves new planning mechanisms, the mechanism's name and the integration method will be added to the HMP.

Since the last plan approval, a majority of the participating jurisdictions to this plan update have integrated the 2018 HMP into current planning mechanisms through updates to their FDPO, Subdivision Regulations, and building codes Hazard mitigation action items are routinely considered when annual budgets are reviewed by all jurisdictions, but very few action items were completed from the 2018 HMP to this update. Funding and staffing have been listed as a reoccurring capability limitation for all jurisdictions. The County considered the 2018 HMP and mitigation strategy when updating Subdivision Regulations and the FDPO. In September of 2021 there was an amendment to the current HMP with the City of Sealy. The cities of Belville, Sealy, and Wallis had action items that were completed from the previous plan update, as seen in Section 7 above.

Table 8.1.3: Adoption and Integration Procedures

Participating Jurisdiction	Adoption and Integration Procedures
Austin County	HMP and plan amendments will be presented to the Commissioner's Court by the Austin County Emergency Management Office. An agenda for the meeting will be posted 30 days in advance, and a 30-day period of public comment will be provided. Upon approval by Commissioner's Court, the approved HMP will be integrated into existing planning mechanisms described in Table 8.1.2.
City of Bellville	The Bellville PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the City Council for consideration. Bellville will advertise the amendment no less than 14 days before the meeting where it will be discussed.
Bellville ISD	The Bellville ISD PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the Board for approval.
City of Brazos Country	The Brazos Country PMT representative will select mitigation actions to be budgeted into the City's annual budget to be implemented the following year and then present these actions to the Board for approval
Brazos ISD	The Brazos ISD PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the Board for approval.
Town of San Felipe	San Felipe's PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the City Council for approval.
City of Sealy	The Sealy PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the City Council for consideration. Sealy will advertise the amendment no less than 14 days before the meeting where it will be discussed. If approved, the PMT representative will work with the City Manager to implement the proposal.
Sealy ISD	The Sealy ISD PMT representative will draft a proposal for incorporating the HMP's mitigation recommendations into their existing planning mechanisms. The proposal will be presented to the Board for approval.
City of Wallis	The Wallis PMT representative will select mitigation actions to be budgeted into the City's annual budget to be implemented the following year. The proposal will be presented before City Council. An agenda will be published 14 days in advance.

Table 8.1.4: Integration of HMP and Planning Mechanisms

Plan Name	Integration Methods
Disaster Recovery Plan	Both plans should be updated and maintained in accordance with the other plan's goals and strategies. The HMP will be consulted before any revisions or update to the disaster recovery plans are made.
Floodplain Management Plan	Austin County's floodplain regulations provide preventative measures to prevent future development in the floodplains, and it also provides corrective guidance on development in the floodplain. Both plans will be continuously evaluated and monitored. Any Emergency Operations Plan updates will refer to, incorporate, and/or complement the HMP.
Emergency Operations Plan	Both plans will be continuously evaluated and monitored. Any Emergency Operations Plan updates will refer to, incorporate, and/or complement the HMP.
Zoning Ordinance	When zoning ordinances for participating jurisdictions are being updated, include a member of the HMC on the update team to incorporate the HMP.
Subdivision Regulations	When Subdivision Regulations for participating jurisdictions are being updated, include a member of the HMC on the update team to incorporate the HMP.
Planning & Development Regulations, Building Codes	Each participating jurisdiction has reviewed the vulnerabilities defined in the HMP and will adopt codes that support mitigation strategy and mitigation activities. PMT members will propose code amendments to the appropriate governing body, following to process to amend codes in the jurisdiction, and document any regulation amendments to be included in the HMP update.
Annual Budget	Austin County and each participating jurisdiction will review their annual budget each year for opportunities to fund their highest priority mitigation actions.
Flood Damage Prevention Ordinance	When Flood Damage Prevention Ordinances for participating jurisdictions are being updated, include a member of the HMC on the update team to incorporate and complement the HMP.
Capital Improvements Plan	Jurisdictions will review their capital improvements plan for projects that can also serve as natural hazard mitigation infrastructure. The CIP will be updated with project schedules and policies that support the implementation of each jurisdiction's highest priority projects.

