Appendix 3 Travel Model Validation

HOUSTON-GALVESTON AREA COUNCIL

REGIONAL TRAVEL MODELS

2005 Cube Voyager Model Validation and Documentation Report

December 2009

1.0 Introduction

The Houston-Galveston Regional Travel Models are cooperatively developed and maintained by the Houston-Galveston Area Council (H-GAC), the Texas Department of Transportation (TxDOT) and the Metropolitan Transit Authority (METRO). This report documents the validation of the Houston-Galveston Regional "Track-1" Cube Voyerger Travel Models from the previous base year 2002 to 2005 base year.

A few years ago, the H-GAC's Emme/2 Track-1 2002 base year model was convereted and validated in the Cube Voyager environment. The Emme/2 Track-1 model is as result of enhancements and updates made to H-GAC's previous Travel Models known as the "Track-0" model set.

This report does not fully document the various model set components of this newly validated model, instead, documents those components that were addressed as part of the 2005 validation.

The development of the "Track-0" model set is documented in the following reports.

- Development, Update and Calibration of 1985 Travel Models for the Houston Galveston Region, H-GAC, June 1991
- Estimation, Calibration, and Validation of the Houston Mode Choice Model Technical Report
- 1990 Houston Long-Range Patronage Forecasting Model Validation-Draft Technical Memorandum: Model Validation Methodology and Results
- IH-10 Katy Freeway Major Investment Study: Service and Travel Forecasting Methodology, Version 3.0

The 'Track-1" Travel Models represent an update of the "Track-0" models using updated (relative to the original 1984 survey) household and work-place survey data. In terms of model structure, the only significant change to the model set was the re-definition of trip purposes. The regional mode choice model is a nested logit model originally developed for incorporation into METRO's 1985 Houston Long-Range Patronage Forecasting Model based on 1985 travel survey information. The model was later enhanced for use in a Major Investment Study. The model has been re-calibrated to the year 2002 as part of the development of the Track-1 model set.

More information about the development and validation of the 'Track-1" Travel Models is documented from another report, titled "H-GAC Travel Model 2002 Validation Report".

1.1 Report Structure

Chapter 2 of the report discusses the development of land use, demographic and cost data for the 2005 Base Year. Included in this section is also a discussion and depiction of the zone system used in the H-GAC modeling efforts. Chapter 3 outlines the development of both highway and transit networks. This is followed in Chapter 4 with a discussion of travel forecasting procedures employed in the 1995 validation. The 2005 highway assignment

validation results are also summarized in Chapter 4. Chapter 5 discusses the development of an HPMS adjustment factor used in applications of travel model forecasts for air quality conformity and SIP development.

2.0 Land Use, Demographic & Cost Data Development

The eight-county Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (CMSA) has been federally designated as the Transportation Management Area (TMA) for the Houston-Galveston region. The Houston-Galveston TMA extends over an area of 7,809 square miles. Land Use and Demographic forecasts for the TMA are developed by H-GAC.

2.1 Zone System Definition

Under 1990 (census related) geography, H-GAC has designated 3,000 detailed traffic analysis zones (TAZs) in the Houston-Galveston TMA. This includes 2,954 internal zones and 46 external stations. The internal zones are entirely within the TMA and the external stations are used to capture external-external and external-local trips into and through the TMA. The 2005 validation of the Cube models uses the same 3000 TAZ structure.

2.2 Base Year Demographic Estimates

Estimated Year 2005 households and Year 2005 employment were used as the primary demographic inputs for the Year 2005 validation of the travel models. Estimates of 2005 household were derived through interpolation of year 2000 TAZ-level estimates and forecasted year 2007 TAZ-level data. Definitional changes to employment categories instituted as part of a new demographic forecast resulted in a situation in which future year forecasts of employment that will be used in conjunction with this model set would be different than those of the Year 2005 employment data set. For this reason, employment estimates for the year 2005, which have consistent definitions to the future year employment were used in the validation of the 2005 Cube models. While use of the year 2005 employment results in an over-estimation of trip attractions, the H-GAC trip generation model scales attractions to match productions. Therefore, the total regional trip ends are the same as they would be if actual year 2005 employment was used.

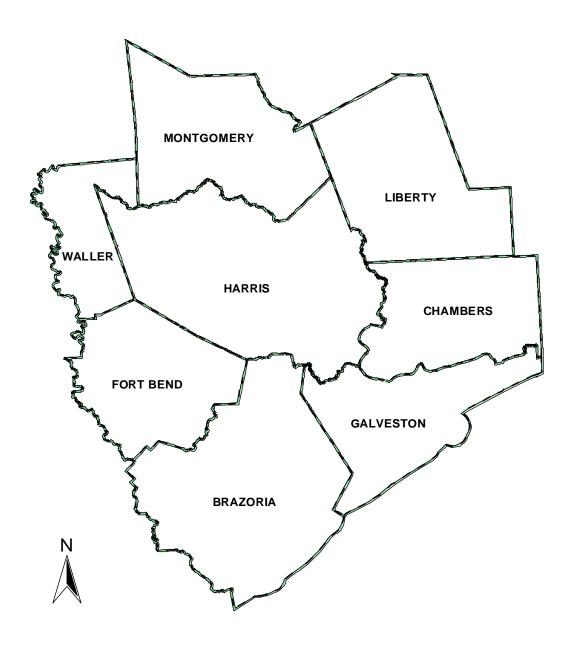
2.3 Comparison of 1995 and 2005 Population/Household and 2005 Employment Estimates by County

Table 2.1 summarizes the household changes between 1995 and 2005. Regionwide households increased over 25 percent, from 1.488 million in 1995 to 1.865 million in 2005. Household growth by county ranged from a low of 18.5 percent in Galveston county to a high of more than 63 percent in both Montgomery county and Fort Bend county. Table 2.2 summarizes the household population growths by county from 1995 to 2005 (which excludes group quarters such as prisons).

Table 2.1 County Households for 2005 and 1995

County	1995	2005	Change from 1995	% Change
Harris	1,120,750	1,337,794	217,044	19.4%
Brazoria	68,337	95,757	27,420	40.1%
Fort Bend	87,477	142,821	55,344	63.3%
Waller	9,027	12,615	3,588	39.7%
Montgomery	81,556	133,227	51,671	63.4%
Liberty	21,760	26,577	4,817	22.1%
Chambers	7,710	10,779	3,069	39.8%
Galveston	89,143	105,619	16,476	18.5%
Total	1,487,755	1,865,189	379,429	25.5%

Source: Trip Generation Data for 2005 and 1995 prepared by H-GAC


Table 2.2 County Household Population for 2005 and 1995

County	1995	2005	Change from 1995	% Change
Harris	3,059,331	3,727,592	668,261	21.8%
Brazoria	197,276	266,556	69,280	35.1%
Fort Bend	281,658	437,251	155,593	55.2%
Waller	25,117	35,368	10,251	40.8%
Montgomery	230,859	371,227	140,368	60.8%
Liberty	60,384	73,838	13,454	22.3%
Chambers	22,523	30,203	7,680	34.1%
Galveston	222,520	272,016	49,496	22.2%
Total	4,101,664	5,214,051	1,114,383	27.2%

Source: Trip Generation Data for 2005 and 1995 prepared by H-GAC

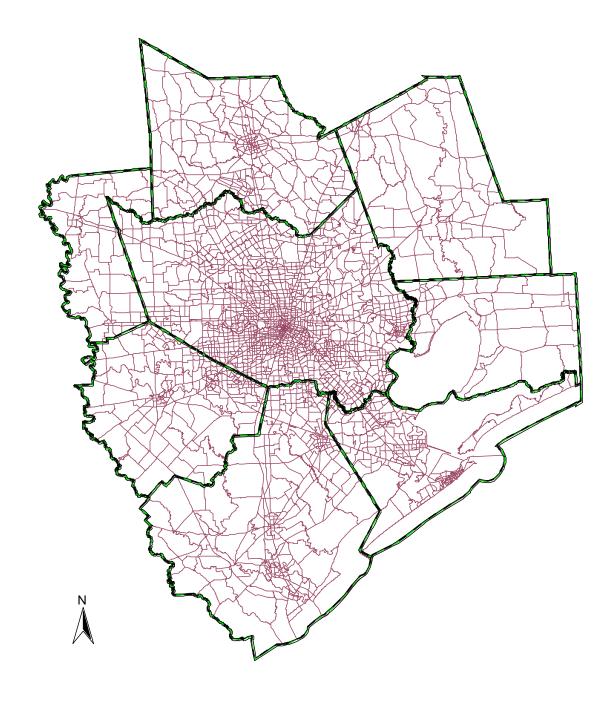

Figure 2.1 shows the eight counties in the Houston TMA. Figure 2.2 shows a map of H-GAC 3000 zone structure.

Figure 2.1 Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (Eight Counties)

Source: H-GAC

Figure 2.2 H-GAC Zone Structure

Source: H-GAC

Employment for the eight county region increased comparably with population growth, 25.2 percent overall (Table 2.3). Harris County gained over 370,000 additional jobs (a 22 percent increase), while Fort Bend County employment grew by over 61,000 jobs, or 84 percent.

Table 2.3 County Employment for 1995 and 2005

County	1995 Employment	2005 Employment	Percent Change		
Brazoria	74,327	92,284	24.2%		
Chambers	7,505	7,982	6.4%		
Fort Bend	72,804	133,919	83.9%		
Galveston	92,566	105,884	14.4%		
Harris	1,687,630	2,060,243	22.1%		
Liberty	15,744	21,100	34.0%		
Montgomery	70,276	107,814	53.4%		
Waller	9,577	12,994	35.7%		
Total	2,030,429	2,542,220	25.2%		

Source: H-GAC Trip Generation Input Data for 1995 & 2005

2.4 Growth in Activity Centers Between 1995 and 2005

Table 2.4 summarizes the employment growth for the four major activity centers in Houston from 1995 to 2005. The Texas Medical Center experienced 23% increase in employment during that time, while the already well developed Houston CBD showed only a minor increase in employment in the same time period. The Galleria and Greenway Plaza areas experienced moderate increases of approximately 5% in employment between 1995 and 2005.

Table 2.4
Employment Change in Major Activity Centers for 1995 and 2005

Major Activity Center	1995 Employment	2005 Employment	Percent Change		
CBD	135,223	137,461	1.7%		
Texas Medical Center	75,223	92,476	22.9%		
Greenway Plaza	52,242	55,035	5.3%		
Uptown/Galleria	136,540	143,104	4.8%		

Source: H-GAC Trip Generation Input data for 1995 & 2005

2.5 Cost Data

2.5.1 Auto Operating Costs

Auto operating cost is an input to the mode choice model and is used by the model in establishing the costs for the auto-related choice paths available in the roadway network. This cost reflects costs that are assumed be variable costs including gas, oil, tires and maintenance. As part of the 2005 validation, auto operating costs were updated to a year 2005 value. Then, using the Bureau of Labor Statistics (BLS) National CPI data, auto operating cost in 2005 dollars were then deflated to 1985 dollars to be consistent with the manner in which the mode choice model was calibrated. The auto operating cost for the year 2005 in 1985 dollars is 8.39 cents.

2.5.2 Toll Costs

Toll costs are used in the mode choice model in the development of costs paths for the autorelated modal choices of the mode choice model. For toll facilities that existed in the Year 2005, the toll costs are assigned to the links in the network that represent the locations where the tolls are actually collected. Table 2.5 lists the Year 2005 toll costs in 1985 dollars.

Table 2.5 Year 2005 Toll Costs

	2005 Toll Cost
Location	1985 Dollars
Hardy - North Plaza	0.47
Hardy - FM 1960 Ramp	0.41
Hardy - Richey Ramp	0.28
Hardy - Rankin Ramp	0.14
Hardy - South Plaza	0.48
Hardy - Bush IAH Ramp	0.28
Hardy - Greens Road Ramp	0.14
Hardy - Aldine Mail Ramp	0.41
Hardy - Little York Ramp	0.28
Hardy - Tidwell Ramp	0.17
Sam Houston North Plaza	0.48
Sam Houston North - SH 249 Ramp	0.41
Sam Houston North - North Gessner Ramp	0.28
Sam Houston North - Fallbrook Ramp	0.28
Sam Houston Central - West Road Ramp	0.14
Sam Houston Central Plaza	0.48
Sam Houston Central - Clay Road Ramp	0.28
Sam Houston Central - Hammerly Ramp	0.14
Sam Houston Southwest Plaza	0.48
Sam Houston Southwest - South Main (90-A)	0.14
Sam Houston Southwest – Hillcroft	0.19
Sam Houston Southwest - West Fuqua	0.28
Sam Houston Southwest – Almeda	0.41

Sam Houston South Plaza	0.48
Sam Houston South – Deerwood	0.28
Sam Houston South - Briar Forest	0.28
Sam Houston South – Westheimer	0.28
Sam Houston South – Bellaire	0.14
Sam Houston South - Beltway 8	0.19
Sam Houston Southeast Plaza	0.48
Sam Houston Southeast - Cullen	0.14
Sam Houston Southeast – Wayside	0.28
Sam Houston Southeast – Telephone Rd	0.19
Sam Houston Southeast – Monroe	0.14
Sam Houston East Plaza	0.50
Sam Houston East - Fairmont Parkway	0.41
Sam Houston East - Spencer Highway	0.28
Sam Houston East - Red Bluff	0.14
Fort Bend Toll	
Lake Olympia Pkway	0.15
McHard Road FM 2234	0.30
Fort Bend Parkway Mainline	0.60
Fort Bend Parkway Extension	0.30
Westpark Toll	
Westpark toll Grand Mission Mainline	0.30
Westpark HW6 westbound	0.21
Westpark Wilcrest Mainline	0.84
Westpark Gessner Road Entrance/Exit	0.21
Fondren East Exist	0.29
Fondren East Entrance	0.42
Fondren East Mainline	0.84
Fondren West Mainline	0.21

Source: H-GAC

2.5.3 Transit Fares

The year 2005 transit fares were used as transit fare inputs to the 2005 validation of the Cube models. Table 2.6 presents the year 2005 transit fares, by service type, in 2005 dollars.

Table 2.6 Year 2005 Transit Fares in 2005 Dollars

III 2000 Dollaio	
Local Bus	1.0
Light Rail	1.0
Express Bus Commuter Bus	1.5
0-10 miles	1.5
11-15 miles	2.5
16-20 miles	3.0
>20 miles	3.5

2.5.4 Parking Costs

Parking costs have been shown to have a significant effect on transit ridership levels and must be treated carefully. This variable is defined as an estimate of the actual (or average) out-of-pocket cost paid on a daily basis per vehicle. Table 2.7 summarizes the estimated parking costs used at the four major activity centers, including the Houston CBD, Greenway Plaza, Texas Medical Center, and Uptown/Galleria.

Table 2.7
Parking Costs for Activity Centers

Range of Costs	Average Cost		
\$0.29-\$6.73	\$2.21		
\$0.03-\$1.30	\$0.64		
\$1.09-\$2.06	\$1.65		
\$0.07-\$0.17	\$0.10		
	\$0.29-\$6.73 \$0.03-\$1.30 \$1.09-\$2.06		

Source: Houston METRO

3.0 Data Preparation and Transportation Network Development

Calibration and validation of the regional model was dependent upon observed travel behavior 1994 household, work place, commercial vehicle and external station travel surveys as well as a 1995 On-Board Transit Survey.

3.1 1994/1995 Travel Surveys

In 1994, H-GAC conducted a household travel survey for the Houston Metropolitan Area. The survey obtained general household and person data as well as specific activity-based trip information. Complete survey responses were obtained from 2,394 households, which generated in excess of 23,000 individual trip records.

The workplace travel survey involved the collection of travel data from employees and non-employees at 332 workplaces in the H-GAC region. Travel data was collected for over 5,000 employees and nearly 9,000 non-employees.

Surveying of external travel was performed at 24 of the 77 roadway crossings of the H-GAC region. The locations among the 77 were randomly selected and interviewed to determine vehicle destination.

3.2 Estimation of Highway Supply Characteristics

Highway supply characteristics that are required by the travel forecasting procedures include estimation of the highway level of service (LOS)(i.e., travel speed or time), parking costs, transit fares, terminal times, and auto operating costs.

The 2005 base year highway network includes key operational features for approximately 23,151 lane miles of roadways in the Houston-Galveston TMA, and consists of 28,888 nondirectional roadway links (excluding centroid connectors). Each link's physical and operating characteristics are described in a link data record. The Base Year 2005 network was constructed from the model calibration year 2002 network based on completed project information and input from local transportation agencies. Access to the highway network is provided by connecting links referred to as centroid connectors, which link internal TAZ centroids to nodes (points) in the highway network. These centroid connectors represent access to collectors, arterials, and other roadway facilities via local streets. The physical and operational characteristics represented with centroid connectors reflect zone size, proximity to the regional highway network, and the travel characteristics of local roadway facilities, which have the function of providing access to land uses within zones.

Data on physical attributes of the network, including roadway length, number of lanes, and median access type (divided or undivided) as well as operational characteristics such as average weekday traffic count and direction (one-way/two-way) were taken from the Roadway

Inventory. Link data items such as facility type classification, 24-hour speed, and 24-hour capacity are derived either from the above information or from a vehicle trip assignment. Highway link facility types include 42 different classifications. These are listed in Table 3.1 along with the link type codes for transit and HOV access.

Table 3.1 Link Type Classification Codes

Code	Description
0	Centroid Connector
1	Radial freeways without frontage roads
2	Radial freeways with frontage roads
3	Circumferential freeways without frontage roads
4	Circumferential freeways with frontage roads
5	Radial tollways without frontage roads
6	Radial tollways with frontage roads
7	Circumferential tollways without frontage roads
8	Circumferential tollways with frontage roads
9	Principal arterials with some grade separations
10	Principal arterials – divided
11	Principal arterials – undivided
12	Other arterials – divided
13	Other arterials – undivided
14	One-way pairs
15	One-way facilities
16	Major Collectors
17	Minor Collectors
18	Ferries
19	Saturated arterials
20	HOV/transitways (barrier-separated)
21	HOV ramps – bus only
22	Transfers from park-and-ride (PNR) to transit stop
23	Transfers from local bus to commuter/express bus
24	Transfers from walk access node to transit stop
25	Drive-access connectors
26	Bus only: from street to transit center (TC)
27	HOV-only slip ramps
28	Transfer from pseudo-PNR to transit stop
29	HOV terminal ramps
30	Rail
40	High-Occupancy Toll (HOT) Lane
41	HOT ramp to PNR/TC
47	HOT slip ramp
49	HOT ramp
50	Freeway frontage road
51	Tollway frontage road
52	Freeway/tollway ramps to/from frontage roads
53	Freeway/tollway direct connector (DC) ramps
60	Diamond lane (non-barrier separated HOV lane)

3.2.1 Link Capacity

Capacity and speed are the two most critical inputs into the highway network. Capacity values accorded to all roadway links represent Level of Service (LOS) E or maximum capacity based on the Highway Capacity Manual.

The following formula provided the basis for calculation of 24-hour link capacities:

$$C_{24} = \frac{\text{PHPD} + \text{PHNP}}{K}$$

Where: C_{24} = average daily traffic, or 24-hour capacity;

PHPD = capacity in the peak direction during the peak hour;

PHNP = capacity in the non-peak direction during the peak hour;

K = design hourly volume as a percent of ADT.

