Pedestrian Evaluation Tool
Instructions
Sidewalks, shared-use paths, and other pedestrian facilities are an important part of the transportation network. This tool helps local governments and other stakeholders evaluate the safety, comfort, and convenience of pedestrian facilities in their community, helping them plan future infrastructure investments. It is intended to be used for preliminary planning and project prioritization. More extensive planning and design will be necessary before including projects in the local Capital Improvement Program (CIP) or submitting funding proposals to regional, state, and federal agencies.

Instructions

1. Identify the corridor that will be evaluated. This tool is most effective when used to evaluate a corridor where there are sidewalks on at least one side of the roadway.

2. Divide the corridor into segments and intersections.
 a. A segment is bounded by intersections on either end. If there is a significant change in roadway and/or pedestrian conditions, divide the segment into smaller parts. For one corridor, there may be multiple segments, each of which will be evaluated separately.
 b. An intersection is where two roadways meet. There may be three-way or four-way intersections.

3. To save time, some of the background information can be completed prior to going in the field.

4. If time allows, walk the corridor without completing the checklist, observing existing roadway conditions, sidewalk conditions, and surrounding land uses.

5. Walk the corridor again, completing the checklist for each segment and intersection. Put a check mark to the right of each choice that describes existing conditions along the corridor evaluated. See Appendix A: Detailed Question Guidance for clarification regarding select questions.

6. Calculate the total score for each segment.

7. Consult with others that may have completed the checklist to discuss the scores and any differences there may be between each individual's evaluation.

8. Refer to Appendix B: Scoring Matrix to determine the need for improvements to sidewalks and other pedestrian pathways.

9. See Appendix C: Resources for a list of publications and guidelines that can be used when designing new or improved pedestrian pathways.

The pedestrian evaluation is intended to be a flexible tool that can be used in communities throughout the Houston-Galveston Transportation Management Area (TMA). Users may choose to adjust this tool to reflect local conditions or preferences.

Tips

- On average, it takes 40 to 60 minutes to complete the evaluation for each 1/2-mile segment. Completion time varies, depending on the setting and experience using this tool.
- While completing the evaluation, remain aware of your surroundings. If you feel unsafe, stop and leave the area.
- For your comfort, bring water and insect repellent. Wear comfortable shoes.
- Consult Appendix A: Detailed Question Guidance if additional clarification is needed for a question listed in the pedestrian evaluation tool.
Pedestrian Evaluation Tool
Appendix A: Detailed Question Guidance

For clarification regarding select questions included in the pedestrian evaluation, review the following information.

Section 1: Segment

Background Information

Segment
A segment is bounded by intersections on either end. If there is a significant change in roadway and/or pedestrian conditions, divide the segment into smaller parts. For one corridor, there may be multiple segments, each of which will be evaluated separately.

Side #1/Side #2
The condition of pedestrian infrastructure may vary on each side of a roadway. For some questions, users will be asked to evaluate each side of the street differently. For consistency, Side #1 will either be the north or east side of the roadway (depending upon the direction the roadway goes), and Side #2 will either be the south or west side of the street. If multiple people are completing the evaluation, make sure everyone is classifying each side the same way.

Corridor Character

A.1: Roadway Type
- **High-volume roadways** carry large numbers of vehicles. It may be difficult for pedestrians to cross the roadway where there are no traffic signals or stop signs, since cars will be traveling closely behind one another. There may be congestion along the corridor, and cars may have to wait a significant amount of time to make left turns. Many of the region's major thoroughfares are high-volume roadways.
- **Low-volume roadways** carry few cars, and there is generally no congestion. It will be less difficult for pedestrians to cross the roadway at uncontrolled intersections, since there is significant spacing between vehicles. Neighborhood streets are typically low-volume roadways.

A.3: Building Setbacks
A **building setback** refers to the distance between the outside edge of a pedestrian pathway and adjacent buildings. Siting buildings closer to pedestrian pathways helps create a more pedestrian-friendly environment. Select the most common setback distance for buildings along the segment.