References

² Data USA. "Austin County, TX Profile" Retrieved from: https://datausa.io/profile/geo/austin-county-tx

⁴ U.S. Bureau of Labor Statistics, Unemployment Rate in Austin County, TX [TXAUST5URN]. Retrieved from FRED, Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/TXAUST5URN

⁵ U.S. Bureau of Labor Statistics, Unemployment Rate in Texas [LAUST4800000000003A]. Retrieved from FRED, Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/LAUST480000000000003A

⁶ U.S. Census Bureau. "QuickFacts, Austin County, Texas" Retrieved from: https://www.census.gov/quickfacts/fact/table/austincountytexas/PST045222

⁷ U.S. Census Bureau. "QuickFacts, Sealy city, Texas" Retrieved from: https://www.census.gov/quickfacts/fact/table/sealycitytexas/PST045222

⁸ Data Commons 2024, CDC Places, Bellville, Texas, electronic dataset. Retrieved from:

 $\underline{https://datacommons.org/place/geoId/4807432/?utm_medium=explore\&mprop=count\&popt=Person\&hl=en$

⁹ Data Commons 2024, CDC Places, Wallis, Texas, electronic dataset. Retrieved from:

¹⁰ Charles Christopher Jackson, "Austin County," Handbook of Texas Online. Retrieved from:

https://www.tshaonline.org/handbook/entries/austin-county. Published by the Texas State Historical Association.

¹¹ United States Department of Agriculture, Natural Resources Conservation Service. 2022. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture, Agriculture Handbook 296. Retrieved from: https://www.nrcs.usda.gov/resources/data-and-reports/major-land-resource-area-mlra

¹² Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Retrieved from: https://www.nrcs.usda.gov/resources/data-and-reports/official-soil-series-descriptions-osd

¹³ Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Retrieved from: https://websoilsurvey.nrcs.usda.gov/app/

¹⁴ Multi-Resolution Land Characteristics (MRLC) Consortium, National Land Cover Database (NLCD). CONUS Land Cover Change Index Retrieved from: https://www.mrlc.gov/viewer/

¹⁵ Texas Local Government Code § 211.001. Regulation of land use, structures, businesses, and related activities, Municipal regulatory authority, general zoning regulations. Retrieved from: https://statutes.capitol.texas.gov/SOTWDocs/LG/htm/LG.211.htm

¹⁶ Austin County News Online, "Austin County Municipalities Explore Options to Preserve Rural Character Amidst Houston's Growth", Retrieved from: https://austincountynewsonline.com/austin-county-municipalities-explore-options-to-preserve-rural-character-amidst-houstons-growth/

¹⁷ Federal Emergency Management Agency. "5 Reasons Building Codes Should Matter to You". Retrieved from: https://www.fema.gov/blog/5-reasons-building-codes-should-matter-you

¹⁸ USA Facts, "Our Changing Population: Austin County, Texas", Retrieved from: <a href="https://usafacts.org/data/topics/people-society/population-and-demographics/our-changing-population/state/texas/county/austin-county/?endDate=2022-01-01&startDate=1971-01-01

¹⁹ H-GAC, "Regional Growth Forecast", Retrieved from: https://www.h-gac.com/regional-growth-forecast

²⁰ U.S. Census Bureau. "Profile, Austin County, Texas" Retrieved from:

https://data.census.gov/profile/Austin_County,_Texas?g=050XX00US48015

²¹ H-GAC, "Vulnerable Population Index (VPI)", Retrieved from: https://www.h-gac.com/getmedia/d2d9690a-929e-4721-ae5c-3f6035da5f94/vulnerable-population-indexing.pdf

²² Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry/Geospatial Research, Analysis, and Services Program. CDC/ATSDR Social Vulnerability Index Interactive Map 2020 Database, Texas. Retrieved from: https://svi.cdc.gov/Documents/CountyMaps/2020/Texas/Texas2020 Austin.pdf