The peak hour / peak direction and peak hour / non-peak direction capacities are then calculated as a function of the hourly saturation flow rate:

$$PHPD = \frac{CS \times \frac{G}{C} \times \frac{V}{C} \times PHF \times U \times \frac{L}{2}}{1 + \mathbf{C}_{t} \cdot \mathbf{C}_{t} - 1} + LTVP$$

Where:CS = saturation flow rate (2,150 vehicles/hour/lane for freeways, 1,800 for arterials);

G/C = percent of green time at signalized intersections (100 percent for freeways);

V/C = ratio of volume in the peak 15 minutes to capacity;

PHF = peak hour factor (V (volume) in highest hour / $4 \times V$ in the peak 15 minutes);

U = lane utilization factor;

L = number of lanes;

P_t = percent of trucks;

 E_t = truck equivalency factor; and

LTVP = left turn volume in the peak hour and peak direction.

Application of peak hour directionality factors to estimates of peak hour / peak direction volumes provides peak hour / non-peak directional volumes:

$$PHNP = PHPD \times \frac{1 - D}{D}$$

Where:D = percent of peak hour traffic in the peak direction.

3.2.2 Link Speeds & Automobile Travel Times

Link speed is used in trip distribution and as the input speed for the initial iteration in traffic assignment. The values of these link characteristics were carefully developed and closely

reviewed during the speed model calibration process. Two speed values are developed for all roadway links: a 24-hour speed and a peak hour speed.

The 24-hour link speed reflects an average daily speed for a given roadway facility type within a given area. Reasonable speed values were determined by testing values through comparisons to travel time contours developed from observed travel times speeds.

After link speeds and capacities have been developed, they are compiled into a look-up table used for all roadway facility types except HOV / transitways. The look-up table (Table 3.2) provides classifications of speed and capacity by facility type and number of lanes. The table is not used for centroid connectors.

Table 3.2 Speed and Capacity Look-Up Table

		Area T	уре 1	Area Type 2		Area T	/pe 3	Area Type 4		Area Type 5	
FT	Lanes	Capacity	Speed	Capacity	Speed	Capacity	Speed	Capacity	Speed	Capacity	Speed
1	4	123,500	48	128,000	48	119,500	51	106,500	54	69,000	59
1	6	185,500	48	191,500	48	179,500	51	159,500	54	103,000	59
1	8	247,500	48	255,500	48	239,500	51	212,500	54	137,500	59
1	10	309,500	48	319,500	48	299,500	51	266,000	54	172,000	59
1	12	371,000	48	383,500	48	359,000	51	319,000	54		
1	14	433,000	48	447,500	48	419,000	51				
1	16	495,000	48	511,000	48	479,000	51				
2	4	139,500	48	144,000	48	135,500	51	122,500	54	85,000	59
2	6	201,500	48	207,500	48	195,500	51	175,500	54	119,000	59
2	8	263,500	48	271,500	48	255,500	51	228,500	54	153,500	59
2	10	325,500	48	335,500	48	315,500	51	282,000	54	188,000	59
2	12	387,000	48	399,500	48	375,000	51	335,000	54		
2	14	449,000	48	463,500	48	435,000	51				
2	16	511,000	48	527,000	48	495,000	51				
3	4	117,000	48	130,000	48	125,500	51	109,500	54	78,000	59
3	6	176,000	48	195,500	48	188,000	51	164,000	54	117,500	59
3	8	234,500	48	260,500	48	251,000	51	218,500	54	156,500	59
3	10	293,000	48	325,500	48	313,500	51	273,000	54	195,500	59
3	12	351,500	48	390,500	48	376,000	51				
3	14	410,500	48	456,000	48	439,000	51				
3	16	469,000	48	521,000	48	501,500	51				
4	4	133,000	48	146,000	48	141,500	51	125,500	54	94,000	59
4	6	192,000	48	211,500	48	204,000	51	180,000	54	133,500	59
4	8	250,500	48	276,500	48	267,000	51	234,500	54	172,500	59
4	10	309,000	48	341,500	48	329,500	51	289,000	54	211,500	59
4	12	367,500	48	406,500	48	392,000	51				
4	14	426,500	48	472,000	48	455,000	51				
4	16	485,000	48	537,000	48	517,500	51				

FT	Lanes	Capacity	Speed	Capacity	Speed	Capacity	Speed	Capacity	Speed	Capacity	Speed
5	4	79,000	55	78,000	55	73,000	58	68,000	61	58,000	65
5	6	119,000	55	117,000	55	109,000	58	102,000	61	86,000	65
5	8	158,000	55	156,000	55	146,000	58	136,000	61	115,000	65
5	10	198,000	55	195,000	55	182,000	58	171,000	61	144,000	65
5	12	238,000	55	233,000	55	218,000	58	,000		, 0 0 0	
5	14	277,000	55	272,000	55	255,000	58				
5	16	317,000	55	311,000	55	291,000	58				
				,							
6	4	93,500	55	95,000	55	89,000	58	83,000	61	69,000	65
6	6	133,500	55	134,000	55	125,000	58	117,000	61	97,000	65
6	8	172,500	55	173,000	55	162,000	58	151,000	61	126,000	65
6	10	212,500	55	212,000	55	198,000	58	186,000	61	155,000	65
6	12	252,500	55	250,000	55	234,000	58	.00,000	<u> </u>	.00,000	
6	14	291,500	55	289,000	55	271,000	58				
6	16	331,500	55	328,000	55	307,000	58				
				0_0,000							
7	4	83,000	55	85,000	55	83,000	58	81,000	61	73,000	65
7	6	124,000	55	127,000	55	124,000	58	121,000	61	110,000	65
7	8	166,000	55	170,000	55	165,000	58	161,000	61	147,000	65
7	10	207,000	55	212,000	55	207,000	58	202,000	61	183,000	65
7	12	248,000	55	255,000	55	248,000	58				
7	14	290,000	55	297,000	55	289,000	58				
7	16	331,000	55	340,000	55	331,000	58				
8	4	97,500	55	102,000	55	99,000	58	96,000	61	84,000	65
8	6	138,500	55	144,000	55	140,000	58	136,000	61	121,000	65
8	8	180,500	55	187,000	55	181,000	58	176,000	61	158,000	65
8	10	221,500	55	229,000	55	223,000	58	217,000	61	194,000	65
8	12	262,500	55	272,000	55	264,000	58				
8	14	304,500	55	314,000	55	305,000	58				
8	16	345,500	55	357,000	55	347,000	58				
9	2	19,600	35	23,000	37	22,400	40	20,800	46	17,400	57
9	4	38,000	35	44,800	37	43,600	40	40,500	46	33,900	57
9	6	55,500	35	65,400	37	63,600	40	59,100	46	49,500	57
9	8	74,000	35	87,300	37	84,800	40	78,800	46	66,000	57
9	10			109,100	37	106,000	40	98,500	46	82,400	57
9	12			130,900	37	127,200	40	118,200	46	98,900	57
10	2	15,000	20	16,700	32	16,200	37	14,400	42	11,700	55
10	4	29,300	20	32,400	32	31,500	37	28,000	42	22,800	55
10	6	42,700	20	47,300	32	46,000	37	40,800	42	33,200	55
10	8	56,900	20	63,100	32	61,300	37	54,400	42	44,300	55
10	10			78,900	32	76,700	37	68,000	42	55,400	55
10	12			16,200	32	14,400	37	11,700	42	66,500	55

		Area T	vpe 1	Area T	vpe 2	Area T	vpe 3	Area T	vpe 4	Area T	vpe 5
FT	Lanes	Capacity	Speed								
11	2	13,200	20	15,400	32	14,900	37	13,300	42	10,800	55
11	4	25,300	20	29,600	32	28,700	37	25,500	42	20,800	55
11	6	36,600	20	42,700	32	41,500	37	36,900	42	30,000	55
11	8	48,200	20	56,300	32	54,700	37	48,600	42	39,600	55
11	10			69,200	32	67,300	37	59,800	42	48,800	55
11	12			81,800	32	79,500	37	70,600	42	57,700	55
12	2	13,500	20	16,200	32	14,600	36	12,500	40	10,500	51
12	4	26,300	20	31,500	32	28,400	36	24,400	40	20,500	51
12	6	38,400	20	45,900	32	41,500	36	35,600	40	29,900	51
12	8	51,200	20	61,300	32	55,300	36	47,400	40	39,900	51
12	10			76,500							
12	12			91,900							
13	2	12,500	20	15,100	31	13,600	35	11,700	39	10,200	50
13	4	24,100	20	29,000	31	26,200	35	22,500	39	19,500	50
13	6	34,700	20	41,900	31	37,900	35	32,500	39	28,200	50
13	8	45,800	20	55,200	31	49,900	35	42,800	39	37,200	50
13	10			67,900	31	61,400	35	52,700	39	45,800	50
13	12			80,200	31	72,500	35	62,200	39	54,100	50
14	2	14,800	20	17,300	34	16,400	38	14,500	41	11,900	55
14	4	29,500	20	34,600	34	32,800	38	29,000	41	23,900	55
14	6	43,300	20	50,700	34	48,000	38	42,400	41	35,000	55
14	8	56,300	20	66,000	34	62,500	38	55,200	41	45,500	55
14	10	70,400	20	82,500	34	78,100	38	69,000	41	56,900	55
14	12	84,500	20	99,000	34	93,700	38	82,800	41	68,300	55
14	14	98,600	20	115,500	34	109,300	38	96,600	41	79,700	55
14	16	112,600	20	132,000	34	124,900	38	110,400	41	91,100	55
15	1	7,400	20	8,700	34	8,200	38	7,200	41	6,000	55
15	2	14,800	20	17,300	34	16,400	38	14,500	41	11,900	55
15	3	21,600	20	25,400	34	24,000	38	21,200	41	17,500	55
15	4	28,200	20	33,000	34	31,200	38	27,600	41	22,800	55
15	5	35,200	20	41,300	34	39,000	38	34,500	41	28,500	55
15	6	42,200	20	49,500	34	46,800	38	41,400	41	34,100	55
15	7	49,300	20	57,800	34	54,700	38	48,300	41	39,800	55
15	8	56,300	20	66,000	34	62,500	38	55,200	41	45,500	55
16	2	12,500	19	14,600	31	13,200	35	11,400	38	8,800	49
16	4	24,100	19	28,200	31	25,500	35	21,800	38	16,900	49
16	6	34,700	19	40,600	31	36,800	35	31,600	38	24,400	49
16	8	45,800	19	53,600	31	48,400	35	41,600	38	32,100	49
16	10	53,300	19								
17	2	8,700	18	10,400	28	10,200	33	8,900	36	7,400	46
17	4	16,200	18	19,300	28	18,900	33	16,600	36	13,700	46

		Area T	ype 1	Area Ty	/pe 2	Area Ty	/pe 3	Area Ty	/pe 4	Area T	ype 5
FT	Lanes	Capacity	Speed								
17	6	24,100	18	28,300	28	27,800	33	24,400	36	20,200	46
17	8	33,900	18	39,800	28	39,100	33	34,400	36	28,300	46
19	2	19,000	20	21,600	32	21,200	37	20,800	42	15,300	55
19	4	37,800	20	43,000	32	42,200	37	41,400	42	30,600	55
19	6	56,400	20	64,200	32	63,000	37	61,800	42	45,600	55
19	8	74,800	20	85,100	32	83,500	37	81,900	42	60,500	55
19	10			106,400	32	104,400	37	102,400	42	75,600	55
19	12			127,700	32	20,800	37	15,300	42	90,700	55
50	1	6,600	20	7,800	27	7,050	31	6,050	35	5,100	42
50	2	12,850	20	15,150	27	13,700	31	11,750	35	9,950	42
50	3	17,600	20	20,700	27	18,700	31	16,050	35	13,550	42
50	4	22,700	20	26,750	27	24,150	31	20,700	35	17,500	42
51	1	6,300	20	7,450	32	6,750	35	5,750	40	4,900	45
51	2	12,250	20	14,450	32	13,050	35	11,200	40	9,500	45
51	3	17,000	20	20,050	32	18,100	35	15,500	40	13,100	45
51	4	21,950	20	25,850	32	23,350	35	20,000	40	16,900	45
52	1	17,150	20	19,250	27	18,050	31	15,850	35	13,000	42
52	2	34,300	20	38,500	27	36,100	31	31,650	35	26,000	42
53	1	17,150	45	19,250	45	18,050	50	15,850	50	13,000	50
53	2	34,300	45	38,500	45	36,100	50	31,650	50	26,000	50
53	3	51,450	45	57,750	45	54,150	50	47,500	50	39,000	50
53	4	68,600	45	77,050	45	72,250	50	63,350	50	52,000	50
53	5	85,750	45	96,300	45	90,300	50				
53	6	102,900	45	115,550	45	108,350	50	_			
	a· H-GΔ			•							

Source: H-GAC

Time-of-day highway speeds that are used to develop automobile travel times are based on procedures adapted from the *Highway Capacity Manual* (HCM) methodology. These procedures differ somewhat between how freeway and non-freeway link speeds are estimated. Congested freeway speed is a function of free-flow speed (a function of speed limit and area type), speed at capacity (LOS E), and the volume-to-capacity (v/c) ratio for v/c ratios up to 1.0. For v/c ratios greater than 1.0, which represents saturated (LOS F) conditions, speed is estimated using a variant of the BPR function, with a multiplicative factor of 0.15 and v/c raised to the fourth power.

Procedures outlined in the HCM are used to estimate congested speeds on arterial or collector links. Congested arterial/collector link speed is a function of free-flow speed (a function of speed limit and area type), average intersection delay, signal spacing (segment), and the ratio of segment running time per mile to free-flow-speed running time per mile, where v/c ratios are 1.0 or less. For saturated (LOS F) conditions with v/c ratios greater than 1.0, speed is estimated

using a variant of the BPR function, with a multiplicative factor of 0.15 and v/c raised to the second power.

Peak period speeds are derived from a peak period equilibrium assignment. Since capacities used during the equilibrium assignment represent LOS E, the resulting link's V/C ratio can then be applied to the speed model to develop a peak hour speed. In other words, the traffic assignment results are post-processed to compute a reliable speed based on the assigned V/C ratio.

3.2.3 Auto Network Centroid Connectors

Speeds on centroid connectors are derived as a function of link length and zonal area type to reflect diversity in zone size, network density, and local street operational speeds. As an example, centroid connectors of less than one-tenth mile within the Houston CBD are assigned a speed of eleven miles per hour, which is considered the lowest practical facility speed that would not unduly penalize travel in that area.

CBD centroid connector speed is increased based on link length (for links less than one-tenth mile) as follows:

```
Travel Time (minutes) = (6.0 * link distance)
Travel Speed = 60 / (Travel Time / link distance)
```

For CBD centroid connectors longer than 0.10 miles, the speed is calculated as follows:

```
Travel Time (minutes) = (0.6 + 4 * (link distance - 0.1))
Travel Speed = 60 / (Travel Time / link distance)
```

As the area changes from CBD to urban to suburban, etc., centroid connector speeds increase more rapidly with increasing distance. This is based on the premise that as area type changes from denser areas (CBD) to less dense areas (suburban) zone sizes will increase accordingly. Thus, each of the other four area types have a unique set of equations for determining centroid connector speeds:

Area Type 2 - Urban

```
when link distance = 0.10 miles or less:
    Travel Time (minutes) = (4.0 * link distance)
    Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.10 miles and <= 0.25 miles:
    Travel Time (minutes) = (0.4 + 3 * (link distance - 0.1))
    Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.25 miles:
    Travel Time (minutes) = (0.85 + 2.4 * (link distance - 0.25))
    Travel Speed = 60 / (Travel Time / link distance)
```

Area Type 3 - Suburban

when link distance = 0.10 miles or less:

Travel Time (minutes) = (4.0 * link distance)

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.10 miles and <= 0.25 miles:

Travel Time (minutes) = (0.4 + 3 * (link distance - 0.1))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.25 miles and <= 0.50 miles:

Travel Time (minutes) = (0.85 + 2.4 * (link distance - 0.25))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.50 miles:

Travel Time (minutes) = (1.45 + 2.0 * (link distance - 0.5))

Travel Speed = 60 / (Travel Time / link distance)

Area Type 4 - Fringe Suburban

when link distance = 0.10 miles or less:

Travel Time (minutes) = (3.5 * link distance)

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.10 miles and <= 0.25 miles:

Travel Time (minutes) = (0.35 + 2.7 * (link distance - 0.1))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.25 miles and <= 0.50 miles:

Travel Time (minutes) = (0.755 + 2.2 * (link distance - 0.25))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.50 miles and <= 0.75 miles:

Travel Time (minutes) = (1.305 + 1.8570 * (link distance - 0.5))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.75 miles:

Travel Time (minutes) = (1.76925 + 1.714 * (link distance - 0.75))

Travel Speed = 60 / (Travel Time / link distance)

Area Type 5 - Rural

when link distance = 0.10 miles or less:

Travel Time (minutes) = (3.0 * link distance)

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.10 miles and <= 0.25 miles:

Travel Time (minutes) = (0.30 + 2.4 * (link distance - 0.1))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.25 miles and <= 0.50 miles:

Travel Time (minutes) = (0.66 + 2.0 * (link distance - 0.25))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.50 miles and <= 0.75 miles:

Travel Time (minutes) = (0.96 + 1.714 * (link distance - 0.5))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 0.75 miles and <= 1.0 mile:

Travel Time (minutes) = (1.3885 + 1.5 * (link distance - 0.75))

Travel Speed = 60 / (Travel Time / link distance)

when link distance > 1.0 mile and <= 1.5 miles:

Travel Time (minutes) = (1.7035 + 1.333 * (link distance - 1.0))

Travel Speed = 60 / (Travel Time / link distance)

For rural zones exceeding 1.5 miles, link speeds are calculated as follows:

Travel Time (minutes) = (2.37 + 1.2* (link distance - 1.5))

Travel Speed = 60 / (Travel Time / link distance)

Thus, an urban zone may have a link distance of 1.0 mile yielding a speed of 22.6 miles per hour, while a suburban zone of 1.0 mile has a speed of 41.4 miles per hour. A representative table (Table 3.3) of centroid connector speeds for a distance of one mile would appear as follows:

Table 3.3 Centroid Connector Speeds

Area Type	Distance (miles)	Speed (mph)
CBD	1.0	14.3
Urban	1.0	22.6
Suburban	1.0	24.5
Fringe Suburban	1.0	27.3
Rural	1.0	32.6

Source: H-GAC

3.2.4 HOV Facilities

In 2005, barrier-separated HOV lanes existed in the following freeway corridors; these are:

- Katy Freeway
- Northwest Freeway
- North Freeway
- Eastex Freeway
- Gulf Freeway
- Southwest Freeway

Additionally, non-barrier separated HOV lanes or Diamond lanes existed in these freeway corridors

- Katy Freeway
- Southwest Freeway

Unique links are included in the highway network to represent each of the HOV facilities including ramps and connector links to park-and-rides and transit centers.

3.2.5 Toll Road Facilities

In the 2005 network, toll roads are coded comparably to any freeway link. The actual toll imposed on a vehicle is stored in a user-specified link field and accumulated into a separate toll matrix during the assignment process. Separate toll plaza links are included in the network specifically for this purpose. In the year 2005, there are four toll facilities in the region, which are:

- Hardy Toll Road
- Sam Houston Tollway
- Westpark Tollway
- Fort Bend Tollway

There is an additional network link representing the Houston Ship Channel Bridge which also charges a toll.

