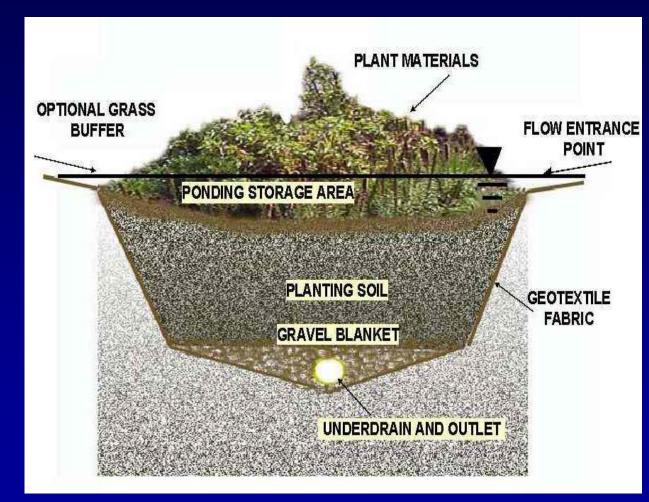
Bioretention "Rain Garden" Technical Seminar

<u>San Francisco Regional Water Quality Control Board</u> Santa Clara Valley Urban Runoff Pollution Prevention Program

Larry S. Coffman, President Stormwater Services, LLLP



Phone: 301 580 6631 email: lcoffman @ filterra.com Prince George's County, Maryland * Low Impact Development Center

Overview

- Functions
- Design Criteria
- Construction
- Maintenance
- Inspection
- Enforcement
- Lessons
- Applications

What is Bioretention?

Filtering stormwater runoff through a terrestrial aerobic (upland) plant / soil / microbe complex to remove pollutants through a variety of physical, chemical and biological processes.

The word "bioretention" was derived from the fact that the biomass of the plant / microbe (flora and fauna) complex retains or uptakes many of the pollutants of concern such as N, P and heavy metals.

It is the optimization and combination of bioretention, biodegradation, physical and chemical that makes this system the most efficient of all BMP's

Pollutant Removal Mechanisms

"Physical / Chemical / Biological"

Processes

Sedimentation Filtration Adsorption Absorption **Cation Exchange Capacity Polar / Non-polar Sorption Microbial Action (aerobic / anaerobic)** decomposition / nitrification / denitrification **Plant Uptake Cycling Nutrients / Carbon / Metals Biomass Retention (Microbes / Plant) Evaporation / Volatilization**

System Components Mulch **Course Sand Pore Space** Surface Area **Complex Organics Microbes Biofilm Plants** "Ecological Structure"

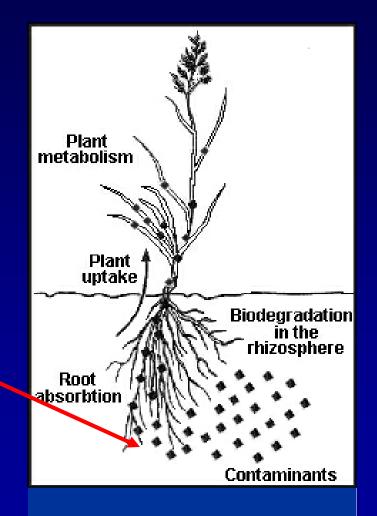
Bioretention Pollutant Removal University of Maryland

Box Experiments							
Cumulative							
Depth				Phos-			
(ft)	Copper	Lead	Zinc	phorus	TKN	Ammonia	Nitrate
	Removal Efficiency (%)						
1	90	93	87	0	37	54	-97
2	93	99	98	73	60	86	-194
3	93	99	99	81	68	79	23
Field	97	96	95	65	52	92	16