²³ Federal Emergency Management Agency. "Hazus" Retrieved from: https://www.fema.gov/flood-maps/products-tools/hazus

²⁴ Homeland Infrastructure Foundation-Level Data (HIFLD), Open Data. Retrieved from: https://hifld-geoplatform.opendata.arcgis.com/

²⁵ Federal Emergency Management Agency. "Community Status Book". Retrieved from: https://www.fema.gov/flood-insurance/work-with-nfip/community-status-book

²⁶ Federal Emergency Management Agency. "Flood Insurance". Retrieved from: https://www.fema.gov/flood-insurance

¹ Federal Emergency Management Agency. "Declared Disasters" Retrieved from: https://www.fema.gov/disaster/declarations

³ U.S. Census Bureau. "2018-2022 ACS 5-Year Narrative Profile,

- ²⁷ Federal Emergency Management Agency. "Special Flood Hazard Area (SFHA)". Retrieved from: https://www.fema.gov/glossary/special-flood-hazard-area-sfha
- ²⁸ Federal Emergency Management Agency. "Community Status Book Report, Communities Participating in the National Flood Program". Retrieved from: https://www.fema.gov/cis/TX.html
- ²⁹ Federal Emergency Management Agency. "Community Rating System". Retrieved from: https://www.fema.gov/floodplain-management/community-rating-system
- ³⁰ Federal Emergency Management Agency. "Community Status Book Report, Communities Participating in the National Flood Program". Retrieved from: https://www.fema.gov/cis/TX.html
- ³¹ 44 Code of Federal Regulations 77.2(i). Retrieved from: https://www.ecfr.gov/current/title-44/chapter-I/subchapter-B/part-77/section-77.2#p-77.2(i)
- ³² 44 Code of Federal Regulations 77.2(j). Retrieved from: https://www.ecfr.gov/current/title-44/part-77/section-77.2#p-77.2(j)
- ³³ Natural Resources Defense Council (NRDC), "Losing Ground: Flood Data Visualization Tool". Retrieved from: https://www.nrdc.org/resources/losing-ground-flood-visualization-tool
- ³⁴ Federal Emergency Management Agency. "Flood Insurance Data and Analytics". Retrieved from: https://nfipservices.floodsmart.gov//reports-flood-insurance-data
- ³⁵ Policygenius, "Flood insurance data & statistics (Updated 2023)". Retrieved from: https://www.policygenius.com/homeowners-insurance/flood-insurance-statistics/
- ³⁶ Federal Emergency Management Agency, "Flood Zones." Retrieved from: https://www.fema.gov/glossary/flood-zones#:~:text=SFHA%20are%20defined%20as%20the,flood%20or%20100%2Dyear%20flood
- ³⁷ Federal Emergency Management Agency, National Risk Index, Riverine Flooding. Retrieved at: https://hazards.fema.gov/nri/riverine-flooding
- ³⁸ National Weather Service, "Flood Preparedness Week Flooding and Related Phenomena." Retrieved from: https://www.weather.gov/ffc/flood_awareness_flooding
- ³⁹ National Weather Service, "Flash Flooding Definition." Retrieved from: https://www.weather.gov/phi/FlashFloodingDefinition