3.2.6 Additional Highway Characteristics

Highway terminal time represents the time required to walk from a selected parking space to the ultimate destination of a trip. Historically, terminal time has been determined synthetically by relating the density of employment to the magnitude of the value, that is, the greater the employment density, the higher the value of terminal time. This underlying concept is supported by the fact that as employment density increases, parking supply typically decreases, costs influenced by demand increase, and trip makers begin to "trade-off" walking distance with the availability and price of parking. Currently, terminal times vary from two minutes in residential areas to six minutes in the CBD.

Auto operating costs are an estimate of the out-of-pocket cost paid to operate a private vehicle on a per-mile basis. Cost components included in this variable are based upon fuel cost and fuel economy plus tire, oil, and general maintenance costs. Fixed elements of cost, such as depreciation and insurance costs, are not considered out-of-pocket costs.

3.3 Estimation of Transit Supply Characteristics

A reflection of the level-of-service experienced by a potential transit user is constructed through development of a computerized network representation of the system of routes and service levels. This computer-coded transit network must be an accurate representation of the individual bus routes, fixed guideway lines, headways, and travel times that define that service. Consistency in representation methods across all alternatives is essential to ensure that differences in travel times between those alternatives are accurate portrayals of service level differences, and not simply differences in coding conventions.

Reflection of the choice of "path" or route(s) selected between TAZ's within the network is an equally important consideration in properly determining transit supply characteristics. The algorithm which applies the "path-building" step of the process must examine all the possible ways in which a transit user could travel on one or more transit lines between each pair of

TAZ's. This algorithm selects the path that involves the minimum inconvenience in terms of invehicle time, waiting, transferring, and accessing the service.

3.3.1 Transit Routes and Coded Lines

A route in the transit system is typically a set or series of services that operate generally in the same area and over the same streets, but which may offer variations in service origination or termination. The path-building algorithm, however, must be aware of the specific service level options available to each TAZ zone pair, which, therefore, necessitates the representation of each of the variations within a route by means of a separately coded line. Similarly, not all routes or subroutes operate during the course of the entire day. Express and Commuter routes, in particular, generally operate only during the morning and afternoon peak periods. In order to properly reflect these differences, separate peak and base networks are constructed for use in the travel forecasting process.

A trade-off exists between the precision of representation of individual route variations actually operated and the transit service levels perceived by transit users. This tradeoff stems from the manner in which the path-building algorithm measures the frequency of service between boarding and alighting locations. The algorithm recognizes that several lines operating in the same pattern offer a combined frequency of service that is the summation of the frequencies on each individual line. In contrast to other modeling software packages where this recognition occurs only when the lines follow *exactly* the same routing, Cube Voyager allows combined service computation for coded transit network lines that comprise variations in routing or termini.

3.3.2 Headway Calculation

Specification of service frequency for each coded line is an extremely important aspect of the overall network coding process. As outlined above, service is differentiated both by delineation of individual lines (within routes) and also by time period (peak and base). The determination or calculation of a headway value for each line within a time period is related directly to the actual number of bus trips operated.

In the case of the base or off-peak period, the headway is simply the number of hours in the mid-day period divided by the total number of trips provided on that line during mid-day.

Unlike base period service, which tends to be fairly evenly distributed over the entire period, peak service may vary substantially within the peak period. Express lines, for example, may provide relatively few bus trips over the entire period, but may concentrate these trips within a relatively small time interval. Assuming that these trips are appropriately targeted to the specific demand for peak period service, the perceived headway by riders (who will become familiar with the scheduling of the service) will be significantly better than the value implied by using a computation method identical to that for base period service. Therefore, peak headway calculations must be based upon the peak hour of service offered in the peak period, with an appropriate peak hour headway calculated. Table 3.4 summarizes the coded peak and base period headways for each of the lines coded in the transit network.

This approach to coding produces headway values appropriate for the ridership forecasting process, but typically overestimates peak resource requirements: vehicles, vehicle-hours, and vehicle-miles. A separate analysis of resource requirements is conducted in a post-processing environment to resolve this inconsistency.

Table 3.4 2005 Transit Line Coded Headways

Headway Headway Headway Headway Headway Headway	е
1a Hospital 15 18 2a Bellaire-Mission Ben 15 30 2b Bellaire-Westchase 30 30 2c Bellaire-7600 Turn B 30 60 3a Langley LTD.West Gr 15 30 4a Beechnut/Jensen Via 15 30 4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15	_
2a Bellaire-Mission Ben 15 30 2b Bellaire-Westchase 30 30 2c Bellaire-7600 Turn B 30 60 3a Langley LTD./West Gr 15 30 4a Beechnut/Jensen Via 15 30 4b Beechnut/Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram-Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30	:es)
2b Bellaire-Westchase 30 30 2c Bellaire-7600 Turn B 30 60 3a Langley LTD./West Gr 15 30 4a Beechnut/Jensen W.Loop 15 30 4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 9a North Main 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 <td></td>	
2c Bellaire-7600 Turn B 30 60 3a Langley LTD./West Gr 15 30 4a Beechnut/Jensen Via 15 30 4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram Clark Transit 10 15 <t< td=""><td></td></t<>	
3a Langley LTD./West Gr 15 30 4a Beechnut/Jensen Via 15 30 4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 9a North Main 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15a Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 <	
4a Beechnut/Jensen Via 15 30 4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40	
4b Beechnut-Jensen W.Loop 16 60 5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 20c Crosstimbers-xtown 27	
5a Kashmere Gardens/Sou 15 15 5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20	
5b Kashmere Gardens/GSH 15 15 6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Mem 30 40 20b Canal/Long Point-Mem 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20	
6a Jensen/Tanglewood 20 40 8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram Clark Transit 10 15 15b Hiram Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line W.Chase 20 30 25c Rich W.Chase DT TB 25	
8a W. Bellfort-CBD 20 40 8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20a Canal/Long Point-Neu 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line W.Chase 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20	
8b N.Main/S.Main-Willow 25 40 9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 20a Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line W.Chase 20 30 25b Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 <td></td>	
9a North Main 25 40 10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Mem 30 40 20a Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line W.Chase 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 <td></td>	
10a Willowbend 28 28 11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 20a Canal/Long Point-Neu 30 40 20b Canal/Long Point-Neu 30 40 20a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown	
11a Nance/Almeda 25 35 15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Mem 30 40 20a Canal/Long Point-Neu 30 40 20a Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF </td <td></td>	
15a Hiram Clark Transit 10 15 15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
15b Hiram-Orem/Fulton 24 30 17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
17a Tanglewood/Gulfton 25 40 18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
18a Kirby Lake 610-West 32 40 19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
19a Wilcrest Crosstown 15 45 20a Canal/Long Point-Mem 30 40 20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
20b Canal/Long Point-Neu 30 40 23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
23a Crosstimbers-xtown 27 27 25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
25a Rich N.Line W.Chase 20 30 25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
25b Rich N.Line Sharptwn 20 30 25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
25c Rich W.Chase DT TB 25 30 26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
26a Outer Loop-Clockwise 20 30 27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
27a Inner Loop-Counter 20 30 29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
29a SU/UH Hirsch Xtown 18 18 30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
30a Galena Port-CullenVF 60 30 30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
30b Clinton-Cullen FWY 40 30 30c Denver Harbor-Cullen 40 30	
30c Denver Harbor-Cullen 40 30	
33a P.Oak Xtown Ridgmont 30 50	
33b Post Oak-W. Fuqua 30 50	
34a Montrose Xtown 35 35	
35a Fairview-2000/Leelan 35 35	
36a Kempwood-9800 CBD vi 30 60	
36b Kempwood-Carverdale 15 30	
37a El Sol Xtown 35 35	
40a Pecore NW.Mall-Richy 30 60	
40b Pecore AHTC-Howard 30 60	
400 Feccile AHTC-Howard 30 60 60 40c Howard-AHTC Via FWY 60 60	
,	
41a Gulf Medows Circ 40 40 42a Holmn Xtwn-Dnvr Hbr 30 30	
42a Holman Atwar-Davy Hor 30 30 30 42b Holman-EWTC 30 30 30	

			<u> </u>
44a	Acr Home-Compaq	20	30
45a	Tedwell Xtown	20	40
46a	Gessener Xtown	12	30
47a	Hillcroft Xtown	20	25
48a	Navig-Gulfgate/W. Da	60	60
48b	Navig-Plsntvil/W. Da	30	60
49a	Chimney Rock Xtown	40	50
50a	Harrisburg/Heights	20	30
50b	Heights Rosl-Airport	30	50
52a	Hirsch/Scott-8000	20	45
52b	Hirsch/Scott	25	40
52c	Scott-CBD via FWY	40	-
53a	Westheimer Briar For	15	25
53b	Westheimer-W. Oaks	15	25
56a	Airline Greens FWY	15	15
58b	Hammerly-NWTC	20	60
60a	Hardy/S.MacGregor	30	60
64a	Lincoln City Circ	25	35
65a	Dairy Ash-Blue Bell	15	20
65b	Dairy Ash-Sweetwater	30	50
67a	Dairy Ashford Xtown	30	50
68a	Brays Bayou W. belt	15	60
68b	Brays Bayou Meado	15	60
70a	University	30	60
72a	Westview	30	60
73a	Bellfort Xtown P.Oak	30	60
73b	Bellfort Xtown TMC	10	20
77a	Wayside-MLK	24	60
77b	Homestead-MLK	24	60
77c	MLK-CBD	12	30
78a	Alabama Irvin 9800	30	40
78c	Irvng Berry/Alabma-HK	30	40
78b	Irvin 9800-CBD	30	60
79a	West Little York LTD	35	35
80a	Lyons Dowling	40	60
80b	Lyns-Keley/Dowlng-HK	40	60
82a	Westheimer-Woodlake	30	60
82b	Westheimer-Sharptown	12	12
83a	Lee Road Circ	30	50
85a	Antoine-CBD via Wash	40	60
85b	Antoine-CBD via I-10	15	30
86a	FM 1960 Circ-NHCC	40	60
86b	FM 1960-Greenspoint	40	60
87a	Yellowstone Circulat	20	35
88a	Irvng Berry/Alabma-HK	30	45
97a	Settegate Shuttle	60	60
98a	Briargate	35	35
98b	Briargate via Northumb	35	
102a	IAH-CBD Express	20	45
102b	Greens-CBD	30	
108a	Vet-Memorial Express	20	45
131a	Memo Gess Exp TWY	30	50
1014			

131b	Memo W.Belt Exp TWY	15	
132a	Harwin Exp Mission	20	60
132b	Harwin Exp Mission	15	
132c	Harwin Exp Cook RD	30	
137a	Northshore Exp	18	40
163a	Foundren-Airport	25	40
163b	Foundren-MC P&R	20	40
170a	Missouri City Exp	10	
201a	N.Sheph P&R-Cull CTR	15	
201c	N.Sheph P&R-Hous CTR	25	
202a	Kuyk P&R Houstn Ctr	5	35
202b	Kuyk P&R Houstn Ctr	30	
205a	Kingwood P&R	10	40
205b	Kingwood-Houston Ctr	30	
206a	Eastex P&R	12	
212a	Seton Lake Via TC	30	
212b	Seton Lake P&R	10	
2120 214a	N.West Station P&R	5	
214a 214b	N.West Station P&R	12	
-			40
216a	W.Little York-Pine	12	
216b	W.Little York-Pine	20	40
221a	Kingland P&R Kty/CBD	5	
221b	Kgld-Addi-NWTC P&R	30	
228a	Addicks P&R	6	
236a	Maxey Rd P&R	12	
236b	Maxey Rd P&R	16	
244a	Monroe P&R	15	
244b	Monroe P&R EWTC	45	
246a	Bay Area P&R	6	
246c	Bay Area P&R EWTC	30	
246d	Combined 245/246 P&R		60
247a	Fuqua P&R	8	
247b	Fuqua P&R EWTC	25	
257a	Townsen P&R	10	
261a	West Loop P&R	20	
261b	West Loop P&R	15	
262a	Alief-W.Wood P&R	10	
262b	Alief-W.Wood Houst C	30	
265a	W.Belfort P&R	5	
265b	W.Bellfort P&R	12	
273a	Gessner P&R	15	
274a	Westchase/Gessner	15	
283a	Kuykendahl/Uptown P&R	15	
286a	W.Little York-Uptown	15	
292a	W.Bellfort-TMC P&R	15	
297a	S.Pt/Monron-TMC P&R	15	
298a	Addicks-TMC P&R	20	
313ar	Allen Parkway Spcial	10	
319a	TMC Red	6	
320a	TMC Gold	4	22
321a	TMC Blue	7	20
321a 322a	TMC Campus Trolley	10	15
325a	Smith Lands	3	
J2Ja	Jilliui Lailus	J	

601a	Sawdust-CBD	10	-
601b	Sawdust-GRWY	10	
601c	Sawdust-TMC	10	
611g	71st via Market & Broadway	30	30
613g	W.Broadway via Ave M	30	30
614g	Broadway - 8th via Ave M	30	30
615g	Ave S - Stewart Rd	30	30
616g	61st via Ave O	30	30
617g	Bayou Seawall Loop	30	30
610g	Galveston Trolley		60
620a	Trek Express to Greenway	20	
621g	Trek Express to Galleria	20	
700a	Metro Red Line	6	6

Source: H-GAC and Houston Metro

3.3.3 Transit Travel Times

Travel times are based on: automobile travel times, type of transit service (local, limited, express, etc.), and bus location by sector. The running time of the transit lines over all the network links in each line is calculated using a series of travel time functions (TTF) based on these parameters. Each TTF is referenced with a designated number. Three basic types of TTFs are included in the model:

- I. Simple assumed speed
- II. Auto speed multiplied by an auto-to-transit time factor
- III. Congested speed estimation using BPR function, based on free-flow transit speed compared to minimum transit speed.

Type I TTFs are coded with an assumed speed, which is constant across all links. Type II TTFs apply a multiplicative factor to auto time to relate transit link travel time to the corresponding auto travel time. Type III TTFs estimate congested-speed travel time based on free-flow transit travel time and the v/c ratio of the link. The general form of Type III TTFs is the BPR function, that is:

$$t_c = t_{ff} \times \left(1 + \alpha \times \sqrt[6]{c}\right)$$

where $t_{\rm ff}$ is free-flow transit travel time, and α is a multiplicative factor. For all but two TTFs, α is 0.10. For those two TTFs representing nonstop bus operations outside the CBD, α is 0.15. Congested-speed travel time is capped against a maximum time associated with a given minimum transit speed and the resulting time is compared to a minimum time representing auto time on the same link. All three TTFs are used during the peak period, while only Types I and II are used during the off-peak period.

Table 3.5
Peak Transit Travel Time Functions

				Type I	Type II	Тур	e III
TTF	Type	Operation	Location	Assumed	Auto-to-	Free-flow	Minimum
				Speed	Transit	Transit	Transit
					Time Factor	Speed	Speed
10	III		Inside CBD			9	5
11	II	All	Transit Mall		1.0		
12	III	Stop	Inside 610 Loop			18	10
13	III		Outside 610 Loop			20	12
20	III		Inside CBD			10	6
21	II	Limited	Transit Mall		1.0		
22	III	Stop	Inside 610 Loop			22	13
23	III		Outside 610 Loop			30	14
30	III		Inside CBD			12	7
31	II		Transit Mall		1.0		
32	III	Non	Inside 610 Loop			40	n/a
33	III	Stop	Outside 610 Loop			45	n/a
8	I		Transit Ramp	12			
9	I		Transitway	53		_	

Source: 1990 Houston Long-Range Patronage Forecasting Model Validation

3.3.4 Transit Path Building

Path building between each pair of zones relies upon the coded representation of the transit network as outlined above and a set of "weights" used to value each time component of the trip—walking, waiting, in-vehicle, and transferring. To the greatest extent possible, these weights should be reasonably similar to the "weight" derived from the mode choice model relationships.

The set of path building weights below was the final set of values used in the 1990 validated model (all times are in minutes):

Boarding time:

Boarding time weight (drive access):
Boarding time weight (walk access):

Waiting time factor:

Waiting time weight:
Auxiliary transit time weight:

3.3.5 Transit Modes

In Cube Voyager all network links contain a single letter identifier for each mode allowed to traverse the link. Auxiliary transit modes are defined as walk and auto access modes; these modes represent access to, from, and between transit lines and constitute a portion of a transit trip. The following transit modes were used:

- b: local bus
- c: commuter bus
- x: express bus
- r: rail

The auxiliary transit modes are:

- d: walk access to transit
- e: walk egress to transit
- t: transfer between transit lines
- p: auto access to transit (park-and-ride lots)
- k: auto access to transit (kiss-and-ride lots)
- q: auto access to transit (informal park-and-ride lots)
- w: sidewalk

4.0 Travel Forecasting Procedures

4.1 Introduction

This chapter presents the underlying theory and basis for the structure, formulation, and application of each model component. Also described is the series of steps that were followed to enhance and implement the revised regional mode choice model set, as well as the calibration and validation procedures performed to verify the accuracy and acceptability of the complete model set.

Two key sets of data are input to the model: 1. demographic, socioeconomic and landuse data, and 2. the multimodal transportation network data. In the first stage of the modeling process-trip generation--estimates are developed for fourteen (14) trip purposes:

- Home-based Work person trips (HBW);
- Home-based Nonwork person trips to Retail (HBNW-RET)
- Home-based Nonwork person trips to ED1 (HBNW-ED1)
- Home-based Nonwork person trips to ED1 by School Bus (HBNW-SCHBUS)
- Home-based Nonwork person trips to Airport (HBNW-AIR)
- Home-based Nonwork person trips to Other (HBNW-OTHER)
- Non-home-based person trips Workbased (NHB-WB);
- Non-home-based person trips Non-workbased (NHB-NW);
- Taxi vehicle trips (TAXI);
- Truck vehicle trips (TRUCK);
- External-Local Auto trips (EXTL-AUTO);
- External-Local Truck trips (EXTL-AUTO);
- External-Through Auto trips (EXTHR-AUTO);
- External-Through Truck trips (EXTHR-TRUCK).

The Home-based Nonwork person trips to ED1 (HBNW-ED1) trip purpose excludes the person trip by school bus but includes those that use normal transit. The Home-based Nonwork person trips to ED1 by School Bus (HBNW-SCHBUS) is defined as a separate trip purpose in the model set. This was necessary since the mode choice model used in the model set assumes that the person trips by school bus have been removed from the data which is input to the mode choice step. As can be seen in the trip purpose definitions, the non-work person trip purposes are defined around the land use and the attraction end of the trip. Also, non-home-based trips have been separated into those that in which the production is the trip-makers place of employment (work-based) and those in which the production is not the trip makers place of employment (not work-based).

4.2 Trip Generation

Trip generation is performed with a trip production model and a trip attraction model for each trip purpose. These models use the zonal demographic data to estimate the overall magnitude of

trip making, that is, the total number of trip ends (trip productions and trip attractions), for each of the 2,954 detailed traffic analysis zones. Trip estimates by purpose are also prepared for the 46 external stations.