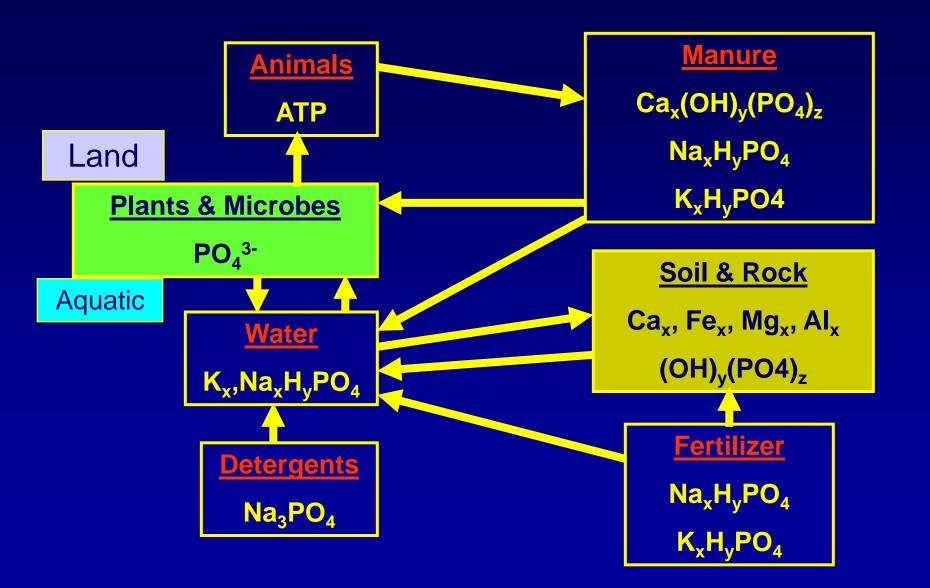
Dr. Allen Davis, University of Maryland

Interesting Study Findings

- Mulch and Metals
- Plants and Metals
- P Uptake
- Capacity / Longevity
- Residence Time
- Oil and Grease 95% Removal
- 90% Bacteria Removal
- Flow rate varies with moisture content



Pollutant Removal - Plant Microbe


- Phytoremediation
 - Translocate
 - Accumulate
 - Metabolize
 - Volatilize
 - Detoxify
 - Degrade
 - Exudates
- Bioremediation
- Soils
 - Capture / Immobilize Pollutants

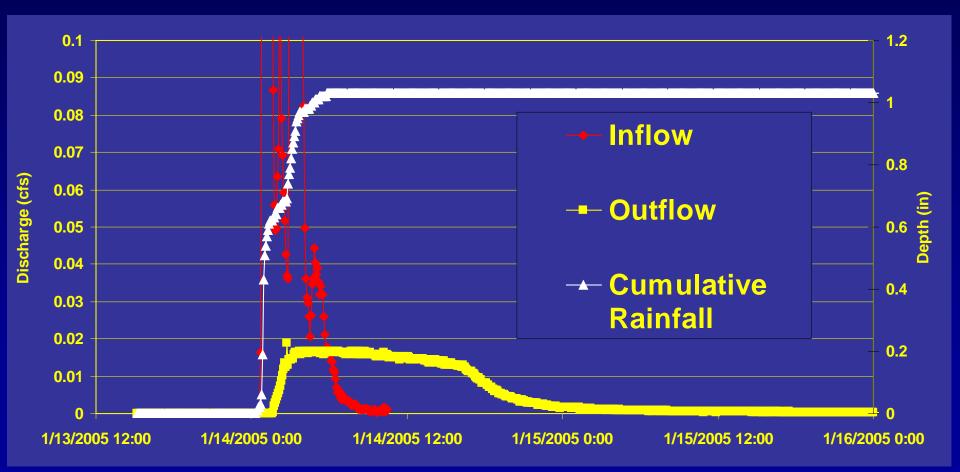
©James A. Sullivan

http://comet.net/auill

Phosphorus Cycle

Louisburg Bioretention Dr. Bill Hunt North Carolina State Research

Load Reductions: Louisburg Removal vs. PI

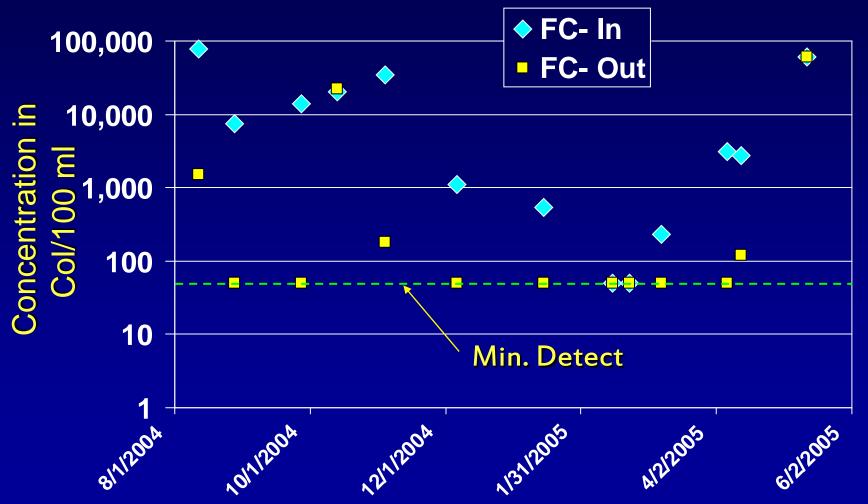

Cell	TN	TP	PI	
L-1 (unlined)	64%	66%	1 to 2	
L-2 (lined)	68%	22%	85 to 100	

June 2004- February 2005

GSO: Load Reduction (July 03- Dec 04)

G-1	Inflow Load	Outflow Load	% reduction
H ₂ O (1000 L)	2670	1170	56
TN (kg)	4.69	3.13	33
TP (kg)	0.53	0.48	9
G-2			
H ₂ O (1000 L)	2670	1010	62
TN (kg) 4.36		2.5	43
TP (kg) .41		.57	-39

Inflow V. Outflow Rates



NC Shellfish Closures

 100,000 acres of shellfish waters are permanently or temporarily closed to harvesting.