- ⁴⁰ NOAA, Storm Events Database. Retrieved from: https://www.ncdc.noaa.gov/stormevents/
- ⁴¹ U.S. Department of Agriculture, Farm Service Agency, "Disaster Designation Information". Retrieved from: https://www.fsa.usda.gov/programs-and-services/disaster-assistance-program/disaster-designation-information/index
- ⁴² Federal Emergency Management Agency, Hazard Mitigation Assistance Program and Policy Guide, Flood Mitigation Assistance. Retrieved from: https://www.fema.gov/grants/mitigation/guide/part-10/d
- ⁴³ National Center for Healthy Housing, Emergency Preparedness & Response. Retrieved at: https://nchh.org/information-and-evidence/learn-about-healthy-housing/emergencies/
- ⁴⁴ Federal Emergency Management Agency, National Risk Index Profile, Austin County, Texas. Retrieved from: https://hazards.fema.gov/nri/report/viewer?dataLOD=Counties&dataIDs=C48015
- ⁴⁵ Texas A&M University Office of the Texas State Climatologist, Assessment of Historic and Future Trends of Extreme Weather in Texas, 1900-2036, 2021 update. Retrieved from: https://climatexas.tamu.edu/files/ClimateReport-1900to2036-2021Update
- ⁴⁶Texas A&M Forest Service, Wildland Firefighting Terminology Glossary. Retrieved at: https://tfsweb.tamu.edu/uploadedFiles/TFS_Main/Finance_and_Administration/Communications/Wildland%20Fire%20Glossary%20of%20terms%20TFS.pdf
- 47 Texas A&M Forest Service, Wildfire Risk, About TxWrap. Retrieved at: https://texaswildfirerisk.com/#about
- ⁴⁸ Texas A&M Forest Service, Wildfire Risk. Retrieved at: https://tfsweb.tamu.edu/WildfireRisk/
- ⁴⁹ Texas A&M Forest Service, TxWRAP, Wildfire Ignition Density Layer Information. Retrieved at: https://wrap.texaswildfirerisk.com/Map/Pro#map-themes
- ⁵⁰ Texas A&M Forest Service, TEXAS WILDFIRE RISK ASSESSMENT SUMMARY REPORT. Report was generated using www.texaswildfirerisk.com, Version 4.0
- ⁵¹ U.S. Environmental Protection Agency, "Which Populations Experience Greater Risks of Adverse Health Effects Resulting from Wildfire Smoke Exposure?", Retrieved from: https://www.epa.gov/wildfire-smoke-course/which-populations-experience-greater-risks-adverse-health-effects-resulting
- ⁵² Federal Emergency Management Agency, National Risk Index Dataset and Online Tool. Retrieved at: https://hazards.fema.gov/nri/map
- 53 National Geographic, "Wildfires". Retrieved at: https://education.nationalgeographic.org/resource/wildfires/
- ⁵⁴ National Oceanic and Atmospheric Administration's National Weather Service, Glossary, Severe Thunderstorm. Retrieved at: https://w1.weather.gov/glossary/index.php?word=severe+thunderstorm
- ⁵⁵ Weather.Gov, "Thunderstorm Ingredients". Retrieved at:
- https://www.weather.gov/source/zhu/ZHU Training Page/thunderstorm stuff/Thunderstorms/thunderstorms.htm

