Houston’s Successful Implementation of an Agreed Order for Sanitary Sewer Overflows

April 22, 2015

Presented By: Jason A. Iken, Senior Assistant Director
Introduction

- Houston at a Glance
- Information
- Planning
- Implementation
Houston at a Glance

- Fourth largest City
- Founded in 1836
- 48 inches of rain
- Unstable soils
- Flat terrain
- 2.2 million people served
- 669 square miles
- 590 square served

Unstable Soils = Pipe Leaks
Houston Area: 669 Square Miles

The land area of all these cities COMBINED would fit within Houston’s land area.
Collection System Monitoring / Alerting

- Causes

- Power Failure - 11%
- Insufficient System Capacity - 7%
- I/I - 27%
- Pipe Breaks - 12%
- Pipe Blockages - 43%

Source - EPA website
Collection System Monitoring / Alerting

- Causes - continued

![Cause Chart (2012-2013)]

- Grease: 51%
- UNK Blockage: 15%
- Lift Station: 12%
- Structural: 12%
- Force Main: 4%
- Capacity: 1%
- Debris: 1%
- Roots: 1%
- ARV: 1%
- Rags: 1%
- Cross Connection: 0%
Collection System Monitoring / Alerting

- Causes - continued
Collection System Monitoring / Alerting

- Protection - Technical Solution
 - Leverage existing wireless broadband network WiMax
 - Leverage Automatic Meter Reading (AMR) System

- Protection - Technical Component
 - AMR System / Repeater
 - Covers approx. 80% of existing wastewater manholes
Collection System Monitoring / Alerting
Collection System Monitoring / Alerting

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Criteria</th>
<th>Utility</th>
<th>EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>Dry weather condition ≤ Design Storm</td>
<td>Avoidable</td>
<td>All are avoidable unless demonstrated otherwise</td>
</tr>
<tr>
<td>Wet</td>
<td>> Design Storm</td>
<td>Unavoidable</td>
<td>$$$ to eliminate all unavoidable</td>
</tr>
</tbody>
</table>

- Conditions: **Dry** and **Wet**
- Criteria:
 - Dry weather condition ≤ Design Storm
 - > Design Storm
- Utility:
 - Avoidable
 - Unavoidable
- EPA: **All are avoidable unless demonstrated otherwise**
Collection System Monitoring / Alerting

- Benefits
 - Quickly identify source of overflow based on monitoring data
 - Improve responsiveness
 - Ability to analyze data collected
Asset Management

- Existing Assets
- Current Condition
- Rainfall
Public Utilities - Wastewater Operations

Public Education

- Corral the Grease
 - Public education program about proper disposal of Fats, Oil, and Grease (FOG)

- City Council approved revision to Chapter 47 “Grease Ordinance” on May 2, 2007
Planning Process

- Analyzed SSO data from 2001 to 2003:
 - 98% occurred in dry weather
 - 97% occurred in small diameter sewers (<24–in)
 - Temporary blockages, grease build up and structural failure

- Creation of SSO Severity Levels (Tiers)
 - First Tier: Basins with more than 1 RSSO during the 3-yr period
 - Second Tier: Basins with >1 SSO/yr during the 3-yr period
 - Third Tier: Basins with <1 SSO/yr during the 3-yr period
 - Fourth Tier: Basins with 0 SSO/yr during the 3-yr period
Public Utilities - Wastewater Operations

Planning Process

<table>
<thead>
<tr>
<th>Tier</th>
<th>Number of Basins</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Tier</td>
<td>140</td>
</tr>
<tr>
<td>Second Tier</td>
<td>338</td>
</tr>
<tr>
<td>Third Tier</td>
<td>474</td>
</tr>
<tr>
<td>Fourth Tier</td>
<td>512</td>
</tr>
<tr>
<td>Total</td>
<td>1,464</td>
</tr>
</tbody>
</table>

478 basins selected for Scheduled Pipe Renewal
Total Estimated Rehabilitation: 6,731,000 feet

Since then have grown to 1,562 basins
Planning Process

- Tier classification based on formula

\[
\text{Priority} = 0.4 \left(\frac{\text{Basin SSO}}{\text{Citywide MAX SSO}} \right) + 0.3 \left(\frac{\text{Basin CSSO}}{\text{Citywide MAX CSSO}} \right) + 0.2 \left(\frac{\text{Basin Stoppages}}{\text{Citywide MAX Stoppages}} \right) + 0.1 \left(\frac{\text{Basin RSSO}}{\text{Citywide MAX RSSO}} \right)
\]

Using the Priority rating (which is based on a scale of 0 to 1, higher the number the worse the basin).