Hal Marshall Bioretention: Fecal Coliform Concentrations

Bioretention Construction Costs

Excavation (assume no hauling)	\$3 - \$5 / cy
Fill Media	\$15 - \$20 / cy
Vegetation/ Mulch	\$1.00 - \$1.50 / sf
Underdrains /Gravel & Outlet	\$0.50 - \$1.50 / sf
Total	\$10 - \$14 / sf

Design Considerations

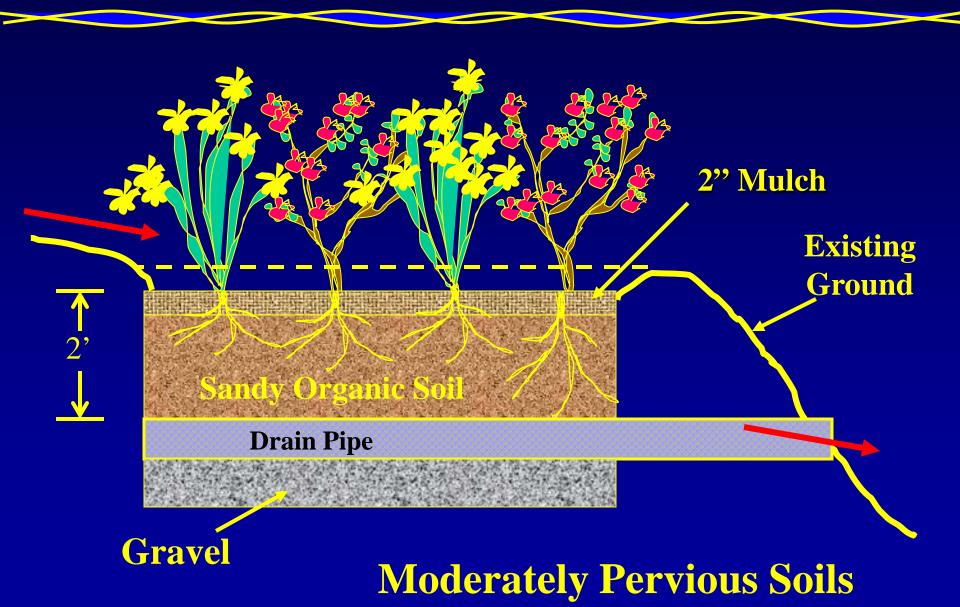

- Design Objectives (Quality / Volume / Flow / Recharge)
- Media Specifications / Consistency
- Sizing
- Offline / Flow–Through Systems
- Pretreatment
- Unique configurations / designs (costs)
- Custom Application (Bacteria / Metals / Oil and Grease)

Bioretention Design Objectives

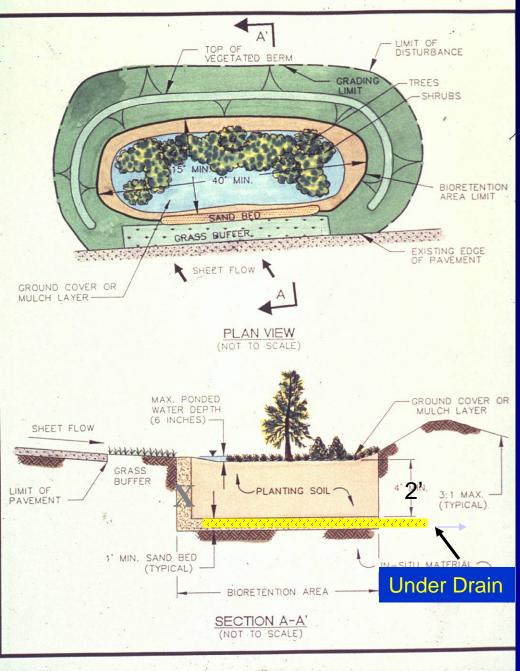
• Peak Discharge Control

- 1-, 2-, 10-, 15-, 100-year storms
- Bioretention may provide part or all of this control
- Water Quality Control
 - $-\frac{1}{2}$ ", 1" or 2" rainfall most frequently used
 - Bioretention can provide 100% control
- Ground water recharge
 - Many jurisdictions now require recharge (e.g., MD, PA, NJ, VA)

Infiltration System


Highly Pervious Soils

Filtration System



Highly Pervious Soils

Combination Filtration / Infiltration

Bioretention

Shallow Ponding - 4" to 6"

- Mulch 3"
- Soil Depth 2' 2.5'
- Sandy Top Soil
 - 65% Sand
 - 20% Sandy Loam
 - 15% Compost
- Under Drain System

• Plants

PARKING EDGE AND PERIMETER WITHOUT CURB

Low Flow Media 2 to 10 inches / hour Peat / Sand / Aggregate Matrix - PSD

Peat 15 to 20% by volume Clay <5% (<0.002 mm) Silt <5% (0.002-0.05 mm) Very Fine Sand 5-10% (0.05-0.15 mm) Fine Sand 15-20% (0.15-0.25 mm) Medium to Coarse Sand 60-70% (0.25-1.0 mm) Coarse Sand 5-10% (1.0-2.0 mm) Fine Gravel <5% (2.0-3.4 mm)

