Recycling and Re-Using Produced Water: Cutting Edge Technology Adapted for New Water Resources

David B. Burnett, Director of Technology.

Carl Vavra Global Petroleum Research Institute

The Environmentally Friendly Drilling Program

May 9, 2017

Burnett Frequently Asked Questions

What is shale and what is HF?

What are some environmental problems that have been associated with HF?

Earthquakes (yes), H2S in groundwater (possible) CH4 in groundwater (maybe, but often no)

HF injection fluids in groundwater (no? but flowback, yes or no?)

Is Produced Water Dangerous? (About like Seawater)

Two to Three times saltier

May contain hydrocarbon oils

Harmful to plants

Best argument *for* **HF? Best argument** *against* **HF**?

Argument for Hydraulic Fracturing

Unconventional Shale Gas

Saved America

The EU Left Behind

USA World Leader

An Argument *for* HF!

For more Info see:

http://www.washingtontimes.com/news/2014/oct/18/moore-oil-the-real-economic-stimulus/#!#ixzz3Gh561bVA

Arguments Against

Concerns about Water Resource Uses

- **Concerns about Ground Water Contamination**
- **Concerns about Land Use (Access)**
- **Concerns about Emissions**
- Other
 - Lack of Infrastructure
 - Public/policy Demands (environmental &
 - perception Issues)

2. Water Use; Eagle Ford Shale Well & a City of 4,000 Population

Water Usage	Well Operations	City Operations(1)	Comments
Water Usage	10 million gal	18 million gal (3 mo.)	5-6 mm gal frac. 1-2 mm gal well ops.
Power Use	7,500 HP	6 MW (8,000 Hp)	Avg. SCR rig
Solid Waste	100,000 lbs. (wbm, 10,000 ft well)	1,600,000 lbs (3 months)	3 mo. Ops. MSW highly variable
Unit Budget	\$2 to \$5 MM	~\$1.7 MM	3 mo. Ops.

(1) Based on comparison to Andrews TX city budget (pop.9,600) 2008 FY

(2) 2003 4.5 lbs per person per day R. T. Wright "Environmental Science 10 ed. 2008 Pearson Prentice Hall 18,000 lbs day * 90 days= 1,600,000 lbs

New Technology

Where Shale Gas Comes From

Multi-fracture

First commercial

DOE-private venture in 1986.

Horizontal Drilling:

demonstration from

Hydraulic fracturing in shale: Massive hydraulic fracturing (MHF) demonstrated by DOE in 1977.

> Unconventional natural gas: Pre-commercial resource incentivized by 1980-2002 production tax credit.

Diamond-studded drill bits: Partnership between General Electric and the Energy Research and Development Administration, precursor to DOE.

Directional and horizontal drilling: Early directional shale drilling patented by federal Morgantown Energy Research Center engineers in 1976.

Microseismic imaging and electromagnetic telemetry: Developed by Sandia National Laboratories for

For more Info see:

http://thebreakthrough.org/archive/shale_gas_fracturing_history

Aquifer Protection / Well Construction

- Cemented to Surface
- Conductor Casing
- Cemented to Surface *
- Surface Casing
- Cement —
- Intermediate Casing
- Cement —
- Production Casing

Image Source: FracFocus

Argument for Hydraulic Fracturing Energy Return on Investment (EROI) of US Energy Sources

For more Info see:

http://www.ourenergypolicy.org/metrics-for-comparing-alternative-liquid-fuels/

Texas A&M University GPRI Team's Successes:

1997 – First University Program Addressing Barnett Shale Productivity 2001 First Major University Research Program on Treatment of Produced Water

2005 First Functional Membrane Technology for Produced and Frac Flowback Brine

2005 First University Program Addressing Environmental Issues in Oil & Gas Drilling

2007 First EFD "Scorecard" Proposed

2008 "Disappearing Roads" Program

2009 University/National Labs Alliance

2009 Eagle Ford Shale EFD Study

2010 EFD A&M Marcellus Shale Pre-Treatment Field Demos

2010 EFD EU Program Started

2011 Frac Flowback Brine Analytical Technology Partnership

2012 Pennsylvania Field Trials – Pre-Treatment

2012 EFD Technology Program Funded

New Technology: GPRI Process Trains

Technology Carryover: GPRI's Produced Water Treatment Research

Advanced Filtration Technology Cost Effective BGW Desalination Second Source of Fresh Water

Advanced Analytical Monitoring Technology On site real time monitoring Early detection of potential contamination

Better Community Engagement Practices Citizen Engagement in environmental health Pocket Guidelines/Test Kits for Analytes

U.S. BRACKISH WATER MARKET FORECAST BY CONTRACTED CAPACITY AND CAPEX VALUE, 2012-2016

http://www.americanwaterintel.com/archive/3/6/market-analysis/data-show-bearish-forecast-brackish-water-market.html

Technological Solutions

Texas A&M Brine Re-Use-Ector Co. TX Proves Recycling and Re-Use is Cost Effective, Environmentally Safe

Deliverables

- Identify optimal treatment techniques for ultra-high brine concentrations
- Provide information to community leaders

Status

- Current field trials in Eagle Ford and Permian Basin
- A&M Separation Sciences pilot testing new technology¹³
- Creation of new Analytical Services Roundtable

Unconventional Oil & Gas Developmer GPRI's Field Operation Technology Integration

Team Lead: David Burnett Engineers: C. Vavra, F. Platt, A. Robertson

OBJECTIVES

To provide a "window" into oil field operations so that technological advances can be assimilated faster and more reliably.