- ⁵⁶ National Oceanic and Atmospheric Administration, "Types of Thunderstorms", Retrieved at: https://www.noaa.gov/jetstream/tstrmtypes
- ⁵⁷ National Oceanic and Atmospheric Administration's National Weather Service, Glossary, Lightning. Retrieved at: https://w1.weather.gov/glossary/index.php?word=Lightning
- ⁵⁸ National Oceanic and Atmospheric Administration's National Weather Service, "How Dangerous is Lightning?", Retrieved at: https://www.weather.gov/safety/lightning-odds
- ⁵⁹ National Oceanic and Atmospheric Administration's National Weather Service, "Lightning Victims", Retrieved at: https://www.weather.gov/safety/lightning-
- victims#:~:text=Lightning%20kills%20about%2020%20people,survivors%20suffer%20lifelong%20neurological%20damage
- ⁶⁰ National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101-Lightning", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/lightning/types/
- ⁶¹ Annual number of thunderstorm days in the U.S. From: Koehler, Thomas L., 2019: Cloud-to-Ground Lightning Flash Density and Thunderstorm Day Distributions over the Contiguous United States Derived from NLDN Measurements: 1993-2018. Retrieved at: https://www.noaa.gov/jetstream/thunderstorms
- ⁶² National Oceanic and Atmospheric Administration's National Weather Service, Storm Prediction Center, SPC Products. Retrieved at: https://www.spc.noaa.gov/misc/about.html
- ⁶³ National Oceanic and Atmospheric Administration's National Weather Service, Lightning Threats. Retrieved at: https://www.weather.gov/mlb/lightning threat
- ⁶⁴ USGS, "Rain Totals from Hurricane Harvey." Retrieved at: https://www.usgs.gov/media/images/rain-totals-hurricane-harvey
- 65 Weather.Gov, "Lightning Safety". Retrieved at:
- https://www.weather.gov/source/zhu/ZHU Training Page/lightning stuff/lightning2/lightning safety.html
- ⁶⁶ National Oceanic and Atmospheric Administration's National Weather Service, "Tornado Definition". Retrieved at: https://www.weather.gov/phi/TornadoDefinition#:~:text=Tornado%20%2D%20A%20violently%20rotating%20column,nature%22s%20most%20violent%20storms.
- 67 Texas Division of Emergency Management, "Texas State Hazard Mitigation Plan". Retrieved at: https://txdem.sharepoint.com/:b:/s/TDEMWebsiteFiles/EYpeKiYJdYtCtdoSyqIYGDQBJ_2RMO0QEOjIVSjC9c2fzA?e=wZwXcQ
- ⁶⁸ National Oceanic and Atmospheric Administration's National Weather Service, "What is a Microburst?". Retrieved at: https://www.weather.gov/bmx/outreach_microbursts
- ⁷⁰ National Oceanic and Atmospheric Administration's National Weather Service, Storm Prediction Center, "Average Annual Number of Tornadoes per State (1993-2022)". Retrieved at: https://www.spc.noaa.gov/wcm/ustormaps/1993-2022-stateavgtornadoes.png
- ⁷¹ National Oceanic and Atmospheric Administration's National Weather Service, Storm Prediction Center, "Total Number of Tornadoes per County (1950-2022)". Retrieved at: https://www.spc.noaa.gov/wcm/ustormaps/tornadoes-by-county.png
- ⁷² National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101-Tornadoes". Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/tornadoes/
- ⁷³ U.S. Department of Agriculture, Natural Resources Conservation Service, "Erosion and Sediment Delivery". Retrieved at: https://www.nrcs.usda.gov/sites/default/files/2022-09/Erosion %26 sediment delivery IA-NRCS Procedures.pdf
- ⁷⁴ Natural Resources Defense Council, Soil Erosion 101. Retrieved at: https://www.nrdc.org/stories/soil-erosion-101
- 75 https://efotg.sc.egov.usda.gov/references/public/MD defunct/HEL 323.htm
- ⁷⁶ Institute of Water Research, K Factor. Retrieved at: http://www.iwr.msu.edu/rusle/kfactor.htm
- ⁷⁷ U.S. Department of Agriculture. 2020. Summary Report: 2017 National Resources Inventory, Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. Retrieved from: https://www.nrcs.usda.gov/sites/default/files/2022-10/2017NRISummary_Final.pdf
- ⁷⁸ National Oceanic and Atmospheric Administration's National Weather Service, "National Weather Service Expanded Winter Weather Terminology". Retrieved at: https://www.weather.gov/bgm/WinterTerms
- ⁷⁹ National Oceanic and Atmospheric Administration's National Weather Service, "Winter Storm Severity Index (WSSI), Product/Service Description Document". Retrieved at: https://www.wpc.ncep.noaa.gov/wwd/wssi/WSSI_PDD_2022-23.pdf
- ⁸⁰ American Society of Civil Engineers, Hazard Tool. Retrieved at: https://ascehazardtool.org/
- 81 National Oceanic and Atmospheric Administration's NCEI, "The Great Texas Freeze: February 11-20, 2021"Retrieved at: https://www.ncei.noaa.gov/news/great-texas-freeze-february-2021
- 82 The Sealy News, "Austin County Freeze", Retrieved at: https://www.sealynews.com/news-features-local-news/austin-county-freeze