<u>High Flow Media</u> <u>10 to 50 inches / hour</u> <u>Peat Sand / Aggregate Matrix - PSD</u>

Peat 5 to 10% by volume Clay <2% (<0.002 mm) Silt <2% (0.002-0.05 mm) Very Fine Sand 5% (0.05-0.15 mm) Fine Sand 10% (0.15-0.25 mm) Medium to Coarse Sand 70% (0.25-1.0 mm) Coarse Sand 10-15% (1.0-2.0 mm) Fine Gravel 5-10% (2.0-3.4 mm)

<u>City of Portland , OR</u> <u>Low Flow</u> - 1" to 3" / Hour "Soaker" Sand / Municipal Compost

<u>Ocean City, MD</u> <u>High Flow</u> - + 100" / Hour Filterra Corse Sand / Peat

Other Media Considerations

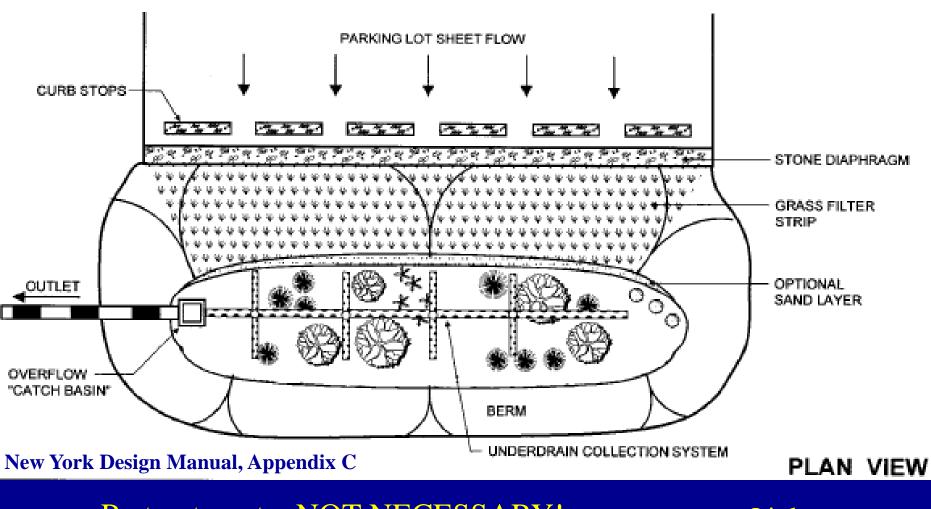
- Homogenous Mixture
- Peat / Clays / Silts slow flows
- Test and standardize the media!
- But performance varies with source!
- Min 1.0' depth of media
- Max depth varies with vegetation.
- Organic Component (Peat vs. Compost)

Media Components Properties

	<u>Sand</u>	<u>Silt Loam</u>	<u>Compost</u>	<u>Peat</u>
Permeability (cm/hr)	3.3	0.1-0.4	-	0.25-140
Water holding capacity (cm/cm)	0.14	.07-0.1	-	.01-0.2
Bulk density (g/cm)	2.65	1.25	1-2	<0.1-0.3
pH	-	5.7	7.8	3.6-6.0
Organic matter (%)	<1	<20	30-70	80-98
Cation exchange capacity	1-3	12-18	66	183-265
Total phosphorus (%)	0	0.09	<0.1	<0.1
Total nitrogen (%)	0	0.15	<1.0	<2.5
Filtration efficiency after				
18 in. (%)	93	94	16	47

Louisburg Bioretention Cells

- Soil Media:
 - Nominally 0.75 m Deep
 - 60% Sand
 - 40% "Ballfield Mix"
- Low PI (1-2) fill
 - 85% Sand
 - 10% Fines
 - 5% Organics
- Constructed Spring 2004