Address environmental and societal aspects of oil and gas drilling through the Environmentally Friendly Drilling Program (TIP) partnership with the Houston Advanced Research Center.

To identify advanced water treatment processes for produced water recycling and re-use.

APPROACH

Offer "third party" testing services for new technology.

Use GPRI's knowledge of the industry sector to optimize testing services

Provide field qualified equipment and engineers to run field tests of new

ACHIEVEMENTS

1997 – First University Program Addressing Barnett Shale Productivity 2001 First Major University Research Program on Treatment of Produced Water

2005 – First Functional Membrane Technology for Produced and Frac Flowback Brine Treatment for re-use

2005 - First University Program Addressing Environmental Issues in Oil & Gas Drilling

2007 - First Environmentally Friendly Drilling "Scorecard" Proposed

2009 - University/National Labs Alliance Created for EFD

2009 – Eagle Ford Shale EFD Study

2010 – EFD A&M Marcellus Shale Pre-Treatment Field Demos

2010 - EFD EU Program Started

2011 – Frac Flowback Brine Technology Integration Program (RPSEA)

2013 - Analytical Technology Partnership Created (RPSEA)

EFD Field Trials - Sites

GLOBAL PETROLEUM RESEARCH INSTITUTE

TEXAS A&M ENGINEERING EXPERIMENT STATION

Harold Vance Department of PETROLEUM ENGINEERING TEXAS A&M UNIVERSITY

SIGNIFICANCE

New research for upstream O&G operations can be tested under actual field conditions with minimal interruption of drilling or production operations.

Gas shale operators can be provided with reliable "third party" reports on technology demonstrations.

The public is provided with "sound science" information about energy development in their community.

FUTURE WORK

Further Field Trials – Water Treatment On-site monitoring of biological activity Emissions monitoring and evaluation of new mitigation technology

REFERENCES

2. B., Vavra, C. E., Platt, F. E., Spain, Trinidad & Tobago, May 13, 2011

D. B., Vavra C.A., Platt F.M., McLeroy L. R.W., Texps A&M University: New Yor Trial of Ultro-High Salinity Brine Pre-

i, GL, Luioff, AE, Willits, FK, Burnett, DB

- rch & Social Science 2 (2014) 66-74 as E. Williams, Rich Haut, HARC, Davis
- wtt. Texas A&M. GPRI. Gree Anderso

- Stuver, S., Burnett, D. B., Haut, R. "Reducing mett, David "Lowence, otprint of E&P Operations: by the Lor ro(water), and Air", Technical Report

Slide No.

14

Texas A&M Marcellus Shale Brine Re-Use

Deliverables

- Identify optimal treatment techniques for ultrahigh brine concentrations
- Provide information to community leaders

Status

- Current field trials in New York
- A&M Separation Sciences pilot testing new technology
- Creation of new Analytical Services Roundtable

New York Field Trial of Ultra-High Salinity Brine Pre-treatment: Texas A&M Environmentally Friendly Drilling Technology for the Marcellus Shale –SPE 158396

Produced Water Transport; Eagle Ford

Produced Water Storage in the Eagle Ford

Identifying Key Filter/ Membranes

Micro Filtration (MF) (10-0.1µm) Bacteria, suspended particles

Ultrafiltration (UF) (0.05-0.005µm) Colloids, macromolecules

Nanofiltration (NF) (5e⁻³-5.e⁻⁴ μm) Sugars, dyes, divalent salt ppts.

Reverse Osmosis (RO) (1.e⁻⁴-1e⁻⁵ μm Monovalent salts, ionic metals

Microfiltration Summary of Performance

			Table Sun	nmary		
Date	10.26.2012 microfilter					
Filter						
Delta Psi	27					
	Time	gpm	total Q	Q Perm	Vol	NTU B/A
	11:53	25.7	2259	0.6	77	339/0.4
	12:40	25	3450	0.44	102	303/.3
	1:15	25	4500	0.5	117	339/1.1
	2:45	24	6300	0.45	150	511/0.2
	3:15	24	6975	0.45	160	536/0.3
	4:00	24	7950	0.45	175	498/0.4

Field Frac Brine after Three Weeks

Advanced Analytical Technology

Other Water Resources: TWDB Study

Texas Water Development Board identified the saline ground water aquifers in Texas. The study found more than 780 million acre feet of brackish aquifers that would be amenable to desalination.