<table>
<thead>
<tr>
<th>At Edge of Sidewalk/ Pedestrian Facility</th>
<th>Within 20 Feet of Sidewalk/ Pedestrian Facility</th>
<th>20 Feet or More from Sidewalk/ Pedestrian Facility</th>
</tr>
</thead>
</table>

For clarification regarding select questions included in the pedestrian evaluation, review the following information.
A.5: Pedestrian Access through Parking Lots

In some areas, pedestrians must cross parking lots to get from pedestrian pathways to building entrances. Walking across parking lots can be uncomfortable to pedestrians, since there are moving cars and often little shade. Pedestrians walking between cars can be difficult for motorists to see.

Pedestrian Access through Parking Lots

Roadway Conditions

B.1: Number of Lanes

When reporting the number of lanes, count all lanes that are continuous along most of the segment. Continuous two-way left-turn lanes should be counted as a lane if present along the majority of the segment. Dedicated turn lanes located only at intersections or driveways and are not continuous should not be counted as a lane.
B.5: Primary Stormwater Collection System
Along the Texas Gulf Coast, stormwater infrastructure carries water from buildings, roads, and other impervious surfaces into bayous and streams. Two types of stormwater collection systems are commonly used: open ditches/swales and storm drains.

Open Ditches/Swales	Storm Drain

Pedestrian Pathways

C.1: Types of Pedestrian Facilities
Different types of pedestrian pathways may run parallel to a roadway. Select all types of pedestrian pathways found along each side of the segment. No more than two (2) points can be awarded.

Footpath (worn dirt path)	Paved Trail
Unpaved Trail | Sidewalk
C.2: Path Material
Pedestrian pathways may be surfaced with different materials. Select all types of materials used on pedestrian pathways along each side of the segment. No more than one (1) point can be awarded.

<table>
<thead>
<tr>
<th>Asphalt</th>
<th>Concrete</th>
<th>Brick Pavers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel/Decomposed Granite</td>
<td>Gravel/Decomposed Granite</td>
<td>Dirt</td>
</tr>
</tbody>
</table>

C.3: Path Condition
Pedestrian pathways may be uneven or have cracks, holes, bumps, overgrown vegetation, and/or other conditions that hinder pedestrian mobility. When determining path condition, provide an overall rating (poor, fair, or good) for an entire side of the segment evaluated.

<table>
<thead>
<tr>
<th>Poor Condition (Many Bumps/Cracks/Holes)</th>
<th>Fair Condition (Some Bumps/Cracks/Holes)</th>
<th>Good Condition (Very Few Bumps/Cracks/Holes)</th>
</tr>
</thead>
</table>
C.4: Path Obstructions
Utility poles, signs, and other objects can impede travel along pedestrian pathways, especially for those in wheelchairs. Select all types of obstructions found on each side of a segment. If there is an obstruction other than the ones listed, select other. If there is an object in the sidewalk, but there is still at least 4 feet of clear passage adjacent to the object, do not consider it an obstruction.

| Utility Poles | Parked Cars | Fire Hydrant |

C.5: Buffer between Road and Path
In some instances, there is space between a roadway and adjacent pedestrian pathways. Other times, pedestrian pathways are immediately adjacent to the curb or travel lanes. Select all buffer types present along each side of the segment. No more than two (2) points can be awarded.

| No Buffer | Grass Strip | Trees |
| Shrubs and/or Other Landscaping | Fence or Guardrail | Drainage Ditch |
C.6: Path Distance from Roadway
The distance between a road and pedestrian pathway is measured from the back of the curb to the edge of the pathway closest to the road. Select the most prevalent distance between the pedestrian pathway and roadway. The wider the buffer, the more comfortable the sidewalk will feel.

C.8: Driveways
At some locations, driveways may cross pedestrian pathways, connecting the roadway to adjacent uses. Driveways include entrances to parking lots, parking garages, and drive-thrus, along with driveways to residential properties. Driveways create conflict points between cars and pedestrians, and frequent driveways can make walking uncomfortable.

C.9: Sidewalk Completeness/Continuity
If a sidewalk is continuous along one side of a segment without any gaps or missing pieces, it should be considered complete/continuous. If there is any gap or missing pavement, it should be categorized as incomplete.
Mid-Block Crossings

D.1: Marked Mid-Block Crossings
Marked mid-block crossings are designated places away from intersections where pedestrians are permitted to cross travel lanes.