4.2.1 Trip Production

The H-GAC trip household production models use cross-classification trip production rates developed from the H-GAC 1995 Household Travel Survey data. These rates were developed for a two-way cross classification model of household size by household income. Individual cell values in the two way cross classification table were derived by computing the average of the expanded household travel survey for each cell. In the model calibration process, some of the resulting rates are smoothed to remove sampling noise due to the small sample sizes being employed. The resulting production rates (i.e., the dependent variables) are the trips per household by purpose. Cross-classification models allows the nonlinearity of the model with respect to the independent variables. This is a standard practice approach for developing household trip production models.

The trip production model determines the relationship between trips generated per household and household income in combination with household size. Thus, trip production rates are stratified by household income and household size for each trip purpose and are presented in Tables 4.1-4.8.

Due to the high concentration of hotels, motels, and seasonal housing in the Galveston Island area, generation of non-resident trips is also performed. Based on area specific monthly hotel/motel occupancy rates an average rate was applied against the number of units in the Galveston Island area to estimate occupied rooms; this estimate of rooms was multiplied by a NHB trip rate to determine the number of non-resident hotel/motel NHB trips. Likewise, an occupancy rate for seasonal housing factored by a NHB trip rate yielded seasonal housing non-resident NHB trips.

Table 4.1 Home-Based Work Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.406	1.033	1.846	1.993	1.993
2	1.049	1.442	2.247	2.455	2.455
3	1.079	1.842	2.247	2.453	2.434
4	1.243	1.843	2.256	2.453	2.434
5+	1.243	1.987	2.624	2.624	2.707

Source: H-GAC

Table 4.2 Home-Based Non-Work to Education-1 (K-12th) Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.086	0.169	0.641	1.262	2.759
2	0.112	0.346	0.978	1.740	3.102
3	0.119	0.268	1.075	2.436	3.411
4	0.048	0.193	1.171	2.714	3.801
5+	0.101	0.141	1.441	3.211	4.497

Source: H-GAC

Table 4.3 Home-Based Non-Work to Educational-1 (K-12th) by School Bus Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.000	0.040	0.478	0.712	1.017
2	0.000	0.040	0.478	0.712	1.092
3	0.000	0.044	0.339	0.609	1.128
4	0.000	0.044	0.201	0.609	1.164
5+	0.000	0.031	0.225	0.631	1.142

Source: H-GAC

Table 4.4 Home-Based Non-Work to Retail Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.743	1.347	1.684	1.725	2.239
2	0.877	1.553	1.684	2.094	2.892
3	0.877	1.553	1.691	2.318	3.021
4	0.824	1.516	1.691	2.684	3.251
5+	0.824	1.516	2.120	2.923	4.144

Source: H-GAC

Table 4.5 Home-Based Non-Work to Airport Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.014	0.026	0.033	0.039	0.051
2	0.009	0.022	0.033	0.041	0.059
3	0.011	0.021	0.031	0.043	0.057
4	0.011	0.019	0.027	0.046	0.055
5+	0.018	0.022	0.027	0.048	0.057

Source: H-GAC

Table 4.6 Home-Based Non-Work Other Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.744	1.402	1.779	2.122	2.798
2	0.499	1.174	1.779	2.212	3.186
3	0.574	1.159	1.690	2.322	3.120
4	0.580	1.005	1.453	2.507	3.016
5+	0.997	1.170	1.453	2.622	3.107

Source: H-GAC

Table 4.7
Non-Home-Based Work-Based Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.303	0.384	0.486	0.587	0.587
2	0.567	0.815	0.906	0.920	0.920
3	0.939	1.056	1.209	1.377	1.377
4	1.141	1.296	1.511	1.569	1.569
5+	1.263	1.385	1.515	1.840	1.840

Source: H-GAC

Table 4.8 Non-Home Based Other Person Trip Rates

Household Size	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
1	0.725	1.057	1.247	1.574	2.017
2	1.034	1.157	1.415	1.827	2.787
3	1.071	1.283	1.686	2.356	3.183
4	1.157	1.399	1.915	3.038	3.579
5+	1.242	1.399	1.773	2.889	3.420

Source: H-GAC

4.2.2 Trip Attraction

Trip attraction rates have been developed based on the 1995 H-GAC workplace survey, the 1995 H-GAC Commercial Vehicle Survey and the 1995 External Station Survey. The attractions rates are stratified by area type and employment category. The rates also include a stratification for households so as to allow for the estimation of trip attractions to households. Additionally, productions for non-home-based work-based trips are estimated based on area type and employment. Table 4.9 through 4.19 present the Cube model trip attraction rates. Attraction rates are not presented for the HBNW-Airport trip purpose as attractions were estimated as part of the special generator trip attraction estimation process.

Table 4.9
Home-Based Work Person Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.0655	0.7442	1.3589	1.2726	1.3923	1.3481	1.2187	1.2673	0.8151
2	0.0709	0.7765	1.5314	1.3481	1.3864	1.3589	1.2187	1.2626	0.8121
3	0.0989	0.9334	1.5314	1.3481	1.3747	1.3481	1.2079	1.3489	0.8676
4	0.1116	0.8951	1.5314	1.3697	1.3747	1.6501	1.4236	1.3489	0.8676
5	0.1117	1.0902	1.7148	1.5167	1.6017	1.9521	1.6294	1.6665	1.0718

Table 4.10

Home Based Non-Work to Education-1 Person Trip Attraction Rates
(Grades 12 and under)

HBNW-ED1 Zonal Attractions = 8.8986 (Zonal Education-1 employment)

Table 4.11
Home Based Non-Work to Education-1 on School Bus Person Trip Attraction Rates
(Grades 12 and under)

HBNW-ED1 SB Zonal Attractions = 2.68 (Zonal Education-1 employment)

Table 4.12 Home-Based Non-Work to Retail Person Trip Attraction Rates

Area Type	Retail
1	2.1555
2	3.2956
3	5.9876
4	8.1910
5	10.2891

Table 4.13
Home Based Non-Work Other Person Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	Enroll A	Enroll B
1	0.5171	0	0.3657	0.1483	1.2554	1.7793	0.7440	0.4785
2	0.6037	0	0.4646	0.1384	1.3048	1.8188	0.7440	0.4785
3	0.8332	0	0.7315	0.1384	1.4185	1.9869	0.7440	0.4785
4	0.9651	0	0.9885	0.1384	1.5322	2.1451	0.7440	0.4785
5	1.0642	0	1.1763	0.1384	1.6854	2.2933	0.7440	0.4785

Table 4.14
Non Home-Based Work-Based Person Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.0534	0.2922	1.0688	0.4258	0.334	0.5928	0.6429	0.6847	0.4404
2	0.1013	0.2922	1.0521	0.4425	0.4342	0.6346	0.6429	0.6847	0.4404
3	0.1491	1.0020	0.7932	0.1002	0.5344	0.5845	0.6492	0.9936	0.6391
4	0.1478	1.1272	0.7431	0.0835	0.5511	0.5761	0.6555	1.0354	0.6659
5	0.1465	1.1690	0.3006	0.0751	0.4960	0.4897	0.6555	1.0437	0.6713

Table 4.15
Non Home-Based Other Person Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.2123	1.4264	0.1783	0.1426	0.7608	0.7132	1.6998	1.4145	0.9098
2	0.2160	1.4959	0.2659	0.1219	0.7313	0.6538	1.6289	1.3740	0.8837
3	0.3343	2.8512	0.4424	0.1229	0.8111	0.7374	1.9295	1.5362	0.988
4	0.3344	3.6265	0.4533	0.1133	0.9570	0.7177	2.0399	1.5866	1.0204
5	0.3344	3.1442	0.3917	0.0783	0.8268	0.5483	1.7625	1.3708	0.8816

Table 4.16
Truck Vehicle Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.1081	0.2155	0.1648	0.2282	0.0887	0.0507	0.2789	0.1141	0.0734
2	0.1179	0.2155	0.1648	0.2409	0.0887	0.0380	0.3043	0.1141	0.0734
3	0.1646	0.2155	0.2789	0.2916	0.0887	0.0380	0.3043	0.1268	0.0815
4	0.1860	0.2282	0.3930	0.3550	0.0887	0.0254	0.3043	0.1268	0.0815
5	0.1860	0.2409	0.3930	0.4184	0.0887	0.0254	0.3043	0.1268	0.0815

Table 4.17
Taxi Vehicle Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.0063	0.0342	0.0063	0.0038	0.0342	0.0228	0.0228	0.0038	0.0024
2	0.0063	0.0342	0.0063	0.0038	0.0342	0.0228	0.0228	0.0038	0.0024
3	0.0063	0.0342	0.0063	0.0038	0.0342	0.0228	0.0228	0.0038	0.0024
4	0.0048	0.0257	0.0048	0.0029	0.0257	0.0171	0.0171	0.0029	0.0018
5	0.0032	0.0171	0.0032	0.0019	0.0171	0.0114	0.0114	0.0019	0.0012

Table 4.18
External-Local Auto Vehicle Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.0139	0.0948	0.0692	0.0324	0.0614	0.0707	0.1333	0.1180	0.0759
2	0.0154	0.0985	0.0731	0.0316	0.0621	0.0687	0.1266	0.1151	0.0740
3	0.0236	0.1909	0.0769	0.0236	0.0701	0.0723	0.1449	0.1342	0.0863
4	0.0239	0.2355	0.0786	0.0240	0.0784	0.0741	0.1507	0.1381	0.0888
5	0.0235	0.2090	0.0607	0.0199	0.0682	0.0616	0.1320	0.1227	0.0789

Table 4.19
External-Local Truck Vehicle Trip Attraction Rates

Area Type	Households	Retail	Office	Industrial	Govt.	Medical	ED-1	ED-2A	ED-2B
1	0.00732	0.0146	0.01116	0.01545	0.00601	0.00343	0.01889	0.00773	0.00497
2	0.00798	0.0146	0.01116	0.01631	0.00601	0.00258	0.02061	0.00773	0.00497
3	0.01114	0.0146	0.01889	0.01975	0.00601	0.00258	0.02061	0.00859	0.00552
4	0.0126	0.01545	0.02662	0.02404	0.00601	0.00172	0.02061	0.00859	0.00552
5	0.0126	0.01631	0.02662	0.02833	0.00601	0.00172	0.02061	0.00859	0.00552

4.2.3 Trip Generation Results

Table 4.20 summarizes the 2005 trip generation estimates by trip purpose.

Table 4.20 Regional Trip Estimates by Purpose

Purpose	2005 Trips	Proportion of Total
Home-Based Work Person Trips	3,396,411	17.7
Home-Based Non-Work Educational-1	2,187,974	11.4
Home-Based Non-Work Educational-School Bus	634,333	3.3
Home-Based Non-Work Retail	3,312,551	17.3
Home-Based Non-Work Airport	57,660	0.3
Home-Based Non-Work Other	3,026,003	15.8
Non-Home-Based Work- Based	1,964,789	10.3
Non-Home-Based Other	3,289,009	17.2
Truck	900,283	4.7
Taxi	49,016	0.3
External-Local Auto	271,422	1.4
External-Local Truck	47,183	0.2

Source: H-GAC Model Application Results

4.3 Trip Distribution

The trip distribution models are applied at the detailed TAZ level. These models link or connect trip ends estimated in the trip generation model, determining trip interchanges between each pair of zones. In addition to estimates of the magnitude of activity in each TAZ, the models consider the effects of impedance and accessibility on destination choice. The trip distribution models receive direct feedback from trip assignment, a lower model component.

4.3.1 Person Trip Table Development

The Disaggregate Trip Distribution Model, or Atomistic Model, is used for trip distribution modeling in the Houston-Galveston TMA. This model produces twelve (12) trip tables for the HBW, HBNW-ED1, HBNW-ED1-BUS, HBNW-RETAIL, HBNW-AIRPORT, HBNW-OTHER, NHB-Work-Based, NHB-Other, Truck, Taxi, Extl-Auto, Extl-Truck purposes. A modified version of the Atomistic model is used to produce the various external-local vehicle trip tables. Attractions for the external-local trip purposes as well as the origins and destinations for the external-through purposes are based upon patterns derived from 1995 H-GAC External survey and grown to match year 2005 traffic volumes at the external stations. The underlying assumption in the Atomistic model is that trips occur between small parcels of land (atoms) rather than the defined zone structure; thus by dividing existing zones into atoms a more realistic interchange of intrazonal trips and short (less than five minutes) trips among adjacent zones is defined. In application, a gravity model analogy determines the number of trip interchanges between atoms and subsequently sums the trips to derive both intrazonal trips and zonal interchange volumes. The basic atomistic model formulation is:

$$T_{ij} = \frac{\sum_{v=1}^{M_{i}} \sum_{q=1}^{M_{j}} p_{iv} a_{jq} F_{dvq} K_{S_{ij}}}{\sum_{x=1}^{N} \sum_{n=1}^{M_{j}} \sum_{m=1}^{M_{x}} p_{in} a_{xm} F_{dnm} K_{S_{ix}}} P_{i}$$

where:

 $T_{ij} = trips$ produce in zone I and attracted to zone j

 $P_{iv}\!=\!$ trips produced by atom v of zone I $P_i\!=\!$ total trips produce in zone I such that:

$$P_{i} = \sum_{m=1}^{M_{i}} p_{i_{m}}$$

a= relative attraction factor atom q of zone jA= relative attraction factor for zone j such that:

$$A_{j} = \sum_{m=1}^{M_{j}} a_{jm}$$

F= relative trip length factor for estimated separation between atom pair vq

K= bias factor for sector pair containing zones I and j

N= number of zones

My= number of atoms in zone y

In addition to the zonal trip productions and attractions produced in the trip generation process, the trip distribution model requires the zone-to-zone travel times for the estimated minimum time paths on the highway network with 24-hour speeds. The model also requires:

- estimated zonal radii values
- a set of F-factors defining trip length frequency distributions by purpose
- any necessary bias factors (K-factors) by trip purpose

Since the Atomistic Model uses a gravity model analogy that considers travel opportunities within a zone to be spatially distributed rather than concentrated at a single theoretical point (the zone centroid), the spatial dimension of zones is represented by 400 atoms with zonal productions and attractions uniformly distributed among all 400 atoms. The model requires that the distance from the center of a zone to the perimeter be defined in minutes - a zonal radii value. These radii values in conjunction with skimmed travel times determine the spatial distribution of atom pairs for all zonal pairs.

The F-factors used in the 2005 validation were the same set that were developed as part of the 1995 calibration of the Cuba Voyager model set. No changes to F-factors were made as part of the 2005 validation. The calibrated F-factors by purpose are shown in Table 4.21 and 4.22.

K-factors historically have been used to improve model performance in addressing two natural barriers within the Houston-Galveston TMA: the Houston Ship Channel and the separation between Galveston Island and the mainland. These physical barrier K-factors are included in the 1990 model for both work and non-work trip purposes.

Distinct socio-economic and land use characteristics that require introduction of K-factors are the under-representation of both HBW attractions to the Houston CBD and intra-county HBW trips for the surrounding seven counties. In addition to the CBD, three other major activity centers, (Greenway area, Galleria-Post Oak, and Texas Medical Center) also require K-factors. In the 1990 model, the original 1985 model K-factors have been retained except in Brazoria County. Additional K-factors refinements were subsequently made for Brazoria County in conjunction with a county roadway planning effort.

Table 4.21 Calibrated F-Factors by Trip Purpose

Time			Friction	Factors		
(minutes)	HBW	HBNW- ED1	HBNW- ED1 BUS	HBNW- RETAIL	HBNW- AIRPORT	HBNW- OTHER
1	176.5904	232.8975	238.1769	382.5660	16.3328	340.2945
2	168.9431	227.6921	227.8394	310.9271	14.7153	273.9615
3	144.2355	183.9028	182.7045	210.1103	13.8283	199.3738
4	125.3720	135.6949	135.0980	141.7443	13.0526	139.9891
5	100.0000	100.2968	100.2740	100.0000	12.0302	100.0000
6	83.1710	77.6543	78.1398	73.9970	10.8453	75.7743
7	74.0616	61.2288	61.9420	56.2216	9.6233	59.7854
8	63.7096	48.0930	49.0673	43.0114	8.6517	47.7548
9	55.9424	38.5362	39.6956	33.8165	7.9107	39.0107
10	48.8709	30.8416	32.0028	26.7066	7.3140	31.7736
11	42.7125	24.4937	25.6053	20.9834	6.6357	26.0139
12	37.6481	19.6206	20.5655	16.6469	5.9567	21.3998
13	33.4305	15.8829	16.6935	13.3173	5.2822	17.7919
14	30.0528	13.0380	13.7712	10.6900	4.6961	14.8856
15	27.1232	10.6969	11.3488	8.6139	4.1806	12.5012
16	24.5648	8.7293	9.3010	6.9688	3.7351	10.5449
17	22.3843	7.0437	7.5642	5.6294	3.3404	8.9579
18	20.3234	5.7307	6.2158	4.5782	2.9318	7.6389
19	18.5033	4.7702	5.2349	3.7760	2.5210	6.5694
20	17.0602	4.0057	4.4633	3.1346	2.2390	5.7358
21	15.8807	3.3462	3.7614	2.6041	2.0117	4.9797
22	14.6209	2.7885	3.1536	2.1581	1.7982	4.3425
23	13.5619	2.3181	2.6521	1.7966	1.5904	3.8209
24	12.5997	1.9212	2.2230	1.5097	1.4104	3.3742
25	11.7905	1.5212	1.8688	1.2643	1.2530	2.9807
26	10.9231	1.1978	1.5517	1.0623	1.1211	2.6378
27	9.9135	0.9347	1.1743	0.8954	1.0185	2.3523
28	8.9905	0.7296	0.8902	0.7571	0.9152	2.1094
29	8.1988	0.5682	0.6720	0.6432	0.8076	1.8829
30	7.5501	0.4424	0.4945	0.5440	0.6761	1.6699
31	7.0097	0.3470	0.3688	0.4572	0.5700	1.4802
32	6.4918	0.2690	0.2699	0.3669	0.5021	1.3103
33	6.0534	0.1974	0.1904	0.2967	0.4385	1.1053
34	5.7258	0.1410	0.1263	0.2410	0.3875	0.9441
35	5.4131	0.1096	0.0900	0.1959	0.3344	0.8051
36	4.9775	0.0867	0.0640	0.1587	0.3083	0.6815
37	4.5864	0.0642	0.0412	0.1293	0.2849	0.5765
38	4.2542	0.0430	0.0202	0.1053	0.2568	0.4950
39	3.9744	0.0326	0.0120	0.0856	0.2183	0.4249
40	3.7327	0.0267	0.0074	0.0707	0.1894	0.3634

Table 4.21
Calibrated F-Factors by Trip Purpose (continued)