For more Info see:

http://www.TWDB.state.TX.us

Hydraulic Fracturing and Brackish Groundwater Desalination How They Can Mutually Benefit From Each Other

CONCEPT

Drilling and production of natural gas has been expanding rapidly on a global scale. Worldwide natural gas production has doubled over the last 30 years from 53 trillion cubic feet of production in 1980 to 112 trillion cubic feet in 2010.[] With such rapid expansion into unconventional gas resources, oil and gas companies are constantly searching for more efficient, more profitable, and more environmentally friendly ways to boost hydrocarbon production. One of the most effective and rapidlyexpanding techniques to stimulate unconventional oil and gas wells is hydraulic fracturing.

Aquifer Characterization System (BRACS) program (TWDB)

In 2011, the estimated volume of groundwater with a total dissolved solids level between 1,000 and 10,000 mg/L at almost 2.7 billion acre-feet (3,330 billion m3).

1 Ac ft =~ 7,400 bbls

GPRI Designs Mobile Lab in McAllen Texas

Mobile Laboratory Allows Multiple Water Treatment Tests

Hydrocarbon removal Suspended solids removal Bacteria removal Brine softening

Process piping and membrane setup inside the GPRI Mobile Lab

Analytical Testing in McAllen

<u>Pocket Guides for Frac Water Quality;</u> Testing Kits

- Onsite testing of water to be used for Hydraulic Fracturing mixtures
- Will be used as a way to screen good water from bad water
- It's cheap and quick
- Will be a catalyst to new innovations in oil field water usage

Rapid Chemistry Kit for Compatibility Testing

Major MIC Groups Monitored in Field Applications

Sherman, S., Brownlee, D., kakadjian, SPE,S., Luft, B., Trican Well Service Ltd. 2014. Microbial Influenced Corrosion of Coil Tubing Milling Strings in the Eagle Ford Shale. No. IPTC-18032-MS. International Petroleum Technology Conference, Kuala Lumpur, Malaysia (2014).

On Site Testing; Microbial Influenced Corrosion (MIC)

- Current rapid test mobile technologies quantify total bacterial numbers
- QuickChek SRB is the only rapid test mobile technology that measures a specific group of bacteria

Current Mobile Monitoring Options							
Molecular Technology	Ease of Use	Testing Time (min)	Portability	Accuracy	Microbial Activity Tested	Cost per Test	
ATP LuminUltra	Easy	5	Very Good	Good	All (viable & nonviable)	\$7	
Bactiquant	Moderat e	11	Very Good	Good	All (viable only)	\$20	
QuickChek SRB	Moderat e	10	Very Good	ОК	SRB (viable & nonviable)	\$14	
Rapid-B Flow Cytometer	Easy	3	Benchtop Based	Very Good	All (viable only)	\$20	
Bug Bottles	Easy	5-7 days	Benchtop Based	OK	Specific to Media (viable	\$0.60	
industry/oil-and-gas	ny quick.seaf Ch-	quick.sedicii.jSd?K	eyworus-Arr+Lumm	ionra nup.//www	Only)	n/monitoring/by-	
(Victor Pena Sales Account Manager)							

http://www.mycometer.com/ http://www.biotechnologysolutions.com/ http://www.pcbdservices.com/technology/oil-and-gas.php

Hydraulic Fracturing Regulations

Texas Railroad Regulations on HF

Commission regulates well construction requirements and surface gauges to monitor casings at the surface

Content of HF Fluids –

<u>http://www.rrc.state.tx.us/about-us/resource-center/faqs/oil-gas-faqs/faq-hydraulic-fracturing/</u>

Protection of Ground water-

Commission's Groundwater Advisory Unit performs an essential function in determining specific groundwater protection depths for each new well

HF Fluid Disposal

Rules prohibit disposal of flow back fluids or produced formation fluids, in any manner that is not explicitly and specifically permitted

For more Info see:

http://www.rrc.state.tx.us/about-us/resource-center/faqs/oil-gas-faqs/faq-hydraulic-

Challenge: Solving Societal Problems

- New development should be technically, economically, and environmentally feasible – but also SOCIALLY ACCEPTABLE
- It is better to practice
 Conflict Avoidance up front than attempt costly Conflict Resolution later or

As we get closer to having on-site development of geothermal energy in Texas and the Gulf Coast, the time is now – **TODAY** –

begin building community relationships.

3. GPRI and Key Environmental Programs

The Global Petroleum Research Institute within the Department of Petroleum Engineering at Texas A&M University has collaboration programs both within the University and with **External Research** Centers.

The Environmentally Friendly Drilling Program

A&M Institute of **Renewable Natural** Resources

HARC Coastal Impacts

CU – Boulder **Sustainability Research** Network

GSI Environmental Advanced Analytics

Intermountain Oil and Gas **Best Management Practices Project**

Co-funded by RPSEA, U.S. Fish & Wildlife, Industry, Environmental Organizations

For more Info see:

http://www.efdsystems.org

Environmental Management: Aspects & Impacts... "think holistically"

Petroleum Production & Energy

Surface & Subsurface

Air Quality & Greenhouse Gas

Water Resources

Questions?

David Burnett GPRI Department of Petroleum Engineering Texas A&M University 979 845 2274 burnett@pe.tamu.edu