D.2: Marked Mid-Block Crossings: Crossing Aids
To help pedestrians safely cross the street, marked mid-block crossings may have signals, signs, and other devices warning motorists that pedestrians may be walking across travel lanes. Select all types of crossing aids present. No more than two (2) points can be awarded.

<table>
<thead>
<tr>
<th>Yield to Pedestrian Paddles</th>
<th>Pedestrian Refuge Island</th>
<th>Curb Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overpass/Underpass</td>
<td>Pedestrian Crossing Warning Sign</td>
<td>Warning Light</td>
</tr>
</tbody>
</table>
Pedestrian Comfort

E.1: Lighting
Lighting improves the visibility, safety, and overall ambience of pedestrian pathways.

- **Road-oriented lighting** is directed towards travel lanes. This type of lighting is often mounted on a very high pole, illuminating a broad area.
- **Pedestrian-scaled lighting** is directed towards sidewalks, shared-use paths, and other pedestrian pathways. This type of lighting is often mounted on a shorter decorative pole.

E.2: Pedestrian Amenities
Amenities such as garbage cans, benches, and drinking fountains create an attractive pedestrian environment, encouraging people to walk. When evaluating the presence of these features, include garbage cans and other public amenities at or near bus stops.
E.3: Pedestrian Wayfinding Signage
Pedestrian-oriented wayfinding signage directs people to nearby destinations, making walking more convenient.

E.4: Landscaping
Trees, shrubs, and other well-tended landscaping along pedestrian pathways makes walking more comfortable.
E.5: Shade
Street trees and awnings offer pedestrians shade and protection from the elements.

Some Shade Trees and/or Awnings

Many Shade Trees and/or Awnings

E.6: Cleanliness and Building Maintenance
Pedestrian pathways should be clear of overgrown vegetation, fallen leaves, broken glass, trash, and other unsightly and hazardous debris. Adjacent buildings should be well-maintained; there should not be graffiti, broken windows, or noticeable signs of deferred maintenance.

Poor
(Much Litter/Graffiti/Broken Facilities)

Fair
(Some Litter/Graffiti/Broken Facilities)

Good
(No Litter/Graffiti/Broken Facilities)
Subjective Assessment

F.1: Subjective Assessment – Attractiveness
When evaluating the segment's attractiveness, consider the following characteristics:

- Aesthetics
 Are the pathway and its surroundings (e.g. landscaping, buildings, etc.) aesthetically pleasing?

- Maintenance
 Does the pathway provide a smooth surface free of cracks, bumps, trash, and debris? A clean, level surface enables people of all ages and abilities to comfortably use the pathway.

- Comfort
 Are there amenities (e.g. benches, drinking fountains, etc.) that make walking more comfortable? Is the pathway shaded by trees or awnings? Providing shade, resting spots, and other amenities make walking more attractive, particularly in the warm summer months.

- Pedestrian-Oriented Buildings
 Are most buildings situated close to the street with entrances accessible from the pathway (without having to cross a parking lot)? Do buildings have multiple windows that allow people to see into and out of the building? Buildings close to the street with frequent windows create a safer and more interesting environment for pedestrians.

- Destinations
 Are there a variety of destinations (e.g. housing, shops, parks, schools and other civic buildings, etc.) people could walk to? People are more likely to walk if different uses are in close proximity to one another.

F.2: Subjective Assessment – Sense of Safety
When evaluating the safety of the segment, consider the following issues:

- Vehicular Traffic
 Does the pathway provide enough separation from high-speed, high-volume traffic? Are conflict points between pedestrians, cyclists, and motorists (e.g. driveways, curb cuts, etc.) minimized? Providing a buffer between high-speed, high-volume roadways and pedestrian pathways will make pedestrians feel safer. Minimizing driveway crossings will reduce the likelihood of collisions between motorists and those walking.

- Personal Safety
 Were stray dogs seen? Was there poor lighting? Was there graffiti, broken windows, or evidence of unlawful activity? People will not walk if they feel as if they are risking their personal safety.

- Pedestrian Activity
 Were many pedestrians walking along the corridor? People will feel safer if other people are walking nearby.
Background Information

Intersection

An intersection is where two roadways meet. There may be three-way or four-way intersections.