- Tier I = \(\left(\frac{140}{1464} \right) \) * (Total Basins) = # of Basins assigned this Tier

- Tier II = \(\left(\frac{338 + 140}{1464} \right) \) * (Total Basins)

- Tier III = \(\left(\frac{474 + 338 + 140}{1464} \right) \) * (Total Basins)

- Tier IV = the remaining Basins
Planning Tools

Guide for Evaluating Capacity, Management, Operation, and Maintenance (CMOM) Programs at Sanitary Sewer Collection Systems
Implementation Plan

Plan Period
- FY 2005 thru FY 2014 – Issue work orders
- All construction complete by end of FY 2016 (June 30th)

Two Components

Structural
- Pipe Renewal – 9.5 Mil LF
- 7.0 Mil LF from scheduled basins
- 2.5 Mil LF from unscheduled basins

Non-Structural
- Pipe Cleaning – 20.0 Mil LF
- Fats, Oil and Grease (FOG)
- Lift Station Maintenance
Implementation Plan

- Changed staffing from contractors to primarily employees
- Developed SOP and trained staff
- In-house staff
 - Planning, analysis & engineering
 - Contract preparation, bidding & RCA documents
 - Work orders

PROCEDURE MANUAL FOR SEWER MAINTENANCE AND REHABILITATION CONTRACTS

April 2007
Implementation Plan - *continued*

- Large work orders – approximately 25,000 LF
- Work order grouped by geographic area
- Constructability
- Construction Management
Benefits of Approach

- Flexible contracts
- Proactive approach
- Address entire area
- Minimize change orders
- Fast paced
- Special situations
Implementation in Practice

- Analysis of Collected Data
 - Identify root cause
 - Use IMS, WMS, WIMS, ETS
 - Define corrective action

- Renewal Rate
 - Approximately 600,000 LF / FY

- Cleaning Rate
 - Goal 3.5M LF / FY

- Optimal Solution
 - Clean and renew 6–inch to 24–inch sewers
Implementation in Practice

WASTEWATER COLLECTION SYSTEM SSOs - Mid-FY15

- Public SSOs: 56
- Private SSOs: 46
- Total SSOs: 102

Monthly Average

- Total SSOs: 120
Implementation in Practice

- American Public Works Association
 - 84th Accredited Agency
 - Full Compliance on June 15th 2013
 - 442 Applicable Practices
 - 35 Model Practices
Collection and Conveyance Management Plan

November 2012

Prepared for:
City of Houston
Public Works Department
611 Walker,
Houston, TX 77002

Prepared By:
Wastewater Operation Branch
Collection System Operations Group
4545 Groveway
Houston TX 77087

TABLE OF CONTENTS

Acronym and Term Definitions .. iii
1 Introduction .. 1
 1.1 Background ... 1
 1.2 Description of City’s Sanitary Sewer Collection and Conveyance System 1
2. Goals ... 6
3. Organization ... 7
4. Legal Authority ... 10
5. Budget ... 11
6. Operation and Maintenance .. 12
 6.1 Management Information System 12
 6.2 Rehabilitation and Renewal Plan 13
 6.3 Construction Management 13
6.4 Preventative Maintenance and Source Control 14
 6.4.1 Preventive Maintenance (PM) Program 14
 6.4.2 Fats, Oils, and Grease (FOG) Control Program 14
6.5 Training .. 15
7. Design and Performance Standards 16
8. Evaluation and Capacity Assurance Plan 17
9. Internal Audit Program ... 18
10.1 On-going Studies ... 26
 Grease Trap Project ... 26
 Application of AMR for SSO Prevention and Response Program 28
10.2 Future Goals ... 28