- ⁸³ National Oceanic and Atmospheric Administration's National Weather Service, Watch/Warning/Advisory Definitions". Retrieved at: https://www.weather.gov/lwx/WarningsDefined
- ⁸⁴ National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Winter Weather". Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/winter/forecasting/
- ⁸⁵ National Oceanic and Atmospheric Administration's National Integrated Drought Information System, "What is Drought-Drought Basics". Retrieved at: https://www.drought.gov/what-is-drought/drought-basics
- ⁸⁶ Colorado Geological Survey, "Expansive Soil and Rock". Retrieved at: https://coloradogeologicalsurvey.org/hazards/expansive-soil-rock/
- ⁸⁷ National Oceanic and Atmospheric Administration's National Integrated Drought Information System, "Drought Basics-Types of Drought". Retrieved at: https://www.drought.gov/what-is-drought/drought-basics#types-of-drought
- ⁸⁸ National Oceanic and Atmospheric Administration's National Integrated Drought Information System, "U.S. Drought Monitor (USDM)". Retrieved at: https://www.drought.gov/data-maps-tools/us-drought-monitor
- ⁸⁹ National Oceanic and Atmospheric Administration's National Integrated Drought Information System, "Historical Data and Conditions". Retrieved at: https://www.drought.gov/historical-information
- ⁹⁰ National Integrated Drought Information System, Public Health. Retrieved at: https://www.drought.gov/topics/public-health
- ⁹¹ National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Wind", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/wind/
- ⁹² National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Wind Types", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/wind/types/
- ⁹³ National Oceanic and Atmospheric Administration's National Weather Service, "Beaufort Wind Scale". Retrieved at: https://www.weather.gov/mfl/beaufort
- ⁹⁴ National Oceanic and Atmospheric Administration's National Weather Service, "Wind Warnings, Watches and Advisories". Retrieved at: https://www.weather.gov/safety/wind-ww
- 95 National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Hail", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/hail/
- ⁹⁶ National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Hail Types", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/hail/types/
- ⁹⁷ National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, "Severe Weather 101- Hail FAQ", Retrieved at: https://www.nssl.noaa.gov/education/svrwx101/hail/faq/
- ⁹⁸ National Oceanic and Atmospheric Administration's National Weather Service, "Hail Threat Defined". Retrieved at: https://www.weather.gov/mlb/hail threat
- ⁹⁹ The Tornado and Storm Research Organization, "The TORRO Hailstorm Intensity Scale". Retrieved at: https://www.torro.org.uk/research/hail/hscale
- National Oceanic and Atmospheric Administration's National Hurricane Center, "Hurricane Preparedness Hazards", Retrieved at: https://www.nhc.noaa.gov/prepare/hazards.php
- National Oceanic and Atmospheric Administration's National Hurricane Center, "Tropical Cyclone Climatology", Retrieved at: https://www.nhc.noaa.gov/climo/
- ¹⁰² National Oceanic and Atmospheric Administration's National Weather Service, "Hurricane and Tropical Storm Watches, Warnings, Advisories and Outlooks". Retrieved at: https://www.weather.gov/safety/hurricane-ww
- ¹⁰³ National Oceanic and Atmospheric Administration's National Hurricane Center, "The Saffir-Simpson Hurricane Wind Scale, Updated May 2021", Retrieved at: www.nhc.noaa.gov/pdf/sshws.pdf
- National Oceanic and Atmospheric Administration's National Hurricane Center, "Saffir-Simpson Hurricane Wind Scale", Retrieved at: https://www.nhc.noaa.gov/aboutsshws.php
- ¹⁰⁵ Centers for Disease Control and Prevention, "About Extreme Heat". Retrieved at: https://www.cdc.gov/disasters/extremeheat/heat_guide.html
- 106 FEMA, Ready.gov, "Extreme Heat". Retrieved at: https://www.ready.gov/heat
- ¹⁰⁷ National Oceanic and Atmospheric Administration's National Weather Service, "Glossary- Heat". Retrieved at: https://wl.weather.gov/glossary/index.php?word=Heat
- ¹⁰⁸ National Oceanic and Atmospheric Administration's National Weather Service, "What is the heat index?". Retrieved at: https://www.weather.gov/ama/heatindex
- ¹⁰⁹ National Integrated Heat Health Information System, Current Conditions and Future Outlooks. Retrieved at: https://www.heat.gov/
- 110 National Integrated Heat Health Information System, "Who Is Most at Risk To Extreme Heat?". Retrieved at: https://www.heat.gov/pages/who-is-at-risk-to-extreme-heat