Time		<u> </u>	Friction	Factors		
(minutes)	HBW	HBNW- ED1	HBNW- ED1 BUS	HBNW- RETAIL	HBNW- AIRPORT	HBNW- OTHER
41	3.4630	0.0222	0.0033	0.0579	0.1658	0.3126
42	3.1896	0.0173	0.0000	0.0472	0.1504	0.2697
43	2.9580	0.0137	0.0000	0.0380	0.1414	0.2321
44	2.7457	0.0099	0.0000	0.0312	0.1292	0.1991
45	2.5881	0.0074	0.0000	0.0256	0.1189	0.1703
46	2.4580	0.0062	0.0000	0.0209	0.1094	0.1457
47	2.4000	0.0047	0.0000	0.0168	0.1008	0.1234
48	2.2946	0.0034	0.0000	0.0134	0.0930	0.1036
49	2.1238	0.0023	0.0000	0.0107	0.0858	0.0883
50	1.8849	0.0012	0.0000	0.0085	0.0792	0.0758
51	1.5703	0.0010	0.0000	0.0067	0.0732	0.0650
52	1.3558	0.0006	0.0000	0.0055	0.0677	0.0553
53	1.2962	0.0004	0.0000	0.0044	0.0626	0.0462
54	1.2619	0.0004	0.0000	0.0034	0.0580	0.0387
55	1.2829	0.0002	0.0000	0.0026	0.0537	0.0319
56	1.2054	0.0002	0.0000	0.0022	0.0498	0.0261
57	1.1343	0.0000	0.0000	0.0016	0.0462	0.0214
58	1.0728	0.0000	0.0000	0.0012	0.0429	0.0183
59	1.0157	0.0000	0.0000	0.0009	0.0399	0.0163
60	0.9491	0.0000	0.0000	0.0007	0.0371	0.0135
61	0.9101	0.0000	0.0000	0.0005	0.0345	0.0109
62	0.8508	0.0000	0.0000	0.0004	0.0322	0.0089
63	0.7907	0.0000	0.0000	0.0004	0.0300	0.0073
64	0.7257	0.0000	0.0000	0.0002	0.0280	0.0060
65	0.6800	0.0000	0.0000	0.0003	0.0261	0.0048
66	0.6120	0.0000	0.0000	0.0002	0.0244	0.0037
67	0.5866	0.0000	0.0000	0.0000	0.0228	0.0028
68	0.5591	0.0000	0.0000	0.0000	0.0213	0.0022
69	0.5341	0.0000	0.0000	0.0000	0.0199	0.0016
70	0.5047	0.0000	0.0000	0.0000	0.0187	0.0012
71	0.4882	0.0000	0.0000	0.0000	0.0175	0.0009
72	0.4653	0.0000	0.0000	0.0000	0.0164	0.0006
73	0.4506	0.0000	0.0000	0.0000	0.0154	0.0003
74	0.4321	0.0000	0.0000	0.0000	0.0145	0.0000
75	0.4072	0.0000	0.0000	0.0000	0.0136	0.0000
76	0.3864	0.0000	0.0000	0.0000	0.0128	0.0000
77	0.3707	0.0000	0.0000	0.0000	0.0121	0.0000
78	0.3535	0.0000	0.0000	0.0000	0.0114	0.0000
79	0.3404	0.0000	0.0000	0.0000	0.0107	0.0000
80	0.3404	0.0000	0.0000	0.0000	0.0101	0.0000
	3.5 10 1	3.0000	3.0000	3.0000	3.0101	3.3330

Table 4.21
Calibrated F-Factors by Trip Purpose (continued)

Time			(continued) Friction	Factors		
	LID.	LIBANA	LIBANA I	LIBA	LIBA	LIBANA
(minutes)	HBW	HBNW- ED1	HBNW- ED1 BUS	HBNW- RETAIL	HBNW- AIRPORT	HBNW- OTHER
81	0.3374	0.0000	0.0000	0.0000	0.0095	0.0000
82	0.3224	0.0000	0.0000	0.0000	0.0090	0.0000
83	0.3208	0.0000	0.0000	0.0000	0.0085	0.0000
84	0.3033	0.0000	0.0000	0.0000	0.0081	0.0000
85	0.2909	0.0000	0.0000	0.0000	0.0076	0.0000
86	0.2630	0.0000	0.0000	0.0000	0.0072	0.0000
87	0.2398	0.0000	0.0000	0.0000	0.0069	0.0000
88	0.2141	0.0000	0.0000	0.0000	0.0065	0.0000
89	0.2042	0.0000	0.0000	0.0000	0.0062	0.0000
90	0.1802	0.0000	0.0000	0.0000	0.0059	0.0000
91	0.1696	0.0000	0.0000	0.0000	0.0056	0.0000
92	0.1693	0.0000	0.0000	0.0000	0.0053	0.0000
93	0.1850	0.0000	0.0000	0.0000	0.0050	0.0000
94	0.1843	0.0000	0.0000	0.0000	0.0048	0.0000
95	0.1836	0.0000	0.0000	0.0000	0.0046	0.0000
96	0.2052	0.0000	0.0000	0.0000	0.0044	0.0000
97	0.2301	0.0000	0.0000	0.0000	0.0042	0.0000
98	0.2481	0.0000	0.0000	0.0000	0.0040	0.0000
99	0.2407	0.0000	0.0000	0.0000	0.0038	0.0000
100	0.2367	0.0000	0.0000	0.0000	0.0036	0.0000
101	0.2042	0.0000	0.0000	0.0000	0.0035	0.0000
102	0.1799	0.0000	0.0000	0.0000	0.0033	0.0000
103	0.1410	0.0000	0.0000	0.0000	0.0032	0.0000
104	0.1211	0.0000	0.0000	0.0000	0.0031	0.0000
105	0.1028	0.0000	0.0000	0.0000	0.0030	0.0000
106	0.1138	0.0000	0.0000	0.0000	0.0028	0.0000
107	0.0951	0.0000	0.0000	0.0000	0.0027	0.0000
108	0.0862	0.0000	0.0000	0.0000	0.0026	0.0000
109	0.0844	0.0000	0.0000	0.0000	0.0025	0.0000
110	0.0785	0.0000	0.0000	0.0000	0.0024	0.0000
111	0.0634	0.0000	0.0000	0.0000	0.0000	0.0000
112	0.0610	0.0000	0.0000	0.0000	0.0000	0.0000
113	0.0714	0.0000	0.0000	0.0000	0.0000	0.0000
114	0.0675	0.0000	0.0000	0.0000	0.0000	0.0000
115	0.0597	0.0000	0.0000	0.0000	0.0000	0.0000
116	0.0539	0.0000	0.0000	0.0000	0.0000	0.0000
117	0.0462	0.0000	0.0000	0.0000	0.0000	0.0000
118	0.0348	0.0000	0.0000	0.0000	0.0000	0.0000
119	0.0332	0.0000	0.0000	0.0000	0.0000	0.0000
120	0.0702	0.0000	0.0000	0.0000	0.0000	0.0000
0	3.0.02	3.0000	3.0000	3.0000	3.0000	0.0000

Table 4.21
Calibrated F-Factors by Trip Purpose (continued)

Time		<u> </u>	Friction	Factors		
(minutes)	HBW	HBNW- ED1	HBNW- ED1 BUS	HBNW- RETAIL	HBNW- AIRPORT	HBNW- OTHER
121	0.1018	0.0000	0.0000	0.0000	0.0000	0.0000
122	0.1317	0.0000	0.0000	0.0000	0.0000	0.0000
123	0.1400	0.0000	0.0000	0.0000	0.0000	0.0000
124	0.1713	0.0000	0.0000	0.0000	0.0000	0.0000
125	0.1334	0.0000	0.0000	0.0000	0.0000	0.0000
126	0.1039	0.0000	0.0000	0.0000	0.0000	0.0000
127	0.0681	0.0000	0.0000	0.0000	0.0000	0.0000
128	0.0528	0.0000	0.0000	0.0000	0.0000	0.0000
129	0.0128	0.0000	0.0000	0.0000	0.0000	0.0000
130	0.0188	0.0000	0.0000	0.0000	0.0000	0.0000
131	0.0288	0.0000	0.0000	0.0000	0.0000	0.0000
132	0.0428	0.0000	0.0000	0.0000	0.0000	0.0000
133	0.0345	0.0000	0.0000	0.0000	0.0000	0.0000
134	0.0276	0.0000	0.0000	0.0000	0.0000	0.0000
135	0.0187	0.0000	0.0000	0.0000	0.0000	0.0000
136	0.0186	0.0000	0.0000	0.0000	0.0000	0.0000
137	0.0109	0.0000	0.0000	0.0000	0.0000	0.0000
138	0.0164	0.0000	0.0000	0.0000	0.0000	0.0000
139	0.0203	0.0000	0.0000	0.0000	0.0000	0.0000
140	0.0429	0.0000	0.0000	0.0000	0.0000	0.0000
141	0.0217	0.0000	0.0000	0.0000	0.0000	0.0000
142	0.0205	0.0000	0.0000	0.0000	0.0000	0.0000
143	0.0157	0.0000	0.0000	0.0000	0.0000	0.0000
144	0.0088	0.0000	0.0000	0.0000	0.0000	0.0000

Table 4.22 Calibrated F-Factors by Trip Purpose

Time			Friction	Factors		
(minutes)	NHB Work- Based	NHB Non- Work-Based	TRUCK	TAXI	EXTL- AUTO	EXTL- TRUCK
1	288.5180	284.8357	405.3027	413.6032	16.3328	16.3678
2	246.7716	250.5586	304.4406	312.5369	14.7153	14.7503
3	191.8620	183.1125	209.0045	212.5358	13.8283	13.8633
4	137.2975	134.9805	140.3472	145.1420	13.0526	13.0876
5	100.1150	100.1073	100.0451	101.6013	12.0302	12.0652
6	76.3926	76.7303	76.7624	76.1739	10.8453	10.8803
7	59.8790	60.3820	61.7441	59.1944	9.6233	9.6583
8	46.3062	47.6235	49.8102	46.2512	8.6517	8.6867
9	37.0137	38.1965	40.9965	36.1293	7.9107	7.9457
10	31.4812	30.8489	34.6751	29.1460	7.3140	7.3490
11	26.1231	24.8957	29.4165	24.0599	6.6357	6.6707
12	21.4075	20.3019	25.0952	19.3293	5.9567	5.9917
13	18.1651	16.8614	21.7133	16.1277	5.2822	5.3172
14	16.1508	13.9904	19.0454	13.8370	4.6961	4.7311
15	14.0690	11.6187	16.7764	11.8933	4.1806	4.2156
16	12.2997	9.7191	14.9710	10.2757	3.7351	3.7701
17	10.7461	8.1229	13.2079	8.1010	3.3404	3.3754
18	9.3300	6.7909	11.8109	7.0461	2.9318	2.9668
19	8.0556	5.7503	10.6279	6.0608	2.5210	2.5560
20	6.9513	4.8872	9.6145	5.2713	2.2390	2.2740
21	6.2511	4.2050	8.8614	4.8372	2.0117	2.0467
22	5.6411	3.6289	8.2923	4.2042	1.7982	1.8332
23	5.0673	3.1409	7.6647	3.7348	1.5904	1.6254
24	4.5441	2.7233	7.0556	3.2598	1.4104	1.4454
25	4.0163	2.3458	6.4794	2.8861	1.2530	1.2880
26	3.5432	2.0149	5.9892	2.5824	1.1211	1.1561
27	3.1394	1.7347	5.5225	2.3589	1.0185	1.0535
28	2.7920	1.4997	5.1165	2.0457	0.9152	0.9502
29	2.4669	1.2945	4.7719	1.8111	0.8076	0.8426
30	2.2035	1.1162	4.4519	1.6294	0.6761	0.7111
31	1.9920	0.9658	4.1434	1.5081	0.5700	0.6050
32	1.7866	0.8349	3.8408	1.3568	0.5021	0.5371
33	1.5949	0.6921	3.5722	1.2239	0.4385	0.4735
34	1.4443	0.5811	3.3407	1.0556	0.3875	0.4225
35	1.3261	0.4897	3.1690	1.0019	0.3344	0.3694
36	1.2082	0.4082	3.0165	0.9483	0.3083	0.3433
37	1.0926	0.3345	2.8477	0.8781	0.2849	0.3199
38	0.9883	0.2780	2.6610	0.7471	0.2568	0.2918
39	0.8552	0.2329	2.5119	0.6196	0.2183	0.2533
40	0.7372	0.1932	2.3514	0.5022	0.1894	0.2244

Table 4.22
Calibrated F-Factors by Trip Purpose (continued)

			(continued)			
Time			Friction	Factors		
(minutes)	NHB Work- Based	NHB Non- Work- Based	TRUCK	TAXI	EXTL- AUTO	EXTL- TRUCK
41	0.6380	0.1612	2.2002	0.3998	0.1658	0.2008
42	0.5521	0.1344	2.0916	0.3326	0.1504	0.1854
43	0.4790	0.1119	2.0069	0.3107	0.1414	0.1764
44	0.4131	0.0936	1.9038	0.2959	0.1292	0.1642
45	0.3576	0.0772	1.7957	0.2810	0.1189	0.1539
46	0.3167	0.0634	1.7137	0.2611	0.1094	0.1444
47	0.2781	0.0530	1.6353	0.2427	0.1008	0.1358
48	0.2357	0.0440	1.5456	0.2245	0.0930	0.1280
49	0.1987	0.0358	1.4519	0.1771	0.0858	0.1208
50	0.1707	0.0288	1.3738	0.1542	0.0792	0.1142
51	0.1493	0.0236	1.3031	0.1259	0.0732	0.1082
52	0.1296	0.0192	1.2325	0.1032	0.0677	0.1032
53	0.1132	0.0152	1.1629	0.0892	0.0626	0.0976
54	0.0964	0.0132	1.1067	0.0648	0.0580	0.0930
55	0.0804	0.0099	1.0707	0.0628	0.0537	0.0887
56	0.0658	0.0078	0.9885	0.0554	0.0498	0.0848
57	0.0553	0.0063	0.9075	0.0520	0.0462	0.0812
58	0.0475	0.0049	0.8328	0.0516	0.0429	0.0779
59	0.0412	0.0039	0.7696	0.0453	0.0399	0.0749
60	0.0341	0.0032	0.7030	0.0373	0.0371	0.0721
61	0.0281	0.0023	0.6417	0.0247	0.0345	0.0695
62	0.0231	0.0017	0.5919	0.0143	0.0322	0.0672
63	0.0176	0.0017	0.5356	0.0087	0.0322	0.0650
64	0.0141	0.0008	0.4847	0.0077	0.0280	0.0630
65	0.0141	0.0004	0.4486	0.0059	0.0261	0.0611
66	0.0084	0.0004	0.4253	0.0037	0.0244	0.0594
67	0.0061	0.0002	0.4042	0.0032	0.0228	0.0574
68	0.0050	0.0000	0.3686	0.0032	0.0213	0.0563
69	0.0038	0.0000	0.3313	0.0013	0.0199	0.0549
70	0.0029	0.0000	0.2962	0.0008	0.0197	0.0547
70	0.0029	0.0000	0.2748	0.0004	0.0177	0.0525
72	0.0019	0.0000	0.2746	0.0004	0.0173	0.0523
73	0.0000	0.0000	0.2444	0.0000	0.0154	0.0514
73	0.0000	0.0000	0.2444	0.0000	0.0134	0.0304
75	0.0000	0.0000	0.2233	0.0000	0.0143	0.0493
75 76	0.0000	0.0000	0.2000	0.0000	0.0130	0.0480
76	0.0000	0.0000	0.1949	0.0000	0.0128	0.0478
78	0.0000	0.0000	0.1764	0.0000	0.0121	0.0471
78 79	0.0000	0.0000	0.1371	0.0000	0.0114	0.0464
80	0.0000	0.0000	0.1350	0.0000	0.0101	0.0451

Table 4.22
Calibrated F-Factors by Trip Purpose (continued)

	Friction Factors						
(minutes)	NHB Work- Based	NHB Non- Work- Based	TRUCK	TAXI	EXTL- AUTO	EXTL- TRUCK	
81	0.0000	0.0000	0.1268	0.0000	0.0095	0.0445	
82	0.0000	0.0000	0.1240	0.0000	0.0090	0.0440	
83	0.0000	0.0000	0.1204	0.0000	0.0085	0.0435	
84	0.0000	0.0000	0.1086	0.0000	0.0081	0.0431	
85	0.0000	0.0000	0.0929	0.0000	0.0076	0.0426	
86	0.0000	0.0000	0.0823	0.0000	0.0072	0.0422	
87	0.0000	0.0000	0.0765	0.0000	0.0069	0.0419	
88	0.0000	0.0000	0.0701	0.0000	0.0065	0.0415	
89	0.0000	0.0000	0.0636	0.0000	0.0062	0.0412	
90	0.0000	0.0000	0.0589	0.0000	0.0059	0.0409	
91	0.0000	0.0000	0.0555	0.0000	0.0056	0.0406	
92	0.0000	0.0000	0.0485	0.0000	0.0053	0.0403	
93	0.0000	0.0000	0.0412	0.0000	0.0050	0.0400	
94	0.0000	0.0000	0.0344	0.0000	0.0048	0.0398	
95	0.0000	0.0000	0.0286	0.0000	0.0046	0.0396	
96	0.0000	0.0000	0.0284	0.0000	0.0044	0.0394	
97	0.0000	0.0000	0.0233	0.0000	0.0042	0.0392	
98	0.0000	0.0000	0.0182	0.0000	0.0040	0.0390	
99	0.0000	0.0000	0.0103	0.0000	0.0038	0.0388	
100	0.0000	0.0000	0.0061	0.0000	0.0036	0.0386	
101	0.0000	0.0000	0.0029	0.0000	0.0035	0.0385	
102	0.0000	0.0000	0.0000	0.0000	0.0033	0.0383	
103	0.0000	0.0000	0.0000	0.0000	0.0032	0.0382	
104	0.0000	0.0000	0.0000	0.0000	0.0031	0.0381	
105	0.0000	0.0000	0.0000	0.0000	0.0030	0.0380	
106	0.0000	0.0000	0.0000	0.0000	0.0028	0.0378	
107	0.0000	0.0000	0.0000	0.0000	0.0027	0.0377	
108	0.0000	0.0000	0.0000	0.0000	0.0026	0.0376	
109	0.0000	0.0000	0.0000	0.0000	0.0025	0.0375	
110	0.0000	0.0000	0.0000	0.0000	0.0024	0.0374	
111	0.0000	0.0000	0.0000	0.0000	0.0000	0.0374	
112	0.0000	0.0000	0.0000	0.0000	0.0000	0.0373	
113	0.0000	0.0000	0.0000	0.0000	0.0000	0.0373	
114	0.0000	0.0000	0.0000	0.0000	0.0000	0.0373	
115	0.0000	0.0000	0.0000	0.0000	0.0000	0.0372	
116	0.0000	0.0000	0.0000	0.0000	0.0000	0.0372	
117	0.0000	0.0000	0.0000	0.0000	0.0000	0.0371	
118	0.0000	0.0000	0.0000	0.0000	0.0000	0.0371	
119	0.0000	0.0000	0.0000	0.0000	0.0000	0.0371	
120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0370	

Table 4.23, below, shows the 2005 Average Trip Length in minutes by trip purposes.

Table 4.23
Average Modeled Trip Length by Purpose

Purpose	2005
	Average Trip Length
Home-Based Work	21.6
HBNW to Education-1	8.8
HBNW to ED1-Bus	8.9
HBNW to Retail	11.3
HBNW to Airport	37.7
HBNW to Other	13.4
NHB Work-Based	13.6
NHB Other	11.4
Truck	19.7
Taxi	13.1
External-Local Auto	39.2
External-Local Truck	53.0

Source: H-GAC Model Application Results

4.4 Unified Mode Choice Model

Mode Choice models are mathematical expressions used to estimate travel market modal shares given various competing mode's time and cost characteristics and the urban resident's demographic and socio-economic characteristics. Mode choice models predict traveler's decisions to choose a particular mode of travel and are designed to be an integral link in the travel demand chain, with *possible* direct feedback mechanisms to a number of related model components -- auto ownership, trip generation, and trip distribution

This part of the report documents the new elements and calibration process of the Unified Mode Choice Model. This work effort is part of a larger effort to transition Houston METRO's transit modeling system, originally residing in EMME/2, to Cube-Voyager's Public Transportation module (PT). Only the changes to Unified Mode Choice Model and related elements will be described in this document. For further details, the reader should consult the *Description of Houston METRO's Travel Demand Models: Technical Report* issued in November 2006.

Summary of Revisions

The transit model was revised to be consistent with known FTA New Starts modeling guidance. Although the model is able to produce files used in user benefit analyses (via Summit), it would not be acceptable to use it for New Starts analysis at this time. Other items that would need to be addressed before beginning a New Starts analysis are: a detailed examination of person trips at a district-to-district level by purpose, socio-economic class, mode and geography; analysis of point-to-point travel times by mode between major activity areas; and informing the model of current transit travel patterns using the 2007 on-board survey.

The following sections describe the changes in greater detail. These revisions were made to the transit model:

- Modifications to walk-access, drive-access and transfer connector criteria,
- The wait curves were modified to better reflect the bifurcated wait time,
- Transit fares were coded in 2007\$ and adjusted to 1985\$ in the mode choice model,
- Revisions to the weights of the travel components,
- Revised mode choice structure to be more flexible for future analyses,
- Simplified the mode choice sub-modal utilities,
- Minor changes to the utility coefficients, and
- Addition of a transit assignment reporting routine.

Access Connectors

Walk-Access

The original walk connector logic added connector links to the highway network based on stops and their distance to centroids. This logic was replaced with PT's native process for simplicity and better consistency with the percent walk data.

Walk-access connectors have a maximum walking distance of 0.15 miles (3 minutes of walking time). This corresponds with the percent walk data, which lists the zonal coverage area using quarter-mile buffers. Initial tests showed that many large zones were disconnected since their centroid connectors exceeded the maximum walking distance. The preferred method of addressing this issue is to subdivide the zones. Since this was not possible in the given timeframe and budget – and H-GAC will shortly undertake such an effort – the distance of all centroid connectors was adjusted to 0.15 miles if the original distance exceeded that value.

The maximum length of walk-access connectors in the Central Business District (CBD) were extended to 0.60 miles to reflect the good walk access available and avoid artificial transfers that typically occur because of high frequency of buses downtown.

A special set of walk-access connectors to rail stations is developed to reflect their higher attractiveness and accessibility. The maximum walk distance is set to three miles. The distance has been kept artificially high to avoid unintentional disconnections in New Starts Analysis. All rail stations in the model are identified by nodes on FTYPE 130s links.

Auto-Access

Auto-access connectors are built only for PNRs. The criteria were modified slightly to improve consistency in connectors to the five modes. The pseudo-PNR logic in the original model has been discontinued.

Transfer

The somewhat restrictive transfer connector logic in the original model has been revised slightly. Transfer connectors can now use more than two highway links and the number of connectors is not limited by the length of the shortest connector.

Transit Network

Transit fares have been coded in 2007\$ to make future changes easier. The fares are deflated to 1985\$ using the TransitFareInflationFactor catalog key. This value is currently set to 0.551. In addition, operator codes were added to each route to assist in calculating different fare structures.

The coding of several rail stations was shifted to better coincide with their actual location. Rail station-to-station travel times have been hard-coded and checked against known operating speeds. The time for each station-to-station link is maintained in a file named LRTLINKS.PRN, which resides in the input folder. The format of the file is shown in the following table.

LRTLINKS.PRN File Format

Columns	Format	Description		
1-6	16	Anode		
7-12	16	Bnode		
13-20	F8.2	Station-to-station travel time in min (includes dwell time)		
21-100	A80	Description		

Some transit routes were modified to connect them to centroid connectors. Public timetables were consulted to make sure that the original non-stops were not intentionally coded.

Wait Curves

The wait curves were modified to accurately reflect the bifurcated wait time mode choice coefficients. This improves consistency between the path-builder and mode choice model. Separate wait curves were developed for HBW and HBNW/NHB paths.

The wait curves reflected perceived (i.e., weighted) wait time. Consequently, the mode choice coefficients are set to 1.0x in-vehicle travel time.

HBW Wait Curves

In	Initial Wait Curve			ansfer Wait Cu	rve	
	Wait 1	Гime		Wait Time		
Freq	Unweighted	Weighted	Freq	Unweighted	Weighted	
0	-	-	0	-	-	
1	0.50	1.00	1	0.50	1.29	
4.5	2.25	4.50	4.5	2.25	5.81	
5	2.50	5.00	5	2.50	6.45	
9	4.50	9.00	9	4.50	11.61	
10	5.00	9.50	10	5.00	12.90	
20	10.00	14.50	20	10.00	25.80	
30	15.00	19.50	30	15.00	38.70	
40	20.00	24.50	40	20.00	51.60	
50	25.00	29.50	50	25.00	64.50	
60	30.00	34.50	60	30.00	77.40	
70	35.00	39.50	70	35.00	90.30	
120	60.00	64.50	120	60.00	154.80	
180	60.00	64.50	180	60.00	154.80	

H	3N	W/N	JHR	Wait	Curves

In	Initial Wait Curve			ansfer Wait Cu	rve
	Wait Time			Wait Time	
Freq	Unweighted	Weighted	Freq	Unweighted	Weighted
0	-	-	0	-	-
1	0.50	1.00	1	0.50	1.00
4.5	2.25	4.50	4.5	2.25	4.50
5	2.50	5.00	5	2.50	5.00
9	4.50	9.00	9	4.50	9.00
10	5.00	10.00	10	5.00	10.00
20	10.00	20.00	20	10.00	20.00
30	15.00	30.00	30	15.00	30.00
40	20.00	40.00	40	20.00	40.00
50	25.00	50.00	50	25.00	50.00
60	30.00	60.00	60	30.00	60.00
70	35.00	70.00	70	35.00	70.00
120	60.00	120.00	120	60.00	120.00
180	60.00	120.00	180	60.00	120.00

Transit Paths

Transit paths have been revised to reflect the new mode choice structure. Four paths are built for HBW with a similar four paths built for the HBNW/NHB trip purposes:

- Walk-to-local bus only,
- Walk-to-mixed mode,
- Drive-to-local bus only, and
- Drive-to-mixed mode.

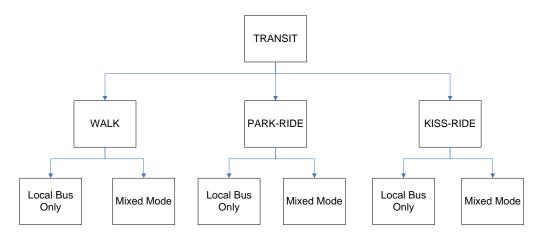
The HBW paths use the peak period, while the HBNW/NHB paths are built using off-peak period service. The "local bus only" paths allow the use of local buses and prohibit all other modes. All modes are available in the "mixed mode" paths, although local buses are slightly disfavored.

The weights of the travel time components have been modified to be more consistent with the same mode choice variables. The revised path weights are listed in the tables below.

HBW Path Weights

Transit	Walk-Access		PNR-A	ccess	KNR-Access	
Transit	LBO	MM	LBO	MM	LBO	MM
Boarding Penalty (all modes)	10.00	10.00	10.00	10.00	10.00	10.00
Transfer Penalty (all modes to all modes)	4.00	4.00	4.00	4.00	4.00	4.00
1st Wait time *	1.00	1.00	1.00	1.00	1.00	1.00
Transfer wait time *	1.00	1.00	1.00	1.00	1.00	1.00
Runtime Factors						
Walk-Access	2.58	2.58	2.58	2.58	2.58	2.58
Drive-Access	-	1	2.58	2.58	2.58	2.58
Transfer	2.58	2.58	2.58	2.58	2.58	2.58
Local Bus	1.00	1.30	1.00	1.30	1.00	1.30
Express Bus	-	1.00	-	1.00	-	1.00
Commuter Bus	-	1.00	-	1.00	-	1.00
Light Rail	-	1.00	-	1.00	-	1.00
Commuter Rail	-	0.80	-	0.80	-	0.80

Transit	Walk	-Access	PNR-Access		KNR-Access	
Transit	LBO	MM	LBO	MM	LBO	MM
Boarding Penalty (all modes)	10.00	10.00	10.00	10.00	10.00	10.00
Transfer Penalty (all modes to all modes)	4.00	4.00	4.00	4.00	4.00	4.00
1st Wait time *	1.00	1.00	1.00	1.00	1.00	1.00
Transfer wait time *	1.00	1.00	1.00	1.00	1.00	1.00
Runtime Factors						
Walk-Access	2.00	2.00	2.00	2.00	2.00	2.00
Drive-Access	-	-	2.00	2.00	2.00	2.00
Transfer	2.00	2.00	2.00	2.00	2.00	2.00
Local Bus	1.00	1.30	1.00	1.30	1.00	1.30
Express Bus	-	1.00	-	1.00	-	1.00
Commuter Bus	-	1.00	-	1.00	-	1.00
Light Rail	-	1.00	-	1.00	-	1.00
Commuter Rail	-	0.80	-	0.80	-	0.80


Due to its design, PT will always find a transit path on an interchange, even when walking between zones would be shorter and more direct. To address this issue, an extra walk-only path is built between all zones within seven miles of each other. The results of these "all-walk" paths are compared to each transit path. If the "all-walk" path skim is less onerous, the transit path is zeroed out before sent to the mode choice model for processing.

Mode Choice Model

The structure of the mode choice model is the biggest change to the original H-GAC travel demand model. The previous model structure was based on a modal. While this structure was helpful in past analyses, it did present some forecasting issues. First, it does not reflect the fact that express and commuter bus services do not directly compete in most instances. Also, there was some concern that the hierarchy would continue in the future, especially with planned services and modes. Assigning a new mode a place in the hierarchy has large behavioral and user benefit impacts as strong assertions are made how the mode is used in conjunction with other modes and how future travelers would view the importance of that mode in selected their paths.

The new structure is now much simpler and has several key advantages. It dispenses with the need to assign a new mode's relationship to other modes. Also, it allows the non-local bus modes (i.e., express bus, commuter bus and METRORail) to freely interact without any *a priori* path restrictions. Most importantly, it reflects the current path trade-off between local bus and all other modes.

New Mode Choice Structure

The transit utilities have been streamlined for clarity and consistency in a number of ways:

- All constants are input at the top-level for easy interpretation,
- The numerous sub-modal penalties and bonuses (e.g., a distance bonus for using commuter bus) that do not have a direct relationship to the modal attributes have been removed.
- Auto operating cost has been added to the KNR utility,
- The PNR and KNR utilities now use drive-access distance rather than drive-alone distance for their auto operating cost calculation,
- Commuter rail in-vehicle time has a coefficient that have a value of 0.8 minutes of regular transit in-vehicle time,
- Inflation factors have been added so that fares, parking costs, tolls and auto operating costs can be input in base year dollars, and
- The lowest income groups are prohibited from park-riding.

The variable mapping to the sub-modal utilities as well as the nesting coefficients are shown in Tables 4 and 5 for HBW, Tables 7 and 8 for HBNW, and Tables 10 and 11 for NHB. The final constants are shown in Tables 6, 9 and 12.

There are five constants that can be applied to the mixed-mode utility, one for each sub-mode. The constant of the sub-mode that has the most in-vehicle travel time is applied to the utility. For example, a mixed-mode path with 35 minutes of commuter bus, 10 minutes of rail and 5 minutes of local bus time will have the commuter bus bias constant applied. A similar path with 10 minutes of rail and 40 minutes of local bus will have the local/mixed mode constant applied. Please note that a mixed-mode path with only local-bus is conditioned out of the skim before mode choice.

Transit Assignment

Transit trips are loaded unto the transit network using PT's transit assignment procedures. At this time, PT does not have a satisfactory reporting mechanism, so an external program named TAREPORT was developed.

The program produces two summary files, one summary report at the route level (TASUM_Axx.PRN, where xx is the alternative year) and another report that provides stop-level detail for each route (TAROUTE_Axx.PRN). Information in both reports is shown for the peak, off-peak and daily time periods. In addition, the summary report provides totals by mode and operator.

Calibration and Validation

Houston METRO has conducted two transit on-board surveys in the past five years. The latest transit on-board survey available was conducted in 2002 and does not reflect the METRORail system (which began operations in 2004) or the system-wide changes to bus operations implemented around the same time. METRO recently completed an on-board survey in spring 2007. A summary report is available from that survey, but detailed data records are not yet available. Therefore, this 2005 calibration and validation process is based on merging all available information: both on-board surveys as well as 2005 boarding information and detailed linked trip targets from METRO's 2005 calibration of its travel demand model. The primary goal of calibration was not to match linked trip targets *per se*, but achieve the 2005 observed boardings in assignment since that data is most reflective of 2005 transit travel patterns.

Initial linked trip targets were developed by dividing the 2005 boardings (detailed by mode) by transfer rates listed in the 2007 on-board survey summary report. The resulting aggregate linked trips were disaggregated by purpose, income group, access and sub-mode by applying the same breakdown (by percentage) from METRO's 2005 linked trip targets. The structure of the two mode choice models is quite different as noted in the previous section, so some modifications were made to achieve the 2005 boardings shown in the following table. Almost all of the adjustments involved "trading" trips between access modes and sub-modes.

During calibration, the targets for walk-commuter bus trips for income groups 1-3 were removed because the very small amount of trips (less than 500 trips combined for the three income groups) made it very difficult to calibrate given the information we have. It is hoped that the better data contained in the 2007 on-board survey will provide more insights. A comparison of observed and estimated boardings is shown in the following table.

2005 Observed & Estimated Boardings

Mode	Observed	Estimated	Relative Difference
Local Bus	226,786	226,606	0%
Express Bus	17,711	19,344	9%
Commuter Bus	30,902	32,439	5%
METRORail	33,706	33,802	0%
Total	309,105	312,191	1%

Tables 4.24, 4.25, and 4.26 show the observed and estimated linked trips for the HBW, HBNW and NHB trip purposes, respectively. The final constants are shown in Tables 4.28, 4.30 and 4.32. Final calibration results are shown in the following table.

2005 H-GAC Calibration – TRAVEL MODEL RESULTS

	Category	Description	Result
_		Total person trips in the system	
В		Home-based work trips	3,414,112
0	Trip Data	Home-based nonwork trips	8,551,781
Х		Non-home based trips	5,241,184
1		Total trips	17,207,077
В		Total population	5,214,051
0	Demographic	Total households	1,865,189
X	Data	Trips per household	9.23
2		Total employment	2,525,285
		Linked transit trips in the system	204,959
		Total Walk trips	161,815
В		Total PNR trips	37,975
Ö		Total KNR trips	5,169
_	Transit Trips	Daily boardings (unlinked trips)	312,191
X 3	-	Local bus	226,606
3		Express bus	19,344
		Commuter bus	32,439
		LRT	33,802
		Auto trips	
В		Single Occupants	9,691,359
0	Auto Person	HOV2	3,939,303
X	Trips	HOV3	1,744,685
4	·	HOV4+	1,626,771
		Total daily auto person trips in the system	17,002,118
		All trip purposes	
		Total daily trips (auto+transit) to CBD	397,961
В	Transit Mode	Total daily transit trips to CBD	72,967
0	Shares to	Daily transit mode share to CBD	18.3%
X		Work trips only	
5	Downtown	Total daily trips (auto+transit) to CBD	134,907
		Total daily transit trips to CBD	50,101
		Daily transit mode share to CBD	37.1%
		VMT and VHT Data	
		VMT - Transit System	
В		VHT - Transit System	
0	VMT & VHT Data	Passenger miles - Transit system	2,505,386
X	vivii & viii Data	Passenger hours - Transit system	160,548
6		8-county region	
		VMT - Highway system	140,379,076
		VHT - Highway system	3,617,936

After calibration/validation, a user benefit test was conducted to confirm whether the procedures that produce the user benefit data files (to be used by Summit) worked correctly. A dummy rail line was coded for the build alternative and a bus that exactly mimicked the rail line as the baseline alternative. The rail line is about three minutes faster (end-to-end) than the baseline bus.

Table 4.24: Observed & Estimated Linked Trips - HBW

Table 4.24. Observed a Es	I		Observed Trips					Estimated Trips					Delta Trips	;	
Income Group	1 1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Drive Alone Free	332,562	515,084	600,423	475,581	461,631	331,812	513,915	599,065	474,549	460,386	-750	-1,169	-1,359	-1,032	-1,245
Drive Alone Pay	20,392	46,574	90,803	91,515	113,729	20,351	46,481	90,649	91,397	113,882	-41	-93	-154	-119	154
Shared-Ride 2 Free	78,608	99,056	95,094	58,574	49,235	79,170	99,953	96,172	59,387	49,928	563	897	1,078	812	693
Shared-Ride 2 Toll	4,380	8,237	13,339	10,604	11,425	4,411	8,311	13,495	10,759	11,666	31	75	155	155	241
Shared-Ride 3 Free	14,813	17,077	14,730	7,583	6,370	14,947	17,269	14,937	7,714	6,485	134	192	207	131	116
Shared-Ride 3 Toll	824	1,429	2,090	1,409	1,522	831	1,445	2,119	1,433	1,558	7	16	29	24	36
Shared-Ride 4+ Free	11,069	10,939	8,615	4,296	3,079	11,192	11,089	8,762	4,387	3,149	123	150	148	91	70
Shared-Ride 4+ Toll	629	945	1,269	840	775	636	958	1,289	857	795	6	13	21	17	20
Total Auto	463,278	699,340	826,363	650,402	647,766	463,350	699,420	826,488	650,482	647,850	72	80	125	79	84
Walk-Local Bus Only	22,000	28,500	10,000	3,300	5,200	21,939	28,446	9,941	3,278	5,173	(61)	-54	-59	-23	-27
Walk-Mixed Mode/Local Bus	2,550	4,016	1,643	856	2,031	2,549	4,019	1,641	856	2,034	(1)	3	-2	0	3
Walk-Mixed Mode/Express Bus	700	900	400	66	250	698	897	397	65	248	(3)	-3	-3	-1	-2
Walk-Mixed Mode/Commuter Bus	-	-	-	66	185	-	-	-	65	184	- ' '	0	0	-1	-1
Walk-Mixed Mode/Rail	1,313	1,711	900	700	900	1,314	1,719	896	697	897	0	8	-4	-3	-3
Walk-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0
Total Walk-Access	26,563	35,127	12,943	4,987	8,566	26,500	35,081	12,875	4,960	8,536	(64)	(46)	(68)	(27)	(29)
PNR-Local Bus Only	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PNR-Mixed Mode/Local Bus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
PNR-Mixed Mode/Express Bus	97	800	1,400	2,000	3,100	97	798	1,392	1,989	3,085	(0)	(3)	(8)	(11)	(15)
PNR-Mixed Mode/Commuter Bus	400	2,400	4,500	5,600	7,800	395	2,376	4,455	5,553	7,762	(5)	(24)	(45)	(47)	(38)
PNR-Mixed Mode/Rail	100	673	1,743	2,893	1,846	100	674	1,744	2,902	1,848	0	1	1	9	2
PNR-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total PNR-Access	597	3,873	7,643	10,493	12,746	592	3,847	7,591	10,444	12,695	(5)	(26)	(52)	(49)	(51)
KNR-Local Bus Only	-	-	-		-	-	-	-	-	-	-	-	-	-	-
KNR-Mixed Mode/Local Bus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
KNR-Mixed Mode/Express Bus	100	250	159	120	165	100	249	159	119	164	(0)	(1)	(1)	(1)	(1)
KNR-Mixed Mode/Commuter Bus	350	700	414	312	448	346	693	410	309	446	(4)	(7)	(4)	(2)	(2)
KNR-Mixed Mode/Rail	100	150	64	48	46	100	150	64	48	46	0	0	(0)	0	0
KNR-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	-	- '	-	
Total KNR-Access	550	1,100	637	479	659	546	1,093	632	477	656	(4)	(7)	(5)	(3)	(3)
Total Transit	27,710	40,100	21,223	15,959	21,971	27,638	40,020	21,098	15,880	21,887	(72)	(80)	(125)	(79)	(84)
Total	490,988	739,441	847,586	666,362	669,737	490,988	739,441	847,585	666,362	669,737	(0)	0	(0)	(0)	0

Table 4.25: Observed & Estimated Linked Trips - HBNW

			Observed Trips					Estimated Trips	i				Delta Trips	i	
Income Group	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Drive Alone Free	539,655	743,451	866,375	713,495	763,297	539,470	743,068	865,877	713,061	762,813		-383	-499	-434	-484
Drive Alone Pay	1,308	4,408	9,386	9,664	19,936	1,234	4,394	9,380	9,658	19,926	-75	-15		-6	-10
Shared-Ride 2 Free	407,656	507,633	585,690	458,795	469,198	407,796	507,838	585,941	459,021	469,460	140	205	251	226	262
Shared-Ride 2 Toll	998	3,012	6,292	6,156	11,918	1,004	3,014	6,294	6,160	11,928	5	2	2	4	9
Shared-Ride 3 Free	242,886	269,965	302,697	216,687	201,359	242,976	270,082	302,832	216,796	201,472	90	117	135	109	113
Shared-Ride 3 Toll	560	1,565	3,207	2,878	5,148	564	1,567	3,210	2,879	5,152	4	2	2	1	4
Shared-Ride 4+ Free	208,095	248,149	270,513	197,367	186,192	208,182	248,266	270,645	197,473	186,301	86	117	132	106	109
Shared-Ride 4+ Toll	458	1,411	2,834	2,604	4,772	462	1,412	2,836	2,605	4,776	3	1	2	1	4
Total Auto	1,401,617	1,779,595	2,046,994	1,607,646	1,661,819	1,401,685	1,779,640	2,047,014	1,607,653	1,661,827	68	45	20	7	7
Walk-Local Bus Only	23,000	14,000	3,994	267	358	22,945	13,965	3,982	266	356	(55)	-35	-12	-1	-2
Walk-Mixed Mode/Local Bus	1,726	918	415	290	119	1,722	916	414	289	120	(4)	-2	-1	-1	1
Walk-Mixed Mode/Express Bus	800	370	198	50	50	799	369	197	50	50	(1)	-1	-2	0	0
Walk-Mixed Mode/Commuter Bus	-	-	-	12	24	-	-	-	11	23	-	0	0	-1	-1
Walk-Mixed Mode/Rail	1,500	1,113	400	650	650	1,494	1,108	398	646	646	(6)	-5	-2	-4	-4
Walk-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	0	0	0	0
Total Walk-Access	27,026	16,401	5,007	1,269	1,201	26,960	16,358	4,991	1,263	1,195	(66)	(43)	(16)	(6)	(6)
PNR-Local Bus Only	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PNR-Mixed Mode/Local Bus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PNR-Mixed Mode/Express Bus	150	150	44	40	39	150	149	43	40	38	(0)	(1)	(1)	0	(1)
PNR-Mixed Mode/Commuter Bus	500	400	80	80	80	499	399	80	80	80	(1)	(1)	(0)	0	(1)
PNR-Mixed Mode/Rail	150	80	50	50	50	150	81	49	50	50	(0)	1	(1)	(0)	(0)
PNR-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total PNR-Access	800	630	174	170	169	798	628	172	170	167	(2)	(2)	(2)	(0)	(2)
KNR-Local Bus Only	-	-	-		-	-	-	-	-	-	-	-	-	-	-
KNR-Mixed Mode/Local Bus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KNR-Mixed Mode/Express Bus	90	80	85	43	18	90	81	84	43	18	0	1	(1)	0	0
KNR-Mixed Mode/Commuter Bus	200	200	203	80	33	200	199	202	80	33	(1)	(1)	(1)	0	0
KNR-Mixed Mode/Rail	90	62	39	20	20	90	63	39	19	20	0	0	(1)	(1)	(0)
KNR-Mixed Mode/Commuter Rail	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total KNR-Access	379	342	327	143	71	379	342	325	143	71	(0)	(1)		(1)	0
Total Transit	28,205	17,373	5,508	1,582	1,441	28,137	17,328	5,488	1,575	1,434	(68)	(45)	(20)	(7)	(7)
Total	1,429,823	1,796,968	2,052,502	1,609,228	1,663,260	1,429,823	1,796,968	2,052,502	1,609,228	1,663,260	(0)	(0)	(0)	0	0

Table 4.26: Observed & Estimated Linked Trips - NHB

Table 4.26: Observed & Estima			
	Observed	Estimated	Delta
Income Group	Trips	Trips	Trips
Drive Alone Free	3,186,003	3,184,025	(1,977)
Drive Alone Pay	96,024	95,969	(56)
Shared-Ride 2 Free	1,016,273	1,017,624	1,351
Shared-Ride 2 Toll	29,932	29,972	41
Shared-Ride 3 Free	415,655	416,177	521
Shared-Ride 3 Toll	12,230	12,243	13
Shared-Ride 4+ Free	446,974	447,523	548
Shared-Ride 4+ Toll	13,159	13,177	18
Total Auto	5,216,250	5,216,710	460
Walk-Local Bus Only	16,000	15,692	(308)
Walk-Mixed Mode/Local Bus	2,921	2,895	(26)
Walk-Mixed Mode/Express Bus	900	885	(15)
Walk-Mixed Mode/Commuter Bus	100	97	(3)
Walk-Mixed Mode/Rail	3,600	3,527	(73)
Walk-Mixed Mode/Commuter Rail	-	-	-
Total Walk-Access	23,521	23,096	(425)
PNR-Local Bus Only	-	-	-
PNR-Mixed Mode/Local Bus	-	-	-
PNR-Mixed Mode/Express Bus	200	195	(5)
PNR-Mixed Mode/Commuter Bus	593	578	(15)
PNR-Mixed Mode/Rail	100	98	(3)
PNR-Mixed Mode/Commuter Rail	-	-	- ' '
Total PNR-Access	893	871	(22)
KNR-Local Bus Only	-	-	-
KNR-Mixed Mode/Local Bus	-	-	-
KNR-Mixed Mode/Express Bus	100	97	(3)
KNR-Mixed Mode/Commuter Bus	350	343	(7)
KNR-Mixed Mode/Rail	70	67	(3)
KNR-Mixed Mode/Commuter Rail	-	-	- ' '
Total KNR-Access	520	507	(13)
Total Transit	24,934	24,474	(460)
Total	5,241,184	5,241,184	0

Table 4.27: HBW Mode Choice Equation Overview

							-	Term	appear	s in Cho	ice					
HBW Model Equation Term	D	Α	SF	₹-2	SF	₹-3	SF	₹-4	W	alk	PN	NR	KI	NR	HBW Coefficient [†]	IVT Ratio
	F	Т	F	Т	F	Τ	F	Т	LBO	MM	LBO	MM	LBO	MM		
Auto In-vehicle Time	*	*	*	*	*	*	*	*							-0.022026	1.00
Transit In-vehicle Time									*	*	*	*	*	*	(-0.017621 Comm Rail	(0.80)
First Wait Time >4.5 min									*	*	*	*	*	*	only)	(0.00)
Walk Time									*	*	*	*	*	*	-0.056796	
Drive Access Time											*	*	*	*	(-0.033045 Drive Access only)	2.58 (1.50)
First Wait Time <4.5 min									*	*	*	*	*	*	-0.044052*	2.00*
Transfer Wait Time									*	*	*	*	*	*	-0.056827*	2.58*
HOV Time Savings			*	*	*	*	*	*							0.015418	-0.70
Toll Time Savings	Î	*		*		*		*				•			0.015416	-0.70
Parking Cost	*	*	*	*	*	*	*	*							-0.015364	0.70
Toll Cost (exc. Beltway 8 Bridge)		*		*		*		*							varies- income	varies
Auto Operating Cost	*	*	*	*	*	*	*	*			*	*	*	*		
Toll Cost (Beltway 8 Bridge only)	Î	*		*		*		*				•			-0.006145	0.28
Transit Fare									*	*	*	*	*	*		
Trip Distance (Equiv. Auto)															0.022026	-1.00
Number of Transfers									*	*	*	*	*	*	-0.088120	4.00
Residential Density									*	*					0.139472	-6.33
Formal PNR Indicator															0.000000	0.00
Household Size (SR2)			*	*											0.000000	0.00
Household Size (SR3)					*	*									0.000000	0.00
Household Size (SR4+)							*	*							0.000000	0.00
CBD Indicator (In CBD = 1)									*	*	*	*	*	*	0.308788	-14.02
TMC Indicator									*	*	*	*	*	*	0.461603	-20.96
Uptown Indicator									*	*	*	*	*	*	-0.239749	10.88
Greenway Indicator									*	*	*	*	*	*	-0.572017	25.97

^{* -} shown values for initial wait and transfer times are represented as such in wait curves; mode choice coefficients are 1.00 IVTT

Table 4.28: Summary of HBW Nesting Coefficients

						Cho	ice is	s sub	oject to N	Nesting (Coefficie	nt			HBW
HBW Nesting Coefficient	D	Α	SF	R-2	SF	≀-3	SF	₹-4	W	alk	PN	I R	K۱	N R	Nesting
	F	Т	F	Т	F	Т	F	Т	LBO	MM	LBO	MM	LBO	MM	Coefficient†
Auto Nest (DA vs SR)	*	*	*	*	*	*	*	*							0.750000
Transit Nest (Walk, PNR vs KNR)									*	*	*	*	*	*	0.750000
Drive Alone Nest (DA only)	*	*													
Shared Ride Nest (2 vs 3 vs 4+)			*	*	*	*	*	*							
Walk-Access Net (LBO vs MM)									*	*					0.600000
PNR-Access Net (LBO vs MM)										1	*	*			
KNR-Access Net (LBO vs MM)										1			*	*	
Drive-Alone Nest (F vs P)	*	*													
Shared Ride 2 Nest (F vs P)			*	*											0.450000
Shared Ride 3 Nest (F vs P)					*	*									0.450000
Shared Ride 4+ Nest (F vs P)							*	*							

LRM-2954 10/11/04 Calibration

Table 4.29: Summary of HBW Constants

CONSTANTS		٦	op-Level	Summary of				Bottom-Leve	I	
		Home-Ba	sed Work	(HBW)			Home-	Based Work	(HBW)	
Income Group	1	2	3	4	5	1	2	3	4	5
Drive Alone Free	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Drive Alone Pay	0.1693	0.2403	0.4069	0.4367	0.5294	0.8360	1.1869	2.0092	2.1564	2.6142
Shared-Ride 2 Free	-1.5253	-1.7186	-1.9073	-2.1378	-2.2494	-7.5322	-8.4868	-9.4187	-10.5568	-11.1082
Shared-Ride 2 Toll	-1.3837	-1.5085	-1.5344	-1.7247	-1.7475	-6.8329	-7.4492	-7.5772	-8.5168	-8.6296
Shared-Ride 3 Free	-2.5166	-2.7652	-3.0235	-3.3536	-3.4622	-12.4278	-13.6553	-14.9307	-16.5611	-17.0973
Shared-Ride 3 Toll	-2.3750	-2.5551	-2.6506	-2.9353	-2.9641	-11.7284	-12.6180	-13.0894	-14.4955	-14.6375
Shared-Ride 4+ Free	-2.8754	-3.2087	-3.5315	-3.8950	-4.0771	-14.1994	-15.8453	-17.4396	-19.2348	-20.1340
Shared-Ride 4+ Toll	-2.7134	-2.9755	-3.1302	-3.4404	-3.5430	-13.3993	-14.6938	-15.4577	-16.9895	-17.4962
Walk-Local Bus Only	-0.8566	-0.8890	-2.5359	-3.4434	-2.7582	-1.9035	-1.9756	-5.6353	-7.6520	-6.1294
Walk-Mixed Mode/Local Bus	-0.4053	-0.2237	-1.6127	-1.9388	-0.7298	-0.9007	-0.4971	-3.5838	-4.3084	-1.6218
Walk-Mixed Mode/Express Bus	-1.9689	-2.0534	-3.4716	-4.6517	-3.3801	-4.3752	-4.5631	-7.7146	-10.3372	-7.5112
Walk-Mixed Mode/Commuter Bus	-999.0000	-999.0000	-999.0000	-3.8921	-2.7983	-2,220.0000	-2,220.0000	-2,220.0000	-8.6491	-6.2185
Walk-Mixed Mode/Rail	0.1386	0.3966	-1.4543	-1.4752	-0.9137	0.3080	0.8814	-3.2317	-3.2782	-2.0304
Walk-Mixed Mode/Commuter Rail	0.1386	0.3966	-1.4543	-1.4752	-0.9137	0.3080	0.8814	-3.2317	-3.2782	-2.0304
PNR-Local Bus Only	-999.0000	-999.0000	-999.0000	-999.0000	-999.0000	-2,220.0000	-2,220.0000	-2,220.0000	-2,220.0000	-2,220.0000
PNR-Mixed Mode/Local Bus	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PNR-Mixed Mode/Express Bus	-3.7950	-2.2584	-2.2641	-1.7827	-1.3744	-8.4333	-5.0186			-3.0542
PNR-Mixed Mode/Commuter Bus	-4.4072	-3.2335	-3.0519	-2.7198	-2.2538	-9.7937	-7.1855	-6.7820	-6.0441	-5.0084
PNR-Mixed Mode/Rail	-4.0034	-2.6205	-2.0027	-0.9318		-8.8963	-5.8234	-4.4505	-2.0706	-2.9947
PNR-Mixed Mode/Commuter Rail	-4.0034	-2.6205	-2.0027	-0.9318	-1.3476	-8.8963	-5.8234	-4.4505	-2.0706	-2.9947
KNR-Local Bus Only	-999.0000	-999.0000	-999.0000	-999.0000	-999.0000	-2,220.0000	-2,220.0000	-2,220.0000	-2,220.0000	-2,220.0000
KNR-Mixed Mode/Local Bus	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
KNR-Mixed Mode/Express Bus	-3.7726	-3.1310	-3.8940	-3.8930	-3.5755	-8.3836	-6.9578	-8.6534	-8.6510	-7.9455
KNR-Mixed Mode/Commuter Bus	-4.5074	-4.1574	-4.8420	-4.8858	-4.3965	-10.0165	-9.2386	-10.7601	-10.8574	-9.7699
KNR-Mixed Mode/Rail	-4.0034	-3.7457	-4.4860	-4.0061	-4.1132	-8.8964	-8.3238	-9.9690	-8.9025	-9.1404
KNR-Mixed Mode/Commuter Rail	-4.0034	-3.7457	-4.4860	-4.0061	-4.1132	-8.8964	-8.3238	-9.9690	-8.9025	-9.1404

Table 4.30: HBNW Mode Choice Equation Overview

							•	Term	appear	s in Cho	ice					
HBNW Model Equation Term	D	Α	SF	R-2	SF	₹-3	SF	₹-4	W	alk	PN	IR	KI	NR	HBO Coefficient [†]	IVT Ratio
	F	Т	F	Т	F	Т	F	Т	LBO	MM	LBO	MM	LBO	MM		1144.0
Auto In-vehicle Time Transit In-vehicle Time	*	*	*	*	*	*	*	*	*	*	*	*	*	*	-0.017270 (-0.013816 Comm Rail only)	1.00 (0.80)
First Wait Time >4.5 min First Wait Time <4.5 min									*	*	*	*	*	*	-0.034540*	2.00*
Drive Access Time											*	*	*	*	-0.025905	1.50
Walk Time Transfer Wait Time									*	*	*	*	*	*	-0.034540*	2.00*
HOV Time Savings Toll Time Savings		*	*	*	*	*	*	*							0.012700	-0.74
Parking Cost	*	*	*	*	*	*	*	*							-0.014790	0.86
Toll Cost (exc. Beltway 8 Bridge)		*		*		*		*							varies- income	varies
Auto Operating Cost Toll Cost (Beltway 8 Bridge only) Transit Fare	*	*	*	*	*	*	*	*	*	*	*	*	*	*	-0.005920	-0.01
Trip Distance (Equiv. Auto)															0.018200	-1.05
Number of Transfers									*	*	*	*	*	*	-0.069080	4.00
Residential Density									*	*					0.077670	-4.50
Formal PNR Indicator													*		0.000000	0.00
Household Size (SR2)			*	*											0.074270	-4.30
Household Size (SR3)					*	*									0.448700	-25.98
Household Size (SR4+)							*	*							0.755300	-43.73
CBD Indicator (In CBD = 1)									*	*	*	*	*	*	-1.742170	100.9
TMC Indicator									*	*	*	*	*	*	-0.172855	10.01
Uptown Indicator									*	*	*	*	*	*	-0.553363	32.04
Greenway Indicator									*	*	*	*	*	*	-0.700879	40.58

^{* -} shown values for initial wait and transfer times are represented as such in wait curves; mode choice coefficients are 1.00 IVTT

Table 4.31: Summary of HBNW Nesting Coefficients

							_			ing occ.					
						Cho	ice	is su	bject to	Nesting	Coefficie	nt			HBNW
HBNW Nesting Coefficient	D	Α	SF	R-2	SF	R-3	SF	R-4	W	alk	PN	NR	KI	NR	Nesting
	F	Т	F	Т	F	Т	F	Т	LBO	MM	LBO	MM	LBO	MM	Coefficient†
Auto Nest (DA vs SR)	*	*	*	*	*	*	*	*							0.750000
Transit Nest (Walk, PNR vs KNR)									*	*	*	*	*	*	0.750000
Drive Alone Nest (DA only)	*	*													
Shared Ride Nest (2 vs 3 vs 4+)			*	*	*	*	*	*							
Walk-Access Nest (LBO vs MM)									*	*					0.600000
PNR-Access Nest (LBO vs MM)											*	*			
KNR-Access Nest (LBO vs MM)												1	*	*	
Drive-Alone Nest (F vs P)	*	*													
Shared Ride 2 Nest (F vs P)			*	*											0.450000
Shared Ride 3 Nest (F vs P)					*	*									0.450000
Shared Ride 4+ Nest (F vs P)							*	*							