When completing the checklist, users will sometimes evaluate each corner, crossing, or the intersection as a whole. If multiple people are completing the evaluation, make sure everyone is classifying each corner and crossing the same way.

Roadway Conditions

A.1: Roadway Type

- *High-volume roadways* carry large numbers of vehicles. It may be difficult for pedestrians to cross the roadway where there are no traffic signals or stop signs, since cars will traveling closely behind one another. There may be congestion along the corridor, and it may be difficult for cars to make left turns.

- *Low-volume roadways* carry few cars, and there is generally no congestion along a low-volume segment. It will be less difficult for pedestrians to cross the roadway at uncontrolled intersections, since there is significant spacing between vehicles.

A.2: Condition of Road

<table>
<thead>
<tr>
<th>Condition of Road</th>
<th>Example Photos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor (Many Bumps/Cracks/Holes)</td>
<td></td>
</tr>
<tr>
<td>Fair (Few Bumps/Cracks/Holes)</td>
<td></td>
</tr>
<tr>
<td>Good (Some Bumps/Cracks/Holes)</td>
<td></td>
</tr>
</tbody>
</table>
A.3: Number of Lanes
When reporting the number of lanes, count all lanes (through lanes and turn lanes) that are at the intersection (Note: The number of lanes present along segments is calculated differently. See p. 5 for clarification).

A.6: Primary Stormwater Collection System
Along the Texas Gulf Coast, stormwater infrastructure carries water from buildings, roads, and other impervious surfaces into bayous and streams. Two types of stormwater collection systems are commonly used: open ditches/swales and storm drains.
Intersection Conditions: Crossings

C.1: Marked Crosswalks
Note whether crosswalks are clearly visible to pedestrians, motorists, and other roadway users.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No Crosswalks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Clear and Highly Visible)</td>
<td>(Faded or Not Highly Visible)</td>
</tr>
</tbody>
</table>

C.2: Intersection Crossing Aids
To help pedestrians safely cross the street, intersections may have signals, signs, and other devices warning motorists that pedestrians may be walking across travel lanes. Select all types of crossing aids present. No more than two (2) points can be awarded.

<table>
<thead>
<tr>
<th>Yield to Pedestrian Paddles</th>
<th>Pedestrian Signal</th>
<th>Pedestrian Refuge Island</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curb Extension</td>
<td>Pedestrian Crossing Warning Sign</td>
<td>Pedestrian Crossing Warning Sign</td>
</tr>
</tbody>
</table>
C.3: Pedestrian Countdown Signals

Pedestrian countdown signals indicate when it is safe to enter an intersection and how much time remains for those crossing the street. Pedestrians should be able to cross the street within the allotted time while walking at a comfortable speed. Per the Federal Highway Administration (FHWA), there should be enough time for a pedestrian walking at a pace of 3.5 feet/second to cross from one side to another.

Intersection Conditions: Corners

D.1: Accessibility of Push Buttons for Pedestrian Countdown Signals

Pedestrian countdown signals indicate when it is safe to enter an intersection and how much time remains for those crossing the street. At many locations, there may be push buttons, which pedestrians can use to indicate their desire to cross the street. These buttons should be placed in locations accessible to all users, including those in wheelchairs. Per the FHWA, push buttons should

- Be located in an unobstructed location adjacent to a level, paved surface accessible by someone in a wheelchair;
- Be located close to pedestrian ramps that connect to crosswalks; and
- Be placed at a height easily accessible to all pedestrians (about 3.5 to 4 feet above the sidewalk).
D.2: ADA-Compliant Ramps

Ramps, sidewalks, and other pedestrian facilities must meet or exceed the Texas Accessibility Standards and the Americans with Disabilities Act Accessibility Guidelines (ADAAG). Per federal guidelines, newly-constructed or reconstructed roadways must contain ADA-compliant ramps at intersections and driveways. Design standards require ramps to

- Be at least 3 feet wide;
- Have detectable warnings, such as dome-shaped bumps, that extend the width of the ramp;
- Be flush with the adjacent sidewalk, street, and gutter, avoiding abrupt level changes;
- Have a landing of at least 36 inches at the top of the ramp; and
- Be located where they will not be obstructed by parked cars.