¹¹¹ USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program,

Washington, DC, USA, 470 pp, doi: 10.7930/J0J964J6.Retrieved at: https://science2017.globalchange.gov/

- 112 University of Calgary, "Energy Education." Retrieved from: https://energyeducation.ca/encyclopedia/Dam_failures
- 113 USACE. National Inventory of Dams. Retrieved from https://nid.sec.usace.army.mil
- 114 Texas Administrative Code Title 30, Part 1, Chapter 299, Subchapter B, Rule §299.14. Retrieved from: https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=1&pg=3">https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=1&pg=3">https://texreg.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_gr=1&p_
- https://texreg.sos.state.tx.us/public/readtac\$ext.TacPage?sl=T&app=9&p_dir=N&p_rloc=139369&p_tloc=&p_ploc=1&pg=3&p_tac=&ti=30&pt=1&ch=299&rl=14
- Association of State Dam Safety Officials, "Dam Incident Database Search." Retrieved from: https://www.damsafety.org/incidents
- ¹¹⁶ The University of Texas at Austin, Department of Integrative Biology, "THE DAM THAT BROKE: SOME PREHISTORY THAT HELPS EXPLAINS HOW BFL CAME TO EXIST." Retrieved from: https://integrativebio.utexas.edu/about/history/the-dam-that-

broke#:~:text=Inevitably%2C%20enormous%20rainfall%20would%20cause,Lake%20McDonald%20also%20vanished.

- 117 FEMA, "Rehabilitation of High Hazard Potential Dam (HHPD) Grant Program." Retrieved from: https://www.fema.gov/emergency-managers/risk-management/dam-safety/rehabilitation-high-hazard-potential-dams
- 118 National Institute of Allergy and Infectious Diseases, "NIAID Emerging Infectious Diseases/Pathogens". Retrieved at: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens
- 119 FEMA, Ready.gov, "Pandemics". Retrieved at: https://www.ready.gov/pandemic
- ¹²⁰ FEMA, Ready.gov, "Novel Pandemic Hazard Sheet". Retrieved at: https://www.ready.gov/sites/default/files/2020-11/novel-pandemic_hazard-sheet.pdf
- 121 CDC, "Past Flu Pandemics". Retrieved at: https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html
- ¹²² Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol. 2015 Nov 27;5:30048. doi: 10.3402/iee.v5.30048. PMID: 26615822; PMCID: PMC4663196. Retrieved at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663196/
- ¹²³ National Institute of Environmental Health Sciences, Covid-19 Pandemic Vulnerability Index (PVI). Retrieved at: https://covid19pvi.niehs.nih.gov/
- 124 Mayo Clinic, "COVID-19: Who's at higher risk of serious symptoms?". Retrieved at:
- https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/coronavirus-who-is-at-risk/art-
- $\underline{20483301\#:} \sim : text = The \%20 risk \%20 of \%20 developing \%20 dangerous, systems \%2C\%20 obesity \%2C\%20 or \%20 diabetes.$
- ¹²⁵ CDC, "OUR RISK FOR INFECTIOUS DISEASES". Retrieved at: https://www.cdc.gov/ncezid/pdf/climate-change-and-infectious-diseases-H.pdf
- ¹²⁶ FEMA, Ready.Gov, "Cybersecurity". Retrieved at: https://www.ready.gov/cybersecurity
- 127 FEMA, Cyberattack. Retrieved at: https://community.fema.gov/ProtectiveActions/s/article/Cyberattack
- 128 Verizon 2023, Data Breach Investigations Report. Retrieved at: https://www.verizon.com/business/resources/reports/dbir/
- ¹²⁹ FEMA, Ready.Gov, "Cyber-attack Information Sheet". Retrieved at: https://www.ready.gov/sites/default/files/2020-11/ready_cyberattack_information-sheet.pdf