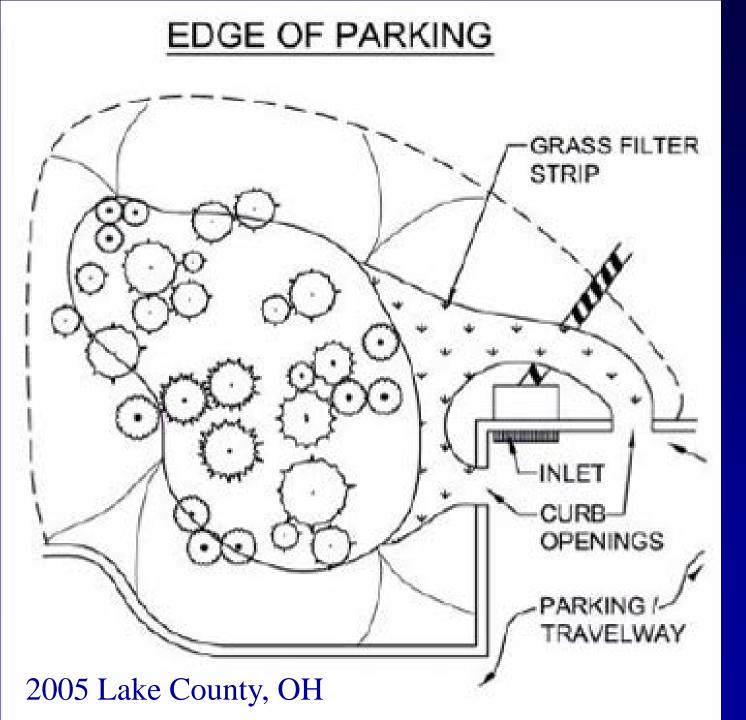

Other Media Considerations

• Mulch

- Hardwood / Pine bark
- Use as pretreatment
- Water retention
- Pollutant removal
- Maintenance

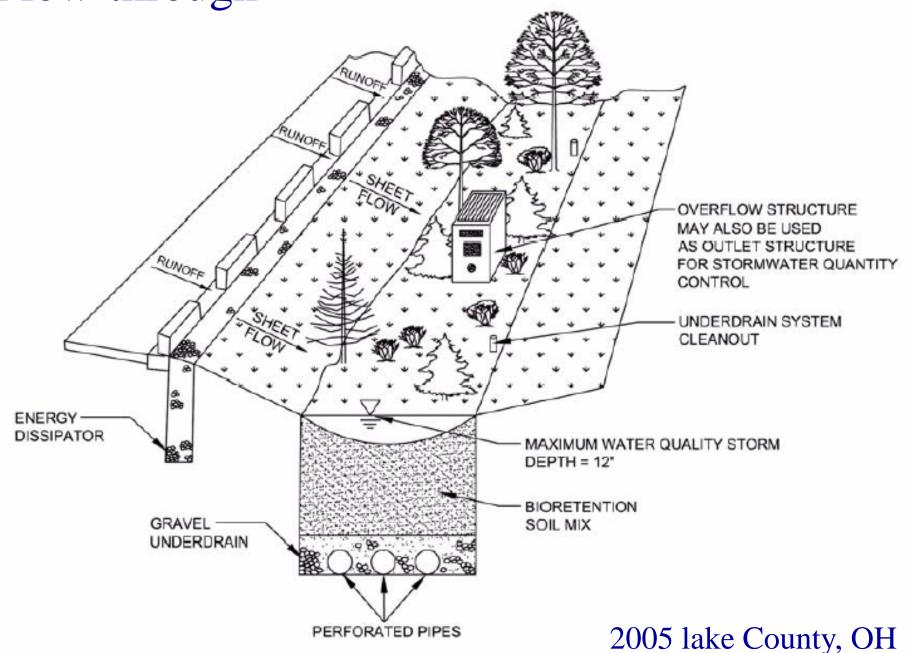
Underdrain System

- Avoid Filter Fabric use bridging stone (pea gravel around pipe)
- Minimum of 3" of gravel over pipes; not necessary underneath pipes
- Underdrain Piping ASTM D-1785 or AASHTO M-2786" rigid schedule 40 PVC 3/8" perf. @ 6" on center, 4 holes per row;
- Observation wells



Pretreatment – NOT NECESSARY! additional benefit

Little


additional benefit Additional Maintenance issues Requires additional space Restricts use Design Configuration Considerations

- Off line vs. Flow-through
- Inlet
- Surface Storage
- Underdrain Dewater media

Off-line

Flow-through

Plants Considerations

- Pollutant uptake
- Evapotranspiration
- Soil ecology / structure / function
- Number & type of plantings may vary,
 - Aesthetics
 - Morphology (root structure trees, shrubs and herbaceous)
 - Native plants materials
 - Trees 2 in. caliper / shrubs 2 gal. size / herbaceous 1 gal size.
 - landscape plan will be required as part of the plan.
 - Sealed by a registered landscape architect.
 - Plants are an integral part no changes unless approved
 - Plant survival
- Irrigation Typical / customary

Bioretention: Site Analysis

- Map site soils by soil series, hydrologic soil type (A, B,C, D), textural classification and engineering properties
- If possible, avoid laying impervious surfaces (roads, parking lots, driveways) over HSG A and B soils
- Minimize cut and fill in A & B soils (site fingerprinting)
- Infiltration facilities in C & D soils require underdrains.

- Flow rate
- Infiltration rate
- Volume
- Intensity
- Void space
- Drainage area (Smaller the Better)

Construction / Inspection

- Preconstruction meeting" with the contractor / owner / architect / engineer
- Geotechnical Report
- Ensure sediment control measures in place
- Sub grade soils and preparation.
- Presence of Ground water
- Under drain and filter media installation.
- Soil certifications for back fill.
- Topsoil layers should be thoroughly wetted achieve settlement.
- Plant placement / warrantee / type
- Proper site grading
- Site stabilization before planting.
- U&O

Inspection / Maintenance

- Require a long term maintenance plan
- Non Erosive Designs Inlet / Outlet / Flowthrough
- Sediment build-up
- Annual inspection / plant care
- Excessive ponding (Longer than 8 hours)
- Use underdrains
- Right Vegetation
- Spills

Maintenance Funding

- Poorly addressed and biggest failure!
- Private systems
- Private systems built to public standards
 - Capitalize maintenance costs
 - Maintenance fee
 - General or dedicated funds
- Manufacturer's provide "long term" maintenance
 - Up front options to renew
 - Encourage competition

Enforcement

- Site Inspectors field adjustments
- Site restoration or construction bonds
- Site Inspection fees
- Individual property owner agreement
- Home Owner Association
- Easements / Rights-of-way
 - Enable local government actions
 - Fees / Fines / Penalties
 - Administrative and Court actions
- Community standards
- U&O

Lessons Learned

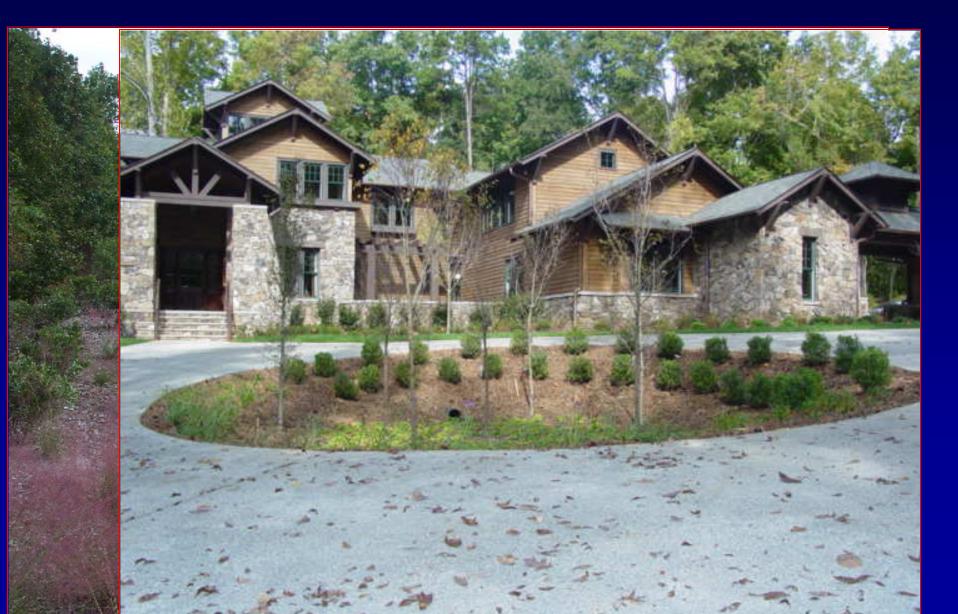
High Failure Rates Due to:

- Use of Old Design Standards
 - clay / organic / K factor
- Poor Drainage
 - Under drain design / Geo-fabrics / Saturated soils
- Media Variability
 - Reliable Sources
- Contractor Substitutes
- Contamination
 - P, N and Heavy Metals
- Sizing / Space
- Maintenance
 - Can be high as system become larger