<table>
<thead>
<tr>
<th>ADA-Compliant Ramps</th>
<th>Non-Compliant Ramps</th>
</tr>
</thead>
</table>

D.3: Connections between Ramps and Adjacent Sidewalks

Ramps at intersections should connect with adjacent sidewalks to ensure accessibility for all users.

| Continuous Connection between Ramps and Sidewalks | Ramps Exist but Do Not Connect to Sidewalks | There are No Ramps or Sidewalks |
D.4: Standing Water on Pedestrian Ramps
Ponding on pedestrian ramps makes walking uncomfortable and unsafe, especially if water stands for prolonged periods.

D.6: Lighting
Lighting improves the visibility, safety, and overall ambience of pedestrian pathways.

• **Road-oriented lighting** is directed toward travel lanes. This type of lighting is often mounted on a very high pole, illuminating a broad area.

• **Pedestrian-scaled lighting** is directed toward sidewalks, shared-use paths, and other pedestrian pathways. This type of lighting is often mounted on a shorter decorative pole.
D.7: Right-Turn Slip Lane

Right-turn slip lanes can be problematic for pedestrians, since they allow motorists to travel at higher speeds through an intersection. Fast-moving cars may be unable to stop for pedestrians in a crosswalk. If the crosswalk is improperly placed, it may be difficult for motorists to see pedestrians.

Subjective Assessment

E.1: Subjective Assessment – Attractiveness

When evaluating the intersection’s attractiveness, consider the following characteristics:

- **Aesthetics**
 Are the intersection and its surroundings (e.g., landscaping, buildings, etc.) aesthetically pleasing?

- **Maintenance**
 Do the crosswalks, ramps, and adjacent pedestrian pathways provide a smooth surface free of cracks, bumps, trash, and debris? A clean, level surface enables people of all ages and abilities to comfortably and safely pass through the intersection.

- **Comfort**
 Is there a comfortable place for pedestrians to stand while waiting to cross the street? Providing shade, resting spots, and other amenities make walking more attractive, particularly in the warm summer months.

E.2: Subjective Assessment – Sense of Safety

When evaluating the safety of the segment, consider the following issues:

- **Vehicular Traffic**
 Do pedestrians have a safe place to wait that is separated from high-speed, high-volume traffic? Are there pedestrian countdown signals (or other traffic controls) that provide pedestrians with enough time to cross the street? If crossing distances are long, is there a handicapped-accessible area in the median where pedestrians can wait? Intersections should be designed to minimize interactions between pedestrians and fast-moving vehicles. Signals, signs, and other devices should clarify when pedestrians can safely enter the intersection.

- **Visibility**
 Are pedestrians waiting and crossing at the intersection easily visible to motorists, cyclists, and other drivers? Are crosswalks clearly marked?

- **Personal Safety**
 Were stray dogs seen? Was there poor lighting? Was there graffiti, broken windows, or evidence of unlawful activity? People will not walk if they feel as if they are risking their personal safety.
The pedestrian evaluation generates a score, which can be used to determine the need for improvements to sidewalks, pathways, and intersections. Each side of a segment is scored on a scale of 0 to 50, while intersections are scored on a scale of 0 to 90.

See the matrix below to determine what level of improvement may be necessary to make the evaluated pedestrian pathways and intersections safer and more comfortable for people walking. A map can be created to determine where targeted improvements should be prioritized, with each segment and/or intersection colored to match its walkability level.

Segments

<table>
<thead>
<tr>
<th>Score (per Side)</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 – 50</td>
<td>Green</td>
<td>Pedestrian pathways are safe, comfortable, and convenient for most users.</td>
</tr>
<tr>
<td>36 – 45</td>
<td>Yellow</td>
<td>There are accommodations for pedestrians, but they are unattractive or uncomfortable in some areas. Pedestrian pathways may meet local or TxDOT design standards, but additional landscaping, shade, lighting, or other features could make walking more pleasant.</td>
</tr>
<tr>
<td>20 – 35</td>
<td>Orange</td>
<td>There may be basic accommodations for pedestrians, but they are uncomfortable, unattractive, and/or do not meet local or TxDOT design standards (e.g. minimum width of 5'). Landscaping, lighting, and/or other features could make walking safer and more comfortable.</td>
</tr>
<tr>
<td>0 – 19</td>
<td>Red</td>
<td>There are no pedestrian accommodations, or they are disconnected and/or in poor condition. New, continuous facilities are needed.</td>
</tr>
</tbody>
</table>

