Fish, Shrimp, Crabs and Freshwater – Life in a Dynamic Estuary

George Guillen, Jenny Oakley, Mandi Moss and Cory Scanes and Tyler Swanson

Environmental Institute of Houston: University of Clear Lake H-GAC's Clean Waters Initiative Workshop Houston, Texas 11-28-17

Freshwater Inflow Model

Many juvenile organisms require access to upstream tidal creeks and rivers.

3

Salt-Wedge and Turbidity Maxima

Salt-wedge and Turbidity Maxima – another effect of the salt wedge and freshwater mixing

science.kennesaw.edu

Freshwater Inflow \rightarrow Salinity \rightarrow Dissolved Oxygen \rightarrow Biota

High rainfall Inflow Balance Orange (1000 ac-ft/month) Jefferson Harris hamber SN Sabine-Neches Trinity-San Jacinto Major estuaries Minor estuaries Brazonia ŢŜJ Region 1 Christmas Bay Jackson Matagorda Brazos n Bernard and Cedar lakes Victoria LC East Matagorda avaca-Colorado Refugie GE Region 2 San Patricio MA Nueces Kleben Region 3 NC Kenedy Laguna Madre LM Region 4 Wilacy 500 1000 1500 -500 0 Cameron Rio Grande

Arid

United States Geological Survey Gage 08116650, Brazos River near Rosharon

Season	Subsistence	Hydrologic Condition	Base	Dry Condition Seasonal Pulse	Average Condition Seasonal Pulse	Wet Condition Seasonal Pulse
Winter	430 cfs	Dry	1,140 cfs	1 per season Trigger: 9,090 cfs Volume: 94,700 af Duration: 12 days	3 per season Trigger: 9,090 cfs Volume: 94,700 af Duration: 12 days	2 per season Trigger: 13,600 cfs Volume: 168,000 af Duration: 16 days
		Average	2,090 cfs			
		Wet	4,700 cfs			
Spring	430 cfs	Dry	1,250 cfs	1 per season Trigger: 6,580 cfs Volume: 58,500 af Duration: 10 days	3 per season Trigger: 6,580 cfs Volume: 58,500 af Duration: 10 days	2 per season Trigger: 14,200 cfs Volume: 184,000 af Duration: 18 days
		Average	2,570 cfs			
		Wet	4,740 cfs			
Summer	430 cfs	Dry	930 cfs	1 per season Trigger:	3 per season Trigger:	2 per season Trigger:
		Average	1,420 cfs	2,490 cfs Volume:	2,490 cfs Volume:	4,980 cfs Volume:
		Wet	2,630 cfs	Duration: 6 days	Duration: 6 days	Duration: 9 days

cfs = cubic feet per second

af = acre-feet

N/A = not applicable

* Default Freshwater Inflow Standards for Brazos River Estuary is the freshwater inflow standard for this gage site

Study Objectives

- 1. Describe the freshwater inflow regime, and water quality (salinity, dissolved oxygen) of the tidal portion of the Brazos River
- 2. Characterize and describe the response of nekton community including density, composition and metrics to various flow regimes

Data Collection

- Miller 2014 (Jan-Dec 2012 nekton data) 12 events.
- Phase 1: (Nov. '14 May '15) 10 events
- Phase 2: (Dec. '16-May '17) 6 events (some additional ongoing work)

Brazos River Delta

Downstream site 1 km from mouth.