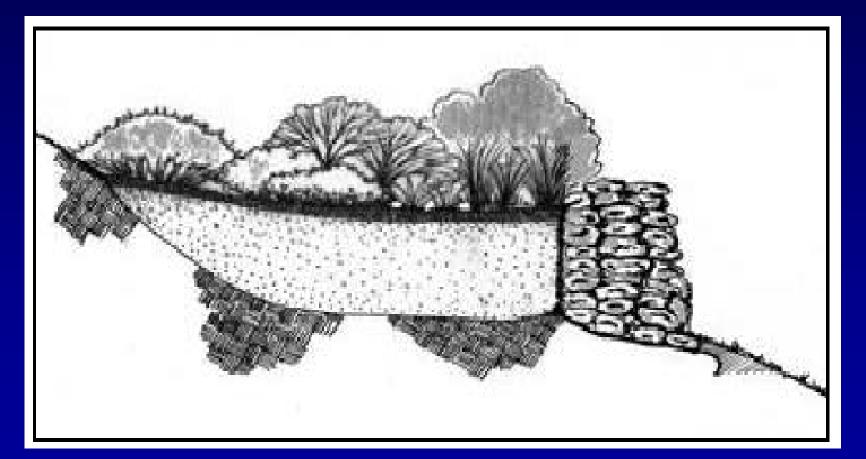
Bioretention Applications

Rain Garden in an office by G.W. Parkway

Residential Rain Gardens



Example Bioretention Areas



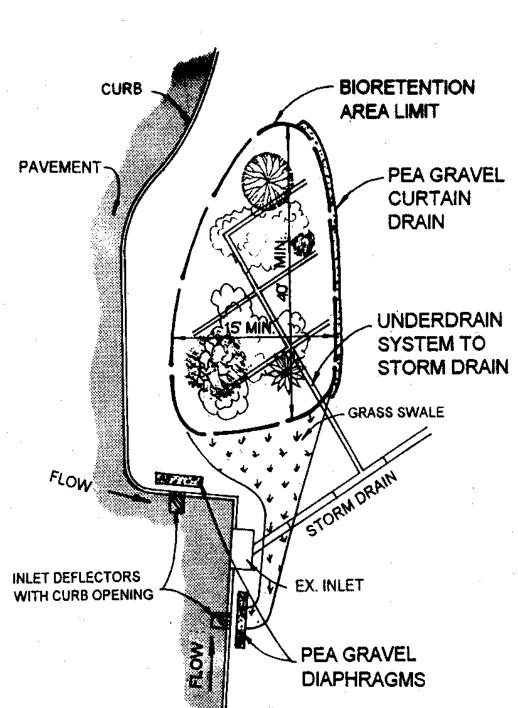
Bioretention Types

Fieldstone weep garden design

Weep Wall Filter

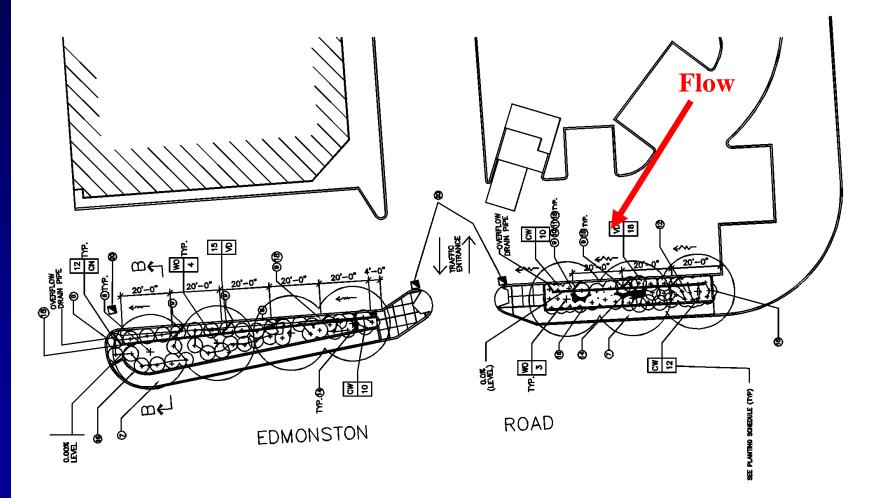
Rain Garden on a commercial project with turf grassnear I-395 and Edsall Road.

Rain Garden with turf grass treating the rooftop runoff (sheet-flows across lawn) of a hospital facility.


The first Rain Garden in Virginia, located in a turning circle in front of St. Stephens School, Alexandria.

Rain Gardens used through-out the Alexandria Central Library to treat all impervious runoff

New River MCAS


M. S. MAN

All green space can be designed to be hydrologically functional and treat runoff.

Port Towns Shopping Center

0.94 Acres @ \$29,000 \$30,000 / Ac.

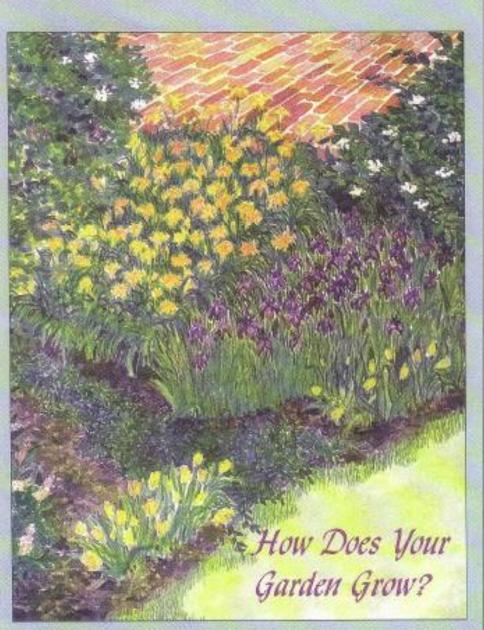
LEASE

autis

Buckman Heights Apartments – Infiltration garden

430

H


H

Division Street Planters

25

A Reference Guide to Enhancing your Rain Garden

Contents

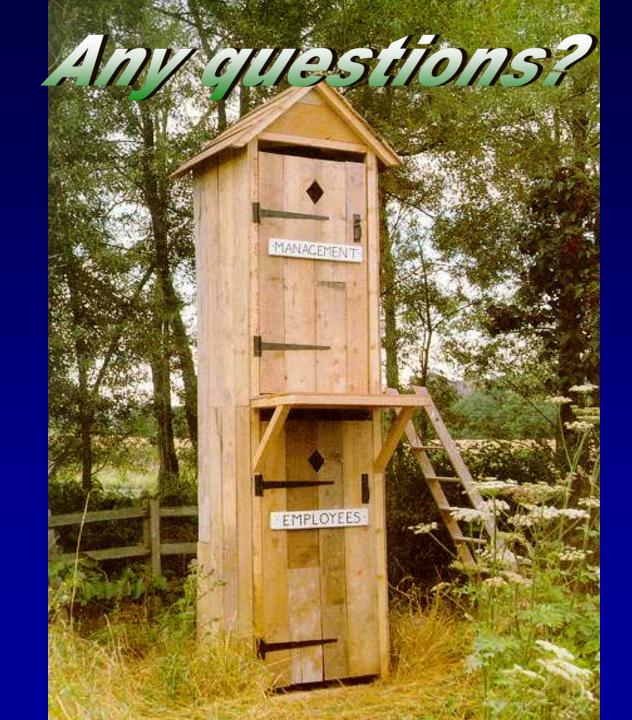
Introduction	3
Adding and Replacing Plans	
Sample Rain Gardens	6
Plant Lists	
Trees	8
Shrubs	. 10
Flowers	
Grasses & Sedges	12
Ground covers	
Ferns	. 12
Seasonal Care of your Rain.	. 14
Special Requirements	. 18
Helpful Tips for Enhancing	
Protecting your Rain Garde.	. 19
Glossary	. 20

Environmental Education and Outreach

Maintenance

Maintenance Troubleshooting Chart for Bioretention					
Problem	Indication/Sign(s)	Probable Cause(s)	Recommended Solution(s)		
Pooling Water on Surface					
Soon after installation	Recent sediment/mud in mulch layer	Construction Sediment Contamination; Improper Soil Mixture	Remove contaminated soils/silt; Evaluate soil tickets; eliminate source of sedimentation		
Over period of time	Underdrain dry	Clogged soil or filter media	Rake soil surface; puncture soil with reinforcing bar to increase flow avenues; remove and replace soils and filter media as needed		
Plant Die-off	•				
Soon after installation	Wilting, brittle, dry roots	Poor installation, storage,, and/or plant quality; saturated or dry soils	Check tags and enforce warrantee period. Check soil conditions		
Over period of time	Lack of new growth spurts, brown leaves, brittle, lack of green growth	Insufficient nutrient levels, poor pest control, drowned roots	If beyond warrantee period, replace with more suitable plantings		
Suddenly	Yellowing of leaves	Too much water	Reduce water intake/inflow		
	Wilting/shriveling	Lack of Water/Wicking	Water as necessary		
	Smell/residue	Toxification by salts, petroleum products or chemical spills	For salt; flush with water hose, remove contaminated soils; For petroleum products or spills, contact hazmat and contain		
Plant Proliferation					
Weeds	Messy appearance and volunteer plants present	Preferred vegetative cover insufficient to block weeds	Weed as necessary		

Invasives	Overgrowth smothering	Windblown or accidental	Weed as necessary, replant
	preferred plantings	planting	preferred species more
	· · · -		densely
Over-Abundance	Messy appearance and	Great soil structure,	Divide and distribute; Trim
	spreading	possible over fertilization	and harvest growth to
	spieaunig		control
			CONTROL
Trash and Debris Accumula			
Debris Accumulation	Repeated occurrence of	Windblown or carried,	Remove and install
	trash and debris	dettling in depressions	catchment device or wind
			deflecting landscape
Erosion			
Wash-outs	Exposed raw earth;		Reduce amount of flow;
	displaced mulch; mulch		Replace organic mulch with
	dams; mulch float		inorganic mulch materials
Dillin a		Concentrated flow over and	
Rilling	Ruts in mulch, soil or grass	Concentrated flow over one	Reseed or provide resistant
		point	vegetation; reestablish
			sheet-flow conditions
Undermining and	Collapsing border,	Steep slopes; flow-through	Reduce entrance slopes;
Sloughing-off	pavement	facility;	install energy dissipaters;
ereegining en	parament	1.00011131	bring system offline
Settlement and	Sink holes and depressions	Not enough natural	Field investigate; Look for
cavitations		compaction time allowed;	sediment deposits at outfall
		Soils washing through	point; remove questionable
		system; poor pipe/structure	soils; seal joints at
		joints	structure/underdrain
			interface; refill/overfill soil



MAINTENANCE SCHEDULE FOR BIORETENTION AREAS

1.0 Plant Care		Sp	ring	S	ummer		Fall		Winte	Г
1.1	Trimming, Pruning, & Thinning									
1.2	Mowing									
1.3	Weeding									
1.4	Watering (estab. & drought)									
1.5	Fertilizing									
1.6	Pest Management									
1.7	Plant Replacement									
2.0 Infiltration		Spring		Summer		-	Fall		Winter	
Maintenance										
2.1	Ponding and Drainage									
	r onanng ana orannago									
2.2	Trash and Debris Removal									
2.2 2.3										
	Trash and Debris Removal									
2.3	Trash and Debris Removal Composting									
2.3 2.4	Trash and Debris Removal Composting Mulching									

Required
Required at low frequency
Required as necessary