Intersections

<table>
<thead>
<tr>
<th>Score</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 – 90</td>
<td>Green</td>
<td>The intersection provides safe and comfortable accommodations for most pedestrians.</td>
</tr>
<tr>
<td>56 – 79</td>
<td>Yellow</td>
<td>There are accommodations for pedestrians at all crossings and corners, but enhancements may be necessary to make walking more comfortable.</td>
</tr>
<tr>
<td>31 – 55</td>
<td>Orange</td>
<td>There may be basic accommodations for pedestrians, but crosswalks, ramps, and other features are missing from parts of the intersection and/or are in poor condition.</td>
</tr>
<tr>
<td>0 – 30</td>
<td>Red</td>
<td>Crosswalks, ramps, and other accommodations for pedestrians are absent or in poor condition.</td>
</tr>
</tbody>
</table>

Other information collected during the pedestrian evaluation can also be mapped. For example, a map can highlight segments where pedestrian pathways are not continuous (Segments: Question C.9) or intersections that lack ADA-compliant ramps (Intersections: Question D.2).
Pedestrian Evaluation Tool
Appendix C: Resources

Below are some tools and resources that can help communities plan and design better pedestrian facilities.

Guides

Government agencies and professional organizations nationwide have established guidelines that identify standards and best practices for designing pedestrian pathways and related infrastructure.

- H-GAC’s *Pedestrian Pathways: A Planning Guide for the Houston-Galveston Region* identifies principles and design techniques that can be used to create accessible, safe, and comfortable pedestrian facilities.
- H-GAC’s *Instant Impact Guide* provides simple solutions that can be quickly implemented to create immediate public interest and excitement for walkable, vibrant places.
- The American Association of State Highway and Transportation Officials (AASHTO) *Guide for the Planning, Design, and Operation of Pedestrian Facilities* offers information on how to design sidewalks and other pedestrian accommodations located along roadways.
- The National Association of City Transportation Officials (NACTO) *Urban Street Design Guide* provides guidance on how to design sidewalks, intersections, and other transportation infrastructure that is safe and attractive for pedestrians, cyclists, and other roadway users.
- The Texas Department of Transportation (TxDOT) *Roadway Design Manual* (Revised October 2014) establishes design standards for pedestrian facilities (sidewalks, pedestrian ramps, refuge islands, etc.) located along state (or on-system) roadways. See p. 2-34 for more information.
- The U.S. Department of Justice: Civil Rights Division *ADA Best Practices Tool Kit for State and Local Governments* provides information on how government entities can improve compliance with guidelines established by the American with Disabilities Act. Chapter 6 includes guidance on how to design accessible pedestrian ramps and crossings.

Funding

Different funding mechanisms can be used to invest in pedestrian-friendly infrastructure and initiatives.

- The *H-GAC 2040 Regional Pedestrian and Bicycle Plan: Funding Guide* identifies public and private funding sources that can support improvements to sidewalks, shared-use paths, and other pedestrian infrastructure.
- *Community Enhancement Grants* are available through the Houston-Galveston Area Local Development Corporation (H-GALDC) and can be used to improve streetscapes, replace sidewalks, and plant trees.

Counting Pedestrians and Cyclists

Local governments and transportation agencies may consider conducting pedestrian counts. This data can inform the design process, and it can be used to prioritize local investments.

- To better understand how pedestrian pathways are being used, local governments and transportation agencies may borrow H-GAC’s *temporary pedestrian/bicycle counters* to place along sidewalks, shared-use paths, and other pedestrian pathways to determine how many people are walking along a particular corridor.
- For communities interested in conducting their own pedestrian/bicycle counts, the *National Cooperative Highway Research Program: Report 797 - Guidebook on Pedestrian and Bicycle Volume Data Collection* provides information on different types of technology that can measure the number of people walking and/or biking in an area.