Gulf of Mexico

Upstream Site 42 km

Water Level Recorder Water Temp, Salinity, Dissolved Oxygen

Data Analysis

- Describe bottom water salinity, dissolved oxygen and nekton community versus flow regime
- PRIMER Cluster analysis with SIMPROF, and nMDS
- ANOSIM compare collection similarity

Results

Hydrology vs. Salinity and Dissolved Oxygen

Winter 17

Salinity

Salinity – Dry, Subsistence Flow, Summer 2012

Salinity Wet Base, Wet and Subsistence Flow, Winter/Spring

Dissolved Oxygen

D.O. Dry Subsistence Flow - Summer

D.O. Wet Base/Sub Flow Winter, Spring

Biological Response

Marine and Estuarine Nekton

Freshwater Nekton

15 Groups of Collections Identified

Most Significant Differences in Community Composition occurred between

Dry (subsistence) and Wet or Peak (1, 2, 3ps) Flows

Otter Trawl Flow Tier Pair wise tests - ANOSIM									
Flow Tier	Flow Tier	Sig %	Flow Tier	Flow Tier	Sig %				
Dry-1ps S	Avg-3ps S	0.10	Dry-Sub Su	Avg-3ps S	0.10				
Dry-Base W	Avg-3ps S	0.30	Avg-Sub W	Avg-3ps S	0.10				
Dry-Base W	Dry-Sub W	1.11	Dry-Sub W	Avg-3ps S	0.20				
Dry-Sub S	Avg-3ps S	1.17	Avg-3ps S	Wet-2ps Su	0.40				
Dry-Base S	Wet-Sub W	1.23	Avg-3ps S	Wet-Sub W	0.40				
Dry-Sub S	Wet-Sub W	1.23	Avg-Sub W	Wet-Base S	1.10				
Dry-Sub S	Avg-Sub W	2.34	Wet-Sub W	Wet-Base S	1.23				
Dry-Base W	Wet-Sub W	2.47	Dry-Sub Su	Wet-Base S	1.30				
Dry-Base S	Avg-Sub W	3.13	Dry-Sub W	Wet-Sub W	1.48				

< 2,000 cfs = 22-42 km; 2,000-15,000 cfs # taxa increases; 0 FW taxa @ rkm 42

Conclusions

- Salinity and dissolved oxygen responds rapidly to changes in freshwater inflow.
- P(hypoxia) lower when flow is high and salt wedge is reduced or pushed downstream
- Species composition sensitive to salinity change but some species exhibit strong seasonal response
- Spatial gradients related to salinity and dissolved oxygen are likely interacting with strong seasonal pulses of juvenile fish.

Future Work

- Targeted investigation of flow tiers during summer /early fall months currently lacking; critical period for dissolved oxygen
- Mark/recapture, length freq, otolith aging to evaluate growth of immigrating YOY fish vs. flow regime
- Stable isotope analysis assess contribution of upstream nutrients to estuarine juvenile fauna
- Telemetry of larger fauna (alligator, juvenile bull shark)

Future Work

Need to investigate role of discharge on nutrient and sediment transport and influence on nearshore GOM productivity and biological community and delta formation

Acknowledgments

- Funding: Biowest, TWDB, EIH, UHCL
- Collaborators and Reviewers: Edmond Oborny -BioWest, Dr. Tim Bonner - TX. State University; Dr. Jacquelyn Duke – Baylor; Dr. Kirk Winemiller – TAMU Phase 1 only.
- Field Assistance: Phase 1: Kristi Fazioli, Bryan Alleman, Michael Lane, Natasha Zarnstorff, Sherah Loe, Rachel Byrne, James Yokely, Josi Robertson, Nicole Morris & Raphaelita Bishara; Phase 2: Kristi, Tyler Swanson, Natasha, Sherah, James, Nicole, Raul Sarmiento, Anna Vallery, Kaylei Chau

Citations

- Alber, 2002. A conceptual model of estuarine freshwater inflow management. Estuaries 25(68): 1246-1261.
- Anderson, J.B. 2007. Formation and future of the Upper Texas Coast.
- Bird, E. 2000. Coastal Geomorphology.
- Day, J.W. et al. Estuarine Ecology. 1989.
- McFarlane et al. 2015. The effect of four environmental parameters on the structure of estuarine shoreline communities in TX. Ecosphere 6(12): 258
- McLusky, D. and M. Elliott. 2006. The Estuarine Ecosystem.
- Tolan, J.M. 2013. Estuarine fisheries community level response to freshwater inflows

Armored Catfish – Rkm 42