

Fight the Bite - Applying Remote Sensing
Technologies to Detect Mosquito
Breeding Habitats

CWI Workshop
June 20th 2018
Sarah M Gunter, PhD, MPH

Mosquito-Borne Diseases

SOURCES: WHO; crocodile-attack/info; Kasturiratne et al. (doi.org/10.1371/journal.pmed.0050218); FAO (webcitation.org/60gpS8SVO); Ligrnell gt al. (webcitation.org/60R1/T0BUO); Packer et al. (doi.org/10.1038/22F436927a); Alessandro De Maddalena. All calculations have wide error mather tops://www.gatesnotes.com/Health/Most-Lethal-Animal-Mosquito-Week

Major Limitations of Mosquito Borne Disease Prevention

- Majority of these diseases originate in infrastructure-poor, resource-limited countries
 - I. Hard to predict spread of new Mosquito-Borne Diseases
 - Arboviral mutations
 - i. Unpredictable jump to new mosquito species-animal hosts
 - b. Lack of surveillance
 - i. Can't identify new epidemics
 - ii. Can't track spread
 - iii. Unaware of highest-risk populations
- 2. Globalization contributes to spread of disease
- 3. Paucity of available diagnostics, vaccines, and therapeutics

Zika Epidemic in the Americas

Development of BCM-ExxonMobil Collaboration

MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT

Use of Remote Sensing and Geographic Information Systems to Predict Locations of *Anopheles darlingi*-Positive Breeding Sites Within the Sibun River in Belize, Central America

NICOLE L. ACHEE, 1 JOHN P. GRIECO, 1 PENNY MASUOKA, 1 RICHARD G. ANDRE, 1 DONALD R. ROBERTS, 1 JAMES THOMAS, 1 IRENEO BRICENO, 2 RUSSELL KING, 2 AND ELISKA REJMANKOVA³

J. Med. Entomol. 43(2): 382–392 (2006)

ation of the confusion matrix indicated a 75.9% accuracy rate by which all land cover categories were classified. Bare ground, forest, and pasture/low grass land cover categories had the highest accuracy rates with 98.8, 97.0, and 94.9% of the pixels being correctly classified, respectively. The orchard and sandbar land cover classes suffered from the worse classification confusion, with 58.8 and 58.6% of the pixels, respec-

ExxonMobil Upstream Activities

- Application of Remote Sensing Technologies
 - Assess environmental impact
 - Baseline survey of vegetation cover & health (chlorophyll count)
 - Post-Oil exploration and drilling survey of vegetation
 - Assess environmental recovery post-spill clean-up
 - Search for geographic features that indicate oil reserves

Collaborative Project Goals

 Develop a image analysis workflow that can identify mosquito breeding habitats

Evaluate efficacy of our model with real-world validation

 Determine public health impact with arboviral surveillance

Baylor College of Medicine

Project Overview

Spring- 370 sq.km.:

High WNV + mosquito & High WNV+ human incidence 2014

West Harris – 263 sq.km.:

"control" area, Low WNV+ mosquitos & human cases

Downtown/Ship Channel—

357 sq.km.: Mixed use areas (industrial & residential) which should provide a widest range of habitats

Satellite Imaging Provider Selection

Baylor College of Medicine

Satellite	Pixel Size (m)	# pixels that fit into a single Landsat-8 pixel	Number of Bands		Hermann Par	K. Co
WorldView-3	0.31	2341.3	16		0	
WorldView-2	0.46	1063.3	8			
QuickBird	0.65	532.5	4			
SPOT-6	1.50	100.0	4			
Sentinel-2	10.00	2.3	13	Mary .		1000
Landsat-8	15.00	1.0	11			0 25 50 100 150
WorldView Panchromat Multispectra	ic					
	400	500 60	0 70	0 800	900	1000

Image Analysis Workflows

Visual Inspection:

- Abandoned tires: Look for 'dark pixels" using automated classification refined by visual inspection of images and spectral readings
- OSSF: look for clustering of permitted systems

Color Band Ratios:

- Normalized difference vegetation index (NDVI) to find areas with a high density of healthy vegetation
- Normalized difference water index (NDWI) to find areas with standing water

Image Classification "object oriented":

 If we know where good habitats for mosquito growth exist, we can use pixels from specific components of those habitats to predict where similar pixels exist

LIDAR

Find roadside ditches and classify by depth

Mosquito Life Cycle

Baylor College of Medicine

Department of Medical Entomology, University of Sydney and Westmead Hospital, Australia

Mosquito Breeding Habitats & Model Identification Plan

Culex quinquefasciatus

- 1. Drainage ditches
- 2. Septic leaks
- 3. Manhole covers
- 4. Vegetated stagnant water

Aedes aegypti & A. albopictus

- 1. Tire grouping-ASDI HandHeld2 spectroradiometer
- 2. Trash/container index (junk)
- 3. Construction sites- *master plan communities*
- 4. Industrial yards
- 5. Cemeteries

Public Health Relevance

Baylor College of Medicine

1

- 120 traps set per month
 - Repeated for 4 months (June-September)
- Mosquito data:
 - Quantify number of adult A. albopictus,
 A. aegypti, and Culex mosquitoes are collected in each trap
 - Test for arbovirus:
 - Aedes sp.- Zika, Denge, and Chickingunya
 - Culex- West Nile Virus
- Validate the model
 - Ground truthing survey

Survey123 for ArcGIS

Location of reading

Lat: 29.77524 Lon: -95.40588

Description of object

Ditch with water and vegetation

Image of object

field_7-20180424-151346.jpg

Future Directions

Baylor College of Medicine

- Refinement of Mosquito Breeding Habitat Model
 - Integration of Dog Detection as a Validation Measure
 - Artificial Intelligence (Neural network analysis), LiDAR data, Texture filters
- Habitat Prediction Models and Potential Applications
 - Afghanistan/Iraq Sandfly (Leishmaniasis)
 - Africa Anopheles sp. Mosquito (Malaria)
 - Integrated Vector Management for Aedes, Culex, and Ixodes sp.

(Zika, Dengue, Chikungunya, West Nile, and St. Louis Encephalitis

viruses, and Lyme disease)

CDC Public Health Image Library phil.cdc.gov

Acknowledgements

Study Team

- ExxonMobil Upstream Division
 - Jerry Helfand (retired)
 - Tim Nedwed
- Baylor College of Medicine
 - Dr. Peter Hotez
 - Dr. Abi Oluyomi
- University of South Carolina
 - Dr. Melissa Nolan
- Harris County Public Health-Mosquito & Vector Control
 - Dr. Mustapha Debboun
 - Chris Fredregill
 - Kyndall Dye

Grant Support

- ExxonMobil Foundation
- DigitalGlobe Foundation

Energy lives here