LRM-2954 10/07/04 Calibration

Table 4.32: Summary of HBNW Constants

CONSTANTS		7	Top-Level	<u>, </u>	HBINW COIL			Bottom-Leve	l	
	ĺ	Home-Base	d Non-wor	k (HBNW)			Home-Bas	sed Non-wor	k (HBNW)	
Income Group	1	2	3	4	5	1	2	3	4	5
Drive Alone Free	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Drive Alone Pay	-0.0566	0.1300	0.2423	0.2230	0.4298	-0.2793	0.6420	1.1966	1.1013	2.1223
Shared-Ride 2 Free	-0.1295	-0.2193	-0.2262	-0.2723	-0.3162	-0.6393	-1.0832	-1.1172	-1.3445	-1.5614
Shared-Ride 2 Toll	-0.2165	-0.1130	-0.0132	-0.0790	0.0704	-1.0690	-0.5580	-0.0653	-0.3901	0.3478
Shared-Ride 3 Free	-1.4042	-1.5424	-1.5524	-1.6301	-1.7089	-6.9344	-7.6168	-7.6659	-8.0497	-8.4388
Shared-Ride 3 Toll	-1.5330	-1.4710	-1.3714	-1.4668		-7.5703	-7.2641	-6.7725	-7.2435	-6.6579
Shared-Ride 4+ Free	-2.3721	-2.4758	-2.4893	-2.5479	-2.6082	-11.7139	-12.2262	-12.2928	-12.5824	-12.8801
Shared-Ride 4+ Toll	-2.5342	-2.4327	-2.3324	-2.4052	-2.2632	-12.5145	-12.0131	-11.5179	-11.8774	-11.1764
Walk-Local Bus Only	-0.7656	-1.4810	-2.7993	-5.1488			-3.2910	-6.2206	-11.4419	-10.7421
Walk-Mixed Mode/Local Bus	-0.5130	-1.3804	-2.3565	-2.4627	-3.3095	-1.1400		-5.2367	-5.4728	-7.3545
Walk-Mixed Mode/Express Bus	-0.9537	-1.9301	-2.7963	-3.9533	-3.7372	-2.1193	-4.2891	-6.2140	-8.7851	-8.3049
Walk-Mixed Mode/Commuter Bus	-999.0000	-999.0000		-0.2434	1.6483	-2,220.0000	-2,220.0000	-2,220.0000	-0.5408	3.6628
Walk-Mixed Mode/Rail	-0.2681	-0.8950	-2.2733	-1.4601	-1.5664	-0.5957	-1.9888	-5.0518	-3.2447	-3.4810
Walk-Mixed Mode/Commuter Rail	-0.2681	-0.8950	-2.2733	-1.4601	-1.5664	-0.5957	-1.9888	-5.0518	-3.2447	-3.4810
	1									
PNR-Local Bus Only	-999.0000	-999.0000		-999.0000						,
PNR-Mixed Mode/Local Bus	0.0000	0.0000	0.0000							0.0000
PNR-Mixed Mode/Express Bus	-3.3409	-3.6787	-4.8921	-4.8885	-4.9820	-7.4243	-8.1749	-10.8714	-10.8632	-11.0711
PNR-Mixed Mode/Commuter Bus	-1.0214	-1.6781	-3.3807	-3.4175	-3.5970	-2.2698	-3.7292	-7.5128	-7.5945	-7.9933
PNR-Mixed Mode/Rail	-3.8953	-4.7424	-5.3345	-5.1530		-8.6562	-10.5387	-11.8544	-11.4510	-11.2424
PNR-Mixed Mode/Commuter Rail	-3.8953	-4.7424	-5.3345	-5.1530	-5.0591	-8.6562	-10.5387	-11.8544	-11.4510	-11.2424
KNR-Local Bus Only	-999.0000	-999.0000	-999.0000	-999.0000			-2,220.0000	-2,220.0000	-2,220.0000	,
KNR-Mixed Mode/Local Bus	0.0000	0.0000	0.0000	0.0000				0.0000		0.0000
KNR-Mixed Mode/Express Bus	-3.7240	-4.1379	-4.3904	-4.8307	-5.5353			-9.7564		-12.3007
KNR-Mixed Mode/Commuter Bus	-1.7086	-2.2014	-2.6822	-3.4175	-4.2534	-3.7970	-4.8919	-5.9603	-7.5945	-9.4521
KNR-Mixed Mode/Rail	-4.2784	-4.9310	-5.5095	-5.8646		-9.5077	-10.9577	-12.2433		-12.7692
KNR-Mixed Mode/Commuter Rail	-4.2784	-4.9310	-5.5095	-5.8646	-5.7462	-9.5077	-10.9577	-12.2433	-13.0325	-12.7692

Table 4.33: NHB Mode Choice Equation Overview

	Term appears in Choice DA SR-2 SR-3 SR-4 Walk PNR KNR															
NHB Model Equation Term	D	Α	SF	R-2	SF	₹-3	SF	₹-4	W	alk	PN	I R	KI	NR	NHB Coefficient [†]	IVT Ratio
	F	Т	F	Т	F	Т	F	Т	LBO	MM	LBO	MM	LBO	MM	Coomorant	ratio
Auto In-vehicle Time	*	*	*	*	*	*	*	*							-0.023700	4.00
Transit In-vehicle Time									*	*	*	*	*	*	(-0.018960 Comm Rail only)	1.00 (0.80)
First Wait Time >4.5 min									*	*	*	*	*	*	,	
First Wait Time <4.5 min									*	*	*	*	*	*	-0.047400*	2.00*
Transfer Wait Time									*	*	*	*	*	*	-0.047400	2.00*
Walk Time									*	*	*	*	*	*	1	
Drive Access Time											*	*	*	*	-0.035550	1.50
HOV Time Savings			*	*	*	*	*	*							0.016600	-0.70
Toll Time Savings		*		*		*		*							0.016600	-0.70
Parking Cost	*	*	*	*	*	*	*	*							-0.014040	0.59
Toll Cost (exc. Beltway 8 Bridge)		*		*		*		*							-0.006990	0.29
Auto Operating Cost	*	*	*	*	*	*	*	*					*	*		
Toll Cost (Beltway 8 Bridge only)		*		*		*		*							-0.005620	-0.01
Transit Fare									*	*	*	*	*	*		
Trip Distance (Equiv. Auto)										*				*1	0.000000	0.00
Number of Transfers									*	*	*	*	*	*	-0.094800	4.00
Residential Density									*	*	*	*			0.000000	0.00
Formal PNR Indicator													*		0.000000	0.00
Household Size (SR2)			*	*											0.000000	0.00
Household Size (SR3)					*	*									0.000000	0.00
Household Size (SR4+)							*	*							0.000000	0.00
CBD Indicator (In CBD = 1)									*	*	*	*	*	*	-0.234323	9.89
TMC Indicator									*	*	*	*	*	*	-0.058107	2.45
Uptown Indicator									*	*	*	*	*	*	0.351018	-15.07
Greenway Indicator									*	*	*	*	*	*	0.349156	-14.73

^{* -} shown values for initial wait and transfer times are represented as such in the wait curves; mode choice coefficients are 1.00 IVTT

LRM-2954 5/19/04 Calibration

Table 11:

Table 4.34: Summary of NHB Nesting Coefficients

						Cho	ice is	sub	oject to N	Nesting (Coefficie	nt			NHB
NHB Nesting Coefficient	D	Α	SF	R-2	SF	₹-3	SF	₹-4	W	alk	PN	NR.	K١	NR .	Nesting
	F	Т	F	Т	F	Т	F	Т	LBO	MM	LBO	MM	LBO	MM	Coefficient†
Auto Nest (DA vs SR)	*	*	*	*	*	*	*	*							0.750000
Transit Nest (Walk, PNR vs KNR)									*	*	*	*	*	*	0.750000
Drive Alone Nest (DA only)	*	*													
Shared Ride Nest (2 vs 3 vs 4+)			*	*	*	*	*	*						1	
Walk-Access Nest (LBO vs MM)									*	*				1	0.600000
PNR-Access Nest (LBO vs MM)											*	*		1	
KNR-Access Nest (LBO vs MM)													*	*	
Drive-Alone Nest (F vs P)	*	*													
Shared Ride 2 Nest (F vs P)			*	*											0.450000
Shared Ride 3 Nest (F vs P)					*	*									0.450000
Shared Ride 4+ Nest (F vs P)							*	*							

LRM-2954 5/19/04 Calibration

Table 4.35: Summary of NHB Constants

CONSTANTS	Тор	Bottom
	Level	Level
Drive Alone Free	0.0000	
Drive Alone Pay	0.4243	2.0955
Shared-Ride 2 Free	-0.6505	-3.2126
Shared-Ride 2 Toll	-0.2445	-1.2076
Shared-Ride 3 Free	-1.0406	-5.1388
Shared-Ride 3 Toll	-0.6436	-3.1782
Shared-Ride 4+ Free	-1.0046	-4.9611
Shared-Ride 4+ Toll	-0.6096	-3.0105
Walk-Local Bus Only	-3.0742	
Walk-Mixed Mode/Local Bus	-1.4625	-3.2501
Walk-Mixed Mode/Express Bus	-2.6962	
Walk-Mixed Mode/Commuter Bus	-0.2585	-0.5745
Walk-Mixed Mode/Rail	-2.7340	-6.0755
Walk-Mixed Mode/Commuter Rail	-2.7340	-6.0755
PNR-Local Bus Only		-2,220.0000
PNR-Mixed Mode/Local Bus	0.0000	
PNR-Mixed Mode/Express Bus	-5.5651	
PNR-Mixed Mode/Commuter Bus	-3.6365	
PNR-Mixed Mode/Rail	-6.4717	
PNR-Mixed Mode/Commuter Rail	-6.4717	-14.3816
KNR-Local Bus Only		-2,220.0000
KNR-Mixed Mode/Local Bus	0.0000	
KNR-Mixed Mode/Express Bus	-6.0848	
KNR-Mixed Mode/Commuter Bus	-4.0285	
KNR-Mixed Mode/Rail	-6.7566	
KNR-Mixed Mode/Commuter Rail	-6.7566	-15.0147

4.5 Commercial Vehicles

In the Cube models, commercial vehicle trips include truck and taxi trips. Trips for each of these purposes are separately estimated. Truck and taxi vehicle trips were estimated based on trip attraction rates developed from the 1995 H-GAC Commercial Vehicle survey and trip productions are scaled to match trip attractions. These trips are maintained as a separate class of trip in the auto assignment. Highway travel times represent the purpose impedance.

4.6 External Travel

External trips are categorized into two general categories: external local (external-internal travel) and external through (external-external travel). Within these categories, truck and auto trips have been separated, resulting in four different trip purposes: external-local auto, external-local truck, external-through auto and external-through truck. External-local auto and truck productions are estimated based on the year 2002 counted volumes at the external station and the shares of external-local auto and truck as estimated from the H-GAC 1995 External-station survey. External-local attractions are estimated based upon the household survey. External-local attractions are scaled to match external-local productions.

The trip distribution model employs the gravity model form in conjunction with a specified trip length frequency curve. External through trip matrices are derived by frataring the 1995 External Survey based external-through trip tables to match estimated year 2002 external-through trip ends. The year 2002 estimated external through trip ends are based upon the external-through trip share as estimated at each station based upon the 1995 External Survey.

4.7 Trip Assignment

4.7.1 Highway Trip Assignment Methodology

Using the mode choice model, person trips classified by trip purpose are separated into automobile and transit trips and auto person trips are converted to vehicle trips based on vehicle occupancy factors. These vehicle trip tables are summed and converted to origin-destination format and assigned to the appropriate highway network (base year or forecast year). This is a 24-hour capacity restraint assignment performed at the TAZ level. Multiple iterations of the capacity restraint model precede computation of the final assignment results. The model adjusts link impedance between iterations, based on each link's assigned V/C ratio. The weighted average of the assigned volumes from the preceding iterations is used to calculate the V/C ratio. The impedance adjustment function used in this model is based on the FHWA impedance adjustment function. This function assumes impedance is based on a "zero-volume" link speed. However, since traditional coding of Texas highway networks used a 24-hour speed rather than a zero-volume speed, a modified version of the FHWA impedance adjustment function was developed, which is represented by the following formula:

$$I_{n+1} = \left(0.92 + 0.15 \sqrt[6]{c}\right) \times I_0$$

Where: I_0 = initial impedance using 24-hour input speed

 I_{n+1} = link impedance for iteration n + 1

v = weighted average link volume from iterations 1 to n

c = link capacity

The constraint is applied to limit the magnitude of the impedance adjustment, the maximum of which varies by iteration. After the initial assignment, the maximum impedance factor is two (essentially reducing the 24-hour speed by one-half) and is increased by one for each of the subsequent iterations. The final assignment results are computed following the six iterations, using a weighted average of the link volumes from those iterations. The iteration weights specified for the 1990 base year assignment are determined by an equilibrium capacity restraint process, where each trip is assigned the path with the shortest travel time until equilibrium is achieved.

4.7.2 Comparison to 2005 Counted Volumes

In the 2005 network, there are 28,888 highway links (one-way links) excluding centroid connectors. Of the 28,888, there are 6,165 with count based volume estimates. To demonstrate the validity of the models, comparison of the assigned versus counted VMT is normally summarized to demonstrate the capabilities of the models in matching estimated 2005 base year conditions.

Table 4.36 summarizes the total assigned VMT on all 28,888 links by 5 roadway types. The assigned VMT on the 6,165 links with counted volumes are also summarized by roadway type. The assigned VMT as a percentage of the counted VMT was computed and is summarized for each of the roadway types. As may be observed, the assigned VMT on freeways, principal arterials, Tollways and minor arterials are within 5% of the counted VMT estimates

Table 4.37 summarizes the total assigned VMT on all 28,888 links by 5 area types. The assigned VMT on the 6,165 links with counted volumes are also summarized by area type. The assigned VMT as a percentage of the counted VMT was computed and is summarized for each of the area types. While the CBD Assigned VMT is approximately 88.3% of counted VMT, this is not unusual for CBD's and is considered within acceptable limits. The assigned and counted VMT in the other area types compare very favorably.

Table 4.38 summarizes the total assigned VMT on all 28,888 links by the 8 counties in the region. The assigned VMT on the 6,165 links with counted volumes are also summarized by county. The assigned VMT as a percentage of the counted VMT was computed and is summarized for each of the counties.

Overall the comparisons of the assigned and counted VMT were considered acceptable and reasonably demonstrate that the models reasonably replace the observed conditions for 2005.

Table 4.36 2005 VMT by Roadway Type

Roadway Type	Number of links	Total Assigned VMT (all links)	Number of Links With Counts	Assigned VMT on Links With Counts	Count VMT	Assigned VMT as Percent of Counted VMT
	2.000	F4 202 002	272	0.240.752	0.570.440	07.00/
Freeway	3,066	51,392,093	372	9,310,753	9,576,413	97.2%
Tollway	369	7,044,141	56	1,544,544	1,530,646	100.9%
Prin. Arterial Other	3,920	19,331,170	766	4,679,102	4,509,754	103.8%
Arterial	12,191	34,060,219	4,317	14,466,188	14,313,747	101.1%
Collectors	9,342	14,344,921	654	1,595,045	1,513,740	105.4%
All Types	28,888	126,172,544	6,165	31,595,632	31,444,300	100.5%

Table 4.37 2005 VMT by Area Type

Area Type	Number of links	Total Assigned VMT (all links)	Number of Links With Counts	Assigned VMT on Links With Counts	Count VMT	Assigned VMT as Percent of Counted VMT
CBD	806	609,184	79	86,482	97,961	88.3%
Urban Urban	5,965	27,657,128	1,694	6,943,512	6,633,185	104.7%
Fringe	11,806	56,635,740	3,349	17,662,964	17,422,690	101.4%
Suburban	6,561	26,322,904	931	5,757,849	6,113,627	94.2%
Rural	3,750	14,947,588	112	1,144,825	1,176,836	97.3%
All Areas	28,888	126,172,544	6,165	31,595,632	31,444,300	100.5%

Table 4.38 2005 VMT by County

County	Number of links	Total Assigned VMT (all links)	Number of Links With Counts	Assigned VMT on Links With Counts	Count VMT	Assigned VMT as Percent of Counted VMT
Brazoria	2,175	5,509,610	188	408,033	480,657	84.9%
Chambers	487	2,568,981	16	87,524	122,596	71.4%
Fort Bend	1,943	8,019,614	320	1,856,810	2,003,251	92.7%
Galveston	2,006	4,991,426	143	619,741	623,550	99.4%
Harris	19,414	92,349,056	5,219	26,557,308	26,271,237	101.1%
Liberty	620	2,150,053	30	131,829	137,912	95.6%
Montgomery	1,739	8,760,294	229	1,445,520	1,249,506	115.7%
Waller	504	1,823,510	20	488,867	555,592	88.0%
All Counties	28,888	126,172,544	6,165	31,595,632	31,444,300	100.5%

5.0 HPMS VMT ADJUSTMENT

5.1 INTRODUCTION

H-GAC has validated its travel models to the year 2005. As part of the validation, there is a need to re-calculate the factor by which travel model VMT is made to be consistent with VMT estimated by the FHWA Highway Performance Monitoring System (HPMS). The H-GAC Regional Travel Models have been validated to observed vehicle miles of travel (VMT) that are estimated based on roughly 14,000 traffic counts. The estimates and forecasts of vehicle miles of travel produced by the model set are used directly in all transportation planning applications conducted by H-GAC and its transportation planning partners. For purposes of air quality conformity analysis of RTPs and TIPs and the development of State Implementations Plans, H-GAC, through consultation with the Texas Department of Transportation (TxDOT), Texas Commission on Environmental Quality (TCEQ), U.S. DOT and EPA has chosen to reconcile its Base Year (2005) model estimated regional VMT against regional 2005 VMT estimated by HPMS. The factor needed to reconcile model estimated VMT to HPMS estimated VMT is used for all air quality conformity analysis and development of SIPs.

5.2 COMPARISON OF ESTIMATED VMT

In order to compare Base Year 2005 estimated regional VMT to HPMS estimated 2005 VMT, an estimate of total model estimated regional VMT is calculated. Model assigned regional network VMT is combined with assigned regional centroid connector VMT and an estimate of travel within each zone (intrazonal VMT). Because the reconciliation is made for estimated non-summer weekday VMT, both VMT estimates (model and HPMS) are made to represent non-summer weekday VMT. The model VMT is produced in its original form as non-summer weekday VMT, as shown. HPMS VMT represents average annual daily travel (AADT) and is adjusted to represent average non-summer weekday travel, based on an adjusted factor developed using TxDOT permanent traffic recorder data.

Model estimated average non-summer weekday travel (ANSWT)

- = (Model network VMT) + (Model Centroid Connector VMT) + (Model Intrazonal VMT)
- = (126,139,292) + (12,627,263) + (856,596)
- = 139,623,151

HPMS estimated average non-summer weekday travel (ANSWT)

- = (HPMS AADT) * (AADT to Non-Summer Weekday Travel Adjustment Factor^A)
- = (132,093,142) * (1.059088)
- = 139,898,262

A – 2006 HGB ATA Data

5.3 CALCULATION OF HPMS ADJUSTMENT FACTOR

The factor used to reconcile model estimated regional VMT to HPMS estimated regional VMT is calculated by dividing the HPMS estimated average non-summer weekday VMT as follows:

HPMS Adjustment Factor

- = (HPMS estimated ANSWT) / (Model estimated ANSWT)
- = (139,898,262) / (139,623,151)
- = 1.001970381

5.4 APPLICATION OF HPMS ADJUSTMENT FACTOR

The HPMS adjustment factor is applied to the model estimated time-of-day VMT prior to the estimation of time-of-day speed. In this way, the time-of-day speeds used in the estimation of emissions are based upon HPMS adjusted VMT.