Goals of the Study

- Improve Mobility
- Improve Safety
- Maintain Economic Viability
The SH 6 Access Management Study North (SH 6 Study) is a part of a regional initiative sponsored by H-GAC, the Texas Department of Transportation (TxDOT), the City of Houston, and Harris County to address access management issues in the region. This study analyzes the SH 6/FM 1960 and FM 529 corridors, from I-10 to Mills Road (except US 290 intersection) and from US 290 to Greenhouse Road, respectively. The SH 6 Study makes recommendations to improve mobility and safety, while maintaining economic viability, through the application of access management strategies.

There are several characteristics of SH 6/FM 1960 and FM 529 corridors that make these corridors candidates for access management solutions, including: (1) high peak period congestion, (2) high crash statistics, (3) transitional development patterns, and (4) continued regional growth. Application of access management strategies in roadway corridors has the potential to significantly reduce congestion, and reduce the number and severity of crashes. Improved traffic flow along the roadway from the implementation of access management strategies can also contribute to increased business activity and property values along the corridor, but only when the strategies selected are sensitive to the needs of the community. For example, elevated roadways with controlled access can reduce congestion and improve flow, but reduce business activity and property values. Therefore, the SH 6 Study was very careful to listen to the needs and values of both the business owners and residents along the corridor to ensure that the final results would support the economic vitality of the corridor.

The SH 6 study invited the public to actively participate in the study from beginning to end. The public was asked to provide input into the process through a small group workshop format and through a website hosted by H-GAC. The methodology for the SH 6 Study was designed to address access management issues and to develop context sensitive, community supported solutions. The study design actively solicited input from the community regarding issues in the corridor, but, just as importantly, the study asked the community to actively participate in developing the measures by which proposed solutions would be evaluated.

As soon as the preliminary data on the corridor were pulled together and a picture of the existing conditions within the corridor was created, a public meeting was held to invite the community to view the information, presented on large format aerial maps, and to participate in small group dialogues about the data. The public was asked to help develop the measures of effectiveness that should be used to evaluate proposed solutions. Input was also garnered from the community school systems, emergency response providers, neighborhood associations, and business groups, in order to ensure that all potential issues were identified.

After the existing conditions were analyzed and future conditions projected using the H-GAC travel demand model and strategies for encouraging new land use patterns were tested using the evaluation criteria established by the public.

ACCESS MANAGEMENT TOOLS

Access management tools are described in the following sections.

Traditional Tools
- Establishing comprehensive access code;
- Requiring internal circulation / property interconnectivity;
- Coordinate traffic signals, enforce minimum signal spacing;
- Requiring / enforcing driveway setbacks from intersections;
- Requiring / enforcing minimum driveway spacing requirements;
- Consolidating existing driveways;

Innovative Tools
- Constructing alternate access roads;
- Adding travel lanes;
- Adding channelized deceleration and turn lanes at intersections;
- Replacing congested intersections with grade separations;
- Constructing raised median and channelized turn locations;
- Reducing visual clutter;
- Improving informational signage;
- Building parallel facilities;
- Creating transit access; and
- Providing bicycle and pedestrian access.

Goals of the Study

- Improve Mobility
- Improve Safety
- Maintain Economic Viability

ACCESS MANAGEMENT STUDY NORTH

The SH 6 Study took a comprehensive approach to evaluate and recommend complementary solutions throughout the study corridors. The study considered:

- Land uses (residential, commercial, office, civic, industrial, recreational, public preserve); transporta
- Coordinate traffic signals, enforce minimum signal spacing;
- Requiring / enforcing driveway setbacks from intersections;
- Requiring / enforcing minimum driveway spacing requirements;
- Consolidating existing driveways;

The SH 6 Study

The SH 6 Study took a comprehensive approach to evaluate and recommend complementary solutions throughout the study corridors. The study considered:

- Land uses (residential, commercial, office, civic, industrial, recreational, public preserve); transporta
- Coordinate traffic signals, enforce minimum signal spacing;
- Requiring / enforcing driveway setbacks from intersections;
- Requiring / enforcing minimum driveway spacing requirements;
- Consolidating existing